Spring Integration Reference Manual

Mark Fisher
Marius Bogoevici

€ sPring

ur ce

1.0.0.M4 (Milestone 4)

© SpringSource Inc., 2008

Spring Integration

Table of Contents

1. Spring INtegration OVEIVIEWeiiiieeeiiiiiiieiee e e e e e et eee e e e e e s e s e e e e aeessaanereeeeeaaeesaaansnenees 1
O 2 T o 1 011 o PSPPI 1
1.2. GOAlS AN PrINCIPIES ...ttt e e e s 1
1.3. Main COMPONENES ...uvvviiiiieeeiiiiiiieee et e e e e s s et e e e e e e e e e st te e e e e e e e s s santbbeereeaeesssansnrraneeeaeeas 2

IVIESSATE ...ttt e e e nrnnnnnrnnnrnnnrne 2
S S2 o TS0 o 3
MESSAGE TANGELeueeeeieiiinriiitit ettt nn i nrrne 3
MESSAOE HANAIEot e e e e st e e e e e e e e neereeeas 4
MESSAPE ChaNNE]eiiiiiiiie e e e e e e e e e s st e e e e e e e s e e e nenreees 4
MESSA0E ENAPOINT ...ttt e e et e e e s eas 4
S S= o T o 6
MESSAGE BUSevuiuiiiiiiiiiiiiiitit ettt nnrnrrrne 6

B I = o £ USRI 8
2. M BSSa0E ittt 8
2.2, SOUICE ... 9
A - o . PRSPPI 9
2.4, MESSAgECNANNEL ..o 10

QUEUECNANNEL ... 10
PriorityChRaNEloeiiiiiiei e 11
ReNdezvoUSChaNNElooo e 11
DITECICNANNEL ..o et e e 11
ThreadLoCalChanNEl ... e e e e e 11
2.5, ChannE INLEICEPLOLuvviiiiee ettt e e e e e e e e s s e r e e e e e e e e e narrenees 12
2.6. MESSAOEHBNUIES ...ttt e e e e e e e 12
2.7. MESSAGEBUSccoieeiiiiie ettt e e ettt s e e e e e e e e ettt e e e e e e e e ettt e e e e eeeaaanaaaaaaaanes 13
2.8. MESSAgEENCPOINTeeiiiiiiiiee ettt e e e b e e e nra e e e e aae 15
2.9. MESSagESEIECIOr ...cceeeiieieiee e 16
2.10. ReQUESIREPIYTEMPIELEeeeeei ittt e e e s e e e e e e e enees 17
2.11. MESSAGINGGBLEWEYoueveeeeeiiireeeeasteeeeeitee e e s s e e e e snb e e e e asbn e e e s asne e e e e annrreeeaannreeenann 17

G 0 = o] (= £ PRSP 19
G300 R 1 1 L1 o 1 o o PSSR 19
KN |V S Y 0 = o = = PP PRRTROPPRRRN 19
3.3 RMIAGEPLELS ..ottt ettt et e e e e e e et e e e e e bb e e e e e nbreeeeaae 20
3.4, HUPINVOKE! AGDLEN'Seeeeiieeeieiieieiee ettt e e e e e s e et e e e e e e e e neneeeeas 20
35 FIHE AUADLENS ..o e e e e a e e e 21
36, FTP AGBPLENS ...ttt et e e e e e e e e e e e et eeeeane 21
A = T AN =0 (= £ TR 21
3.8. WED SErVICE ATPLENS ...ttt e e e et eeeeeane 22
3.9, Stream AdapLerScoco e 22
3.10. ApplicatioNEVENt AQBPLENScoiiiiiiiieeiiiiee et 23

1.0.0.M4 (Milestone 4) Spring Integration Reference

Spring Integration

R @o) 110 1V (o] [U TR SPR 24
g I 1 11 0o [o o USSR 24

N =0 = = oS o o SN 24
Configuring Message ChannElSuuvieiiieii i 25
Configuring Message ENAPOINTSveveiiiiiieeiiiiiee e 27
Configuring the MESSBE BUSccuiiiiiiiee et 29
CoNfIQUITNG AGBPLENS ...ttt e s e e nnbneeeeaaes 30

Enabling Annatation-Driven Configurationcccceeciiiiieeiee i 31

G T AN g1 1o PSSR 31

5. Spring Integration SAMPIESccoov i, 35
5.1, The Caf@ SAMPIE e e e st e e e e e e et aaees 35

6. AdditiONal RESOUICESeieeiiiiee ettt e e et e e e e e e e e e et ee e e e e e e e e e e annnreeeeeaaeens 39
6.1. Spring INtegratioNn HOMEcoi ittt et e e e e e e 39

1.0.0.M4 (Milestone 4) Spring Integration Reference

Spring Integration

1. Spring Integration Overview

1.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic
cross-cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially the
fact that it is based upon well-established best practices such as programming to interfaces and favoring
composition over inheritance. Spring's simplified abstractions and powerful support libraries boost
developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles.
It extends the Spring programming model into the messaging domain and builds upon Spring's existing
enterprise integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain business logic
should execute and wher e the response should be sent. It supports routing and transformation of messages
so that different transports and different data formats can be integrated without impacting testability. In
other words, the messaging and integration concerns are handled by the framework, so business
components are further isolated from the infrastructure and developers are relieved of complex integration
responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean"
elements, and of course direct usage of the underlying API. That API is based upon well-defined strategy
interfaces and non-invasive, delegating adapters. Spring Integration’'s design is inspired by the recognition
of a strong affinity between common patterns within Spring and the well-known Enterprise Integration
Patterns [http://www.eaipatterns.com] as described in the book of the same name by Gregor Hohpe and
Bobby Woolf (Addison Wesley, 2003). Developers who have read that book should be immediately
comfortable with the Spring Integration concepts and terminology .

1.2 Goals and Principles

Spring Integration is motivated by the following goals:

* Provide asimple model for implementing complex enterprise integration solutions.

1.0.0.M4 (Milestone 4) Spring Integration Reference 1

http://www.eaipatterns.com
http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

 Facilitate asynchronous, message-driven behavior within a Spring-based application.

» Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration logic.

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse and
portability.

1.3 Main Components

From the vertical perspective, alayered architecture facilitates separation of concerns, and interface-based
contracts between layers promate loose coupling. Spring-based applications are typicaly designed this
way, and the Spring framework and portfolio provide a strong foundation for following this best practice
for the full-stack of an enterprise application. Message-driven architectures add a horizontal perspective,
yet these same goals are still relevant. Just as "layered architecture” is an extremely generic and abstract
paradigm, messaging systems typically follow the similarly abstract "pipes-and-filters’ model. The
"filters" represent any component that is capable of producing and/or consuming messages, and the
"pipes’ transport the messages between filters so that the components themsel ves remain |oosely-coupl ed.
It is important to note that these two high-level paradigms are not mutually exclusive. The underlying
messaging infrastructure that supports the "pipes" should still be encapsulated in a layer whose contracts
are defined as interfaces. Likewise, the "filters' themselves would typically be managed within a layer
that is logically above the application's service layer, interacting with those services through interfaces
much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and header and has a unique
identifier. The payload can be of any type and the header holds commonly required information such as
timestamp, expiration, and return address. Devel opers can aso store any arbitrary key-value properties or
attributes in the header.

1.0.0.M4 (Milestone 4) Spring Integration Reference 2

Spring Integration

Message Source

Since a Spring Integration Message is a generic wrapper for any Object, there is no limit to the number of
potential sources for such messages. In fact, a Source implementation can act as an adapter that converts
Objects from any other system into Spring Integration M essages.

” receive() [Consumer

To facilitate the conversion of Objects to Messages, Spring Integration also defines a strategy interface
for creating Messages called MessageCr eat or. While it is relatively easy to implement Source
directly, an adapter is also available for invoking arbitrary methods on plain Objects. Also, several Source
implementations are aready available within the Spring Integration Adapters module. For a detailed
discussion of the various adapters, see Chapter 3, Adapters.

Message Target

Just as a Source enables Message reception, a Target handles the responsibility of sending Messages. As
with a Source, a Target can act as an adapter that converts Messages into the Objects expected by some
other system.

send(Message)
o | =
Message

Manua

Spring Integration

Spring Integration provides a strategy interface for mapping Messages to Objects called
MessaegMapper . The Target interface may be implemented directly, but an adapter is also available
for invoking arbitrary methods on plain Objects (delegating to the Message-mapping strategy in the
process). As with Sources, several Target implementations are aready available within the Spring
Integration Adapters module as discussed in Chapter 3, Adapters.

Message Handler

As described above, the Source and Target components support conversion between Objects and
Messages so that application code and/or external systems can be connected to a Spring Integration
application rather easily. However, both Source and Target are unidirectional while the application code
or external system to be invoked may provide a return value. The Message Handler interface supports
these request-reply scenarios.

\ handle(Message) Input >

Message

Requester |#------------ [Output™] -

Message

Message
Handler

As with the Source and Target, Spring Integration also provides an adapter that itself implements the
Message Handler interface while supporting the invocation of arbitrary methods on plain Objects. The
adapter relies upon the message-creating and message-mapping strategies to handle the bidirectional
Object/Message conversion. For more information about the Message Handler, see Section 2.6,
“MessageHandler”.

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to
a channel, and consumers receive Messages from a channel. By providing both send and receive
operations, a Message Channel basically combines the roles of Source and Target.

send(Message) receive()
Producer Consumer

Message Channel

Spring Integration provides a number of different channel implementations. QueueChannel,
PriorityChannel, RendezvousChannel, DirectChannel, and Threadl ocal Channel. These are described in
detail in Section 2.4, “MessageChannel”.

Message Endpoint

Thus far, the component diagrams show Consumers, Producers, and Requesters invoking the Source,

1.0.0.M4 (Milestone 4) Spring Integration Reference 4

Spring Integration

Target, and Message Handlers respectively. However, one of the primary goals of Spring Integration isto
simplify the development of enterprise integration solutions through inversion of control. This means that
you should not have to implement such Producers, Consumers, and Requesters directly. Instead, you
should be able to focus on your domain logic with an implementation based on plain Objects. Then, by
providing declarative configuration, you can "connect” your application code to the messaging
infrastructure provided by Spring Integration. The components responsible for these connections are
Message Endpoints.

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary role is to connect application code to the messaging framework and to do so in a
non-invasive manner. In other words, the application code should have no awareness of the Message
objects or the Message Channels. Thisis similar to the role of a Controller in the MV C paradigm. Just as
a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are
mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same in
both cases: isolate application code from the infrastructure. Spring Integration provides three types of
endpoints - one for each of the component types described above: Source Endpoint, Target Endpoint, and
Handler Endpoint.

Source Endpoint

A Source Endpoint connects any Source implementation to a Message Channel. The invocation of the
Source's receive operation is controlled by scheduling information provided within the Source Endpoint's
configuration. Any time the receive operation returns a non-null Message, it is sent to the channel.

= = |- -
_____ Endpoint Message

Message

Channel

Target Endpoint

A Target Endpoint connects a Message Channel to any Target implementation. The invocation of the
Message Channel's receive operation is controlled by scheduling information provided within the Target
Endpoint’'s configuration. Any time a non-null Message is received from the channel, it is sent to the
Target.

N
Target
Message
Channel

Handler Endpoint

Manud

Spring Integration

Since Message Handler's are capable of returning reply Messages, the Handler Endpoint has some
additional responsibilities. The general behavior is the same as the Target Endpoint, but the Handler
Endpoint must make a distinction between "input-channel" and "output-channel". Whenever the Message
Handler does return areply Message, that Message is sent to the output channel. If no output channel has
been configured, then the reply will be sent to the channel specified as the Message header's "return
address' if available.

handle(Message) " Input
essage
- Handler | — e
[Endpoint . Output Handler
nput 5 :—"‘
Channel essag

Qutput
Channel

Message Router

A Message Router is a particular type of MessageHandl| er that is capable of receiving a Message and
then deciding what channel or channels should receive the Message next. Typically the decision is based
upon the Message's content and/or metadata. A Message Router is often used as a dynamic aternative to
configuring the input and output channels for an endpoint.

Channel A

Message

M ge Router

Channel B

Message Bus

The Message Bus acts as a registry for Message Channels and Message Endpoints. It also encapsulates
the complexity of message retrieval and dispatching. Essentialy, the Message Bus forms a logical
extension of the Spring application context into the messaging domain. For example, it will automatically
detect Message Channel and Message Endpoint components from within the application context. It
handles the scheduling of pollers, the creation of thread pools, and the lifecycle management of all
messaging components that can be initialized, started, and stopped. The Message Bus is the primary

1.0.0.M4 (Milestone 4) Spring Integration Reference 6

Spring Integration

example of inversion of control within Spring Integration.

- ~y

Mesage Bus

Endpoints

Task Channel
Scheduler Registry

v
| Soutce I [Han:jler] [Target J

AEEIication Context

Manud

Spring Integration

2. The Core API

2.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message aso includes a header containing user-extensible properties as key-value
pairs. Here is the definition of the Message interface:

public interface Message<T> {
oj ect getld();
MessageHeader get Header () ;
T get Payl oad();
bool ean i sExpired();

}

And the header provides the following properties:

Table 2.1. Properties of the MessageHeader

Property Name Property Type

timestamp javauutil.Date

expiration javauutil.Date

correlationld java.lang.Object

returnAddress javalang.Object (can be a String or
MessageChannel)

sequenceNumber int

sequenceSize int

priority MessagePriority (an enum)

properties java.util.Properties

attributes Map<String,Object>

The base implementation of the Message interface is Gener i cMessage<T>, and it provides three
constructors:

new Generi cMessage<T>(Object id, T payload);

new Generi cMessage<T>(T payl oad);

new Ceneri cMessage<T>(T payl oad, MessageHeader header ToCopy)
When no id is provided, a random unique id will be generated. The constructor that accepts a
MessageHeader will copy properties, attributes, and any 'returnAddress from the provided header.
There are also two convenient subclasses available currently: St ri ngMessage and Er r or Message.

1.0.0.M4 (Milestone 4) Spring Integration Reference 8

Spring Integration

The latter accepts any Thr owabl e object asits payload.

The MessagePriority isonly considered when using a Pri ori t yChannel (as described in the
next section). It is defined as an enum with five possible values:

public enum MessagePriority {
HI GHEST,
HI GH,
NORVAL,
LOW
LOVEST
}

The Message is obviously a very important part of the APl. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the datas type. As the
system evolves to support new types, or when the types themselves are modified and/or extended, the
messaging system will not be affected by such changes. On the other hand, when some component in the
messaging system does require access to information about the Message, such metadata can typically be
stored to and retrieved from the metadata in the header (the 'properties’ and 'attributes).

2.2 Source

The Sour ce interface defines a single method for receiving Message objects.

public interface Source<T> {
Message<T> receive();
}

Spring Integration also provides a Met hodl nvoki ngSour ce implementation that serves as an adapter
for invoking any arbitrary method on a plain Object (i.e. there is no need to implement an interface). To
use the Met hodl nvoki ngSour ce, provide the Object reference and the method name.

Met hodl nvoki ngSour ce source = new Met hodl nvoki ngSour ce();
sour ce. set Obj ect (new Sour ceObj ect ())

sour ce. set Met hod(" sour ceMet hod") ;

Message<?> result = source.receive();

It is generally more common to configure a Met hodl nvoki ngSour ce in XML by providing a bean
reference.

<sour ce-adapter id="source" ref="sourceject" method="sourceMethod"/>

2.3 Target

The Tar get interface defines asingle method for sending Message objects.

public interface Target ({
bool ean send(Message<?> nessage) ;
}

Aswith the Sour ce, Spring Integration also provides aMet hodl nvoki ngTar get adapter class.

1.0.0.M4 (Milestone 4) Spring Integration Reference 9

Spring Integration

Met hodl nvoki ngTarget target = new Met hodl nvoki ngTarget () ;
target.set bj ect (new Target Obj ect());
target.set Met hodNanme("t ar get Met hod") ;
target.afterPropertiesSet();

target.send(new StringMessage(“test"));

Likewise, the corresponding XML configuration is very similar to that of Met hodl nvoki ngSour ce.

<target-adapter id="target" ref="target Object" nethod="target Met hod"/>

2.4 MessageChannel

While the Message plays the crucia role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers. Spring Integration's MessageChannel
interface is defined as follows.

public interface MessageChannel {
String get Nanme()
voi d set Nane(String nane)
Di spat cher Pol i cy get Di spat cherPolicy();
bool ean send(Message nessage);
bool ean send(Message nessage, |ong tineout);
Message receive();
Message receive(long timeout);
Li st <Message<?>> clear();
Li st <Message<?>> pur ge(MessageSel ector sel ector);
}
When sending a message, the return value will be true if the message is sent successfully. If the send call
times out or is interrupted, then it will return false. Likewise when receiving a message, the return value

will be null in the case of atimeout or interrupt.

Spring Integration provides several different implementations of the MessageChannel interface. Each
is briefly described in the sections below.

QueueChannel

The QueueChannel implementation wraps a queue. It provides a no-argument constructor (that uses a
default capacity of 100) aswell as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (i nt capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Likewise, a receive call will
return immediately if a message is available on the queue, but if the queue is empty, then a receive call
may block until either a message is available or the timeout elapses. In either case, it is possible to force
an immediate return regardless of the queue's state by passing a timeout value of 0. Note however, that
calling the no-arg versions of send() and r ecei ve() will block indefinitely.

Manud

Spring Integration

PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the Pri ori t yChannel isan
aternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the 'pri ori t y' property within each message's header.
However, for custom priority determination logic, a comparator of type Conpar at or <Message<?>>
can be provided tothe Pri ori t yChannel 's constructor.

RendezvousChannel

The RendezvousChannel enables a"direct-handoff" scenario where a sender will block until another
party invokes the channel's r ecei ve() method or vice-versa. Internally, this implementation is quite
smilar to the QueueChannel except that it uses a SynchronousQueue (a zero-capacity
implementation of Bl ocki ngQueue). This works well in situations where the sender and receiver are
operating in different threads but simply dropping the message in a queue asynchronously is too
dangerous. For example, the sender's thread could roll back a transaction if the send operation times out,
whereas with a QueueChannel , the message would have been stored to the internal queue and
potentially never received.

The RendezvousChannel is aso useful for implementing request-reply operations. The sender can
create a temporary, anonymous instance of RendezvousChannel which it then sets as the
'returnAddress on a Message. After sending that Message, the sender can immediately call receive
(optionally providing atimeout value) in order to block while waiting for areply Message.

DirectChannel

The Di r ect Channel issignificantly different than the channel implementations described thus far. It's
primary purpose is to enable a single thread to perform the operations on "both sides’ of the channel. For
example, if aHandl er Endpoi nt issubscribedto abDi r ect Channel , then sending a Message to that
channel will trigger invocation of the handler directly in the sender's thread. The key motivation for
providing a channel implementation with this behavior is to support transactions. If the send cal is
invoked within the scope of a transaction, then the outcome of the handler invocation can play arole in
determining the ultimate result of that transaction (commit or rollback).

ThreadLocalChannel

The final channel implementation type is Thr eadLocal Channel . This channel also delegates to a
queue internaly, but the queue is bound to the current thread. That way the thread that sends to the
channel will later be able to receive those same Messages, but no other thread would be able to access
them. While probably the least common type of channel, this is useful for situations where
Di r ect Channel s are being used to enforce a single thread of operation but any reply Messages should
be sent to a "terminal" channel. If that terminal channel is a Thr eadLocal Channel , the original
sending thread could collect its replies.

1.0.0.M4 (Milestone 4) Spring Integration Reference 11

Spring Integration

2.5 Channelinterceptor

One of the advantages of a messaging architecture is the ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since the
Messages are being sent to and received from MessageChannel s, those channels provide an
opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations:

public interface Channel |l nterceptor {
bool ean preSend(Message<?> nessage, MessageChannel channel);
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);
bool ean preRecei ve(MessageChannel channel);
voi d post Recei ve(Message<?> nessage, MessageChannel channel);

}
After implementing the interface, registering the interceptor with a channel isjust amatter of caling:

channel . addl nt er cept or (sonmeChannel | nt erceptor) ;

The methods that return a bool ean value can return 'f al se' to prevent the send or receive operation
from proceeding (send would return ‘false’ and receive would return 'null*).

Because it is rarely necessary to implement al of the interceptor methods, a
Channel | nt er cept or Adapt er classis aso available for sub-classing. It provides no-op methods
(the voi d methods are empty, and the bool ean methods return t r ue). Therefore, it is often easiest to
extend that class and just implement the method(s) that you need asin the following example.

public class CountingChannel | nterceptor extends Channel | nt erceptor Adapter {
private final Atom clnteger sendCount = new Atoni clnteger();

@verride

publ i c bool ean preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncr ement AndGCet () ;
return true;

2.6 MessageHandler

So far we have seen that generic message objects are sent-to and received-from simple channel aobjects.
Here is Spring Integration's callback interface for handling the Messages:

public interface MessageHandl er {
Message<?> handl e(Message<?> nessage) ;
}

The handler plays an important role, since it is typicaly responsible for translating between the generic
Message objects and the domain objects or primitive values expected by business components that
consume the message payload. That said, developers will rarely need to implement this interface directly.
While that option will always be available, we will soon discuss the higher-level configuration options
including both annotation-driven techniques and XML-based configuration with convenient namespace

Manud

Spring Integration

support.

2.7 MessageBus

So far, you have seen that the MessageChannel provides a recei ve() method that returns a
Message, and the MessageHandl er provides a handl e() method that accepts a Message, but
how do the messages get passed from the channel to the handler? As mentioned earlier, the
MessageBus provides a runtime form of inversion of control, and one of the primary responsibilities
that it assumes is connecting the channels to the handlers. It aso connects Sources and Targets to
channels, and it manages the scheduling of pollers and dispatchers.

The MessageBus is an example of a mediator. It performs a number of roles - mostly by delegating to
other strategies. One of its main responsibilities is to manage registration of the MessageChannel s
and MessageHandl er s. It provides the following methods:

public void registerChannel (String name, MessageChannel channel)

public void registerHandl er(String nane, MessageHandl er handl er,
Subscription subscription)

public void registerHandl er(String name, MessageHandl er handl er,
Subscri ption subscription,
ConcurrencyPol i cy concurrencyPolicy)

As those method signatures reveal, the message bus is handling several of the concerns here so that the
channel and handler objects can be as simple as possible. These responsibilities include the creation and
lifecycle management of message dispatchers, the activation of handler subscriptions, and the
configuration of thread pools. The bus coordinates all of that behavior based upon the metadata provided
via these registration methods, and typicaly developers will not even use this API directly since the
metadata can be provided in XML and/or annotations. We will briefly take a look at each of those
metadata objects.

The bus creates and manages dispatchers that pull messages from a channel in order to push those
messages to handlers subscribed to that channel. Each channel hasa Di spat cher Pol i cy that contains
metadata for configuring those dispatchers:

Table 2.2. Properties of the DispatcherPolicy

Property Name Default Value Description

publishSubscribe fase whether the dispatcher should
attempt to publish to al of its
handlers (rather than just one)

maxM essagesPer Task 1 maximum number of messages
to retrieve per poll

receiveTimeout 1000 (milliseconds) how long to block on the receive
cal (0 for no blocking, -1 for
indefinite block)

1.0.0.M4 (Milestone 4) Spring Integration Reference 13

Spring Integration

Property Name

rejectionLimit

retryinterval

shouldFailOnRejectionLimit

Default Value

1000 (milliseconds)

true

Description

maximum number of attempts to
invoke handlers (e.g. no threads
available)

amount of time to wait between
successive attempts to invoke
handlers

whether to throw a
MessageDel i ver yExcepti on
if the 'rgjectionLimit’ is reached -

if thisis set to 'false, then such
undeliverable messages would be
dropped silently

The bus registers handlers with a channel's dispatcher based upon the Subscri pti on metadata
provided to ther egi st er Handl er () method.

Table 2.3. Properties of the Subscription

Property Name

channel

channelName

schedule

Description

the channel instance to subscribe to (an object

reference)

the name of the channel to subscribe to - only used
as afallback if ‘channel’ is null

the scheduling metadata (see bel ow)

The scheduling metadata is provided as an implementation of the Schedul e interface. This is an
abstraction designed to allow extensibility of schedulers for messaging tasks. Currently, there is a single
implementation named Pol | i ngSchedul e that provides the following properties:

Table 2.4. Properties of the PollingSchedule

Property Name Default Value Description
period N/A the delay interval between each
poll
initialDelay 0 the delay prior to the first poll
timeUnit TimeUnit. MILLISECONDS time wunit for ‘period and
‘initial Delay'
fixedRate false 'false’ indicates fixed-delay (no

Manud

Spring Integration

Property Name Default Value Description

backlog)

ThePol | i ngSchedul e constructor requires the 'period' value.

The ConcurrencyPol i cy is an optional parameter to provide when registering a handler. When the
MessageBus registers a handler, it will use these properties to configure that handler's thread pool.
These parameters are configurable on a per-handler basis since handlers may have different performance
characteristics and may have different expectations with regard to the volume of throughput. The
following table lists the available properties and their default values:

Table 2.5. Properties of the ConcurrencyPolicy

Property Name Default Value Description

coreSize 1 the core size of the thread pool

maxSize 10 the maximum size the thread
pool can reach when under
demand

gueueCapacity 0 capacity of the queue which
defers an increase of the pool
size

keepAliveSeconds 60 how long added threads (beyond

core size) should remain idle
before being removed from the
pool

2.8 MessageEndpoint

As described in Chapter 1, Spring Integration Overview, there are three implementations of the
MessageEndpoi nt interface: Sour ceEndpoi nt, Tar get Endpoi nt , and Handl er Endpoi nt .
These endpoints provide the metadata necessary for the MessageBus to manage Sour ces, Tar get s,
and MessageHand| er s respectively.

For a Sour ceEndpoi nt, the MessageBus schedules a task for polling the Sour ce based on the
provided schedule.

When a Tar get or MessageHandl er is registered with the MessageBus, the bus assigns it to a
dispatcher that polls a MessageChannel based on the provided schedule. Targets and handlers may
aso provide concurrency settings in which case athread pool will be created for asynchronous processing

of messages.

1.0.0.M4 (Milestone 4) Spring Integration Reference 15

Spring Integration

Rather than programming to the API directly, it is ssmpler and more common to register sources, targets,
and handlers with either XML or annotation-based metadata. Then, the message endpoint is an internal
responsibility of the bus. The configuration options are discussed in detail in the section caled
“Configuring Message Endpoints’.

2.9 MessageSelector

As described above, when a MessageHand| er is registered with the message bus, it is hosted by an
endpoint and thereby subscribed to a channel. Often it is necessary to provide additional dynamic logic to
determine what messages the handler should receive. The MessageSel ect or strategy interface fulfills
that role.

public interface MessageSel ector {
bool ean accept (Message<?> message) ;
}

A MessageEndpoi nt can be configured with zero or more selectors, and will only receive messages
that are accepted by each selector. Even though the interface is simple to implement, a couple common
selector implementations are provided. For example, the Payl oadTypeSel ect or provides similar
functionality to Datatype Channels (as described in the section called “ Configuring Message Channels’)
except that in this case the type-matching can be done by the endpoint rather than the channel.

Payl oadTypeSel ect or sel ector = new Payl oadTypeSel ector (String. cl ass, |nteger.class);
assert True(sel ector. accept (new Stri ngMessage("exanple")));

assert True(sel ector. accept (new Generi cMessage<| nt eger>(123)));

assert Fal se(sel ector. accept (new Generi cMessage<SoneObj ect >(sonebj ect)));

Another simple but useful MessageSel ect or provided out-of-the-box is the
Unexpi redMessageSel ect or . As the name suggests, it only accepts messages that have not yet
expired.

Essentially, using a selector provides reactive routing whereas the Datatype Channel and Message Router
provide proactive routing. However, selectors accommodate additional uses. For example, the
MessageChannel 's'purge’ method accepts a selector:

channel . pur ge(soneSel ector) ;

There is even a Channel Pur ger utility class whose purge operation is a good candidate for Spring's
JMX support:

Channel Pur ger purger = new Channel Pur ger (new Exanpl eMessageSel ector (), channel);
purger. purge();

Implementations of MessageSel ect or might provide opportunities for reuse on channels in addition
to endpoints. For that reason, Spring Integration provides a simple selector-wrapping
Channel | nt er cept or that accepts one or more selectorsin its constructor.

MessageSel ecti ngl nterceptor interceptor =
new MessageSel ectingl nterceptor(sel ectorl, selector2);
channel . addl nt ercept or (i nterceptor);

Manud

Spring Integration

2.10 RequestReplyTemplate

Whereas the MessageHandl er interface provides the foundation for many of the components that
enable non-invasive invocation of your application code from the messaging system, sometimes it is
necessary to invoke the messaging system from your application code. Spring Integration provides a
Request Repl yTenpl at e that supports a variety of request-reply scenarios. For example, it is
possible to send arequest and wait for areply.

Request Repl yTenpl ate tenpl ate = new Request Repl yTenpl at e(r equest Channel) ;

Message reply = tenpl ate.request(new StringMessage("test"));
In that example, atemporary anonymous channel would be used internally by the template. However, the
'replyChannel’ may be configured explicitly in which case the template will manage the reply correlation.

Request Repl yTenpl ate tenpl ate = new Request Repl yTenpl at e(r equest Channel) ;
t enpl at e. set Repl yChannel (repl yChannel) ;
Message reply = tenpl ate.request(new StringMessage("test"));

2.11 MessagingGateway

Even though the Request Repl yTenpl at e is fairly straightforward, it does not hide the details of
messaging from your application code. To support working with plain Objects instead of messages,
Spring Integration provides Si npl eMessagi hgGat eway with the following methods:

public void send(Object object) { ... }
public Ooject receive() { ... }
public Object sendAndRecei ve(Cbject object) { ... }

It enables configuration of a request and/or reply channel and delegates to the MessageMapper and
MessageCr eat or strategy interfaces.

Si npl eMessagi ngGat eway gat eway = new Si npl eMessagi ngGat eway() ;
gat eway. set Request Channel (r equest Channel) ;

gat eway. set Repl yChannel (repl yChannel) ;

gat eway. set MessageCr eat or (messageCr eat or) ;

gat eway. set MessageMapper (nessageMapper) ;

bj ect result = gateway.sendAndRecei ve("test");

Working with Objects instead of Messages is an improvement. However, it would be even better to have
no dependency on the Spring Integration API at all - including the gateway class. For that reason, Spring
Integration also provides a Gat ewayPr oxyFact or yBean that generates a proxy for any interface and
internally invokes the gateway methods shown above. Namespace support is aso provided as
demonstrated by the following example.

<gat eway i d="fooService"
servi ce-interface="org. exanpl e. FooServi ce"
request - channel ="r equest Channel "
repl y- channel ="r epl yChannel "
nmessage- cr eat or =" nessageCreat or"
nessage- napper =" nessageMapper "/ >

1.0.0.M4 (Milestone 4) Spring Integration Reference 17

Spring Integration

Then, the "fooService" can be injected into other beans, and the code that invokes the methods on that
proxied instance of the FooService interface has no awareness of the Spring Integration API.

Manud

Spring Integration

3. Adapters

3.1 Introduction

Spring Integration provides a number of implementations of the Sour ce and Tar get interfaces that
serve as adapters for interacting with external systems or components that are not part of the messaging
system. Configuring these source and target implementations within Sour ceEndpoi nts and
Tar get Endpoi nt s provides an implementation of the Channel Adapter pattern. Essentially, the
external system or component sends-to and/or receives-from a MessageChannel . In the 1.0 Milestone
4 release, Spring Integration includes source and target implementations for IMS, RMI, Files, Streams,
Spring's Httplnvoker and Spring ApplicationEvents. A source adapter for FTP is also available as well as
target adapters for sending e-mail and invoking Web Services.

Adapters that alow the externa system to perform request-reply operations across Spring Integration
MessageChannel s are actually examples of the Messaging Gateway pattern. Therefore, those
implementations are typicaly called "gateways'. For example, Spring Integration provides a
JnsSour ce that is polled by the bus-managed scheduler, but it also provides a JnsGat eway. The
gateway differs from the source in that it is an event-driven consumer rather than a polling consumer, and
it is capable of waiting for reply messages.

All of these adapters are discussed in this section. However, namespace support is provided for many of
them and is typically the most convenient option for configuration. For examples, see the section called
“Configuring Adapters’.

3.2 JMS Adapters

Spring Integration provides two adapters for accepting JMS messages (as mentioned above):
JnmsSour ce and Jrrs Gat eway . The former uses Spring's Jns Tenpl at e to receive based on a polling
period. @ The latter configures and delegates to an instance of Spring's
Def aul t Messageli st ener Cont ai ner.

The JnmsSource requires a reference to either a single JnsTenpl ate instance or both
Connecti onFactory and Desti nati on (a 'destinationName can be provided in place of the
‘destination’ reference). The JmsSour ce can then be referenced from a Sour ceEndpoi nt that
connects the source to aMessageChannel instance. The following example defines a IM S source with
aJnsTenpl at e as aconstructor-argument.

<bean id="j msSource" class="org.springfranework.integration.adapter.jns.JnsSource">
<constructor-arg ref="jnmsTenpl ate"/>
</ bean>

In most cases, Spring Integration's message-driven Jirs Gat eway is more appropriate since it delegates
toaMessagelLi st ener container, supports dynamically adjusting concurrent consumers, and can also

1.0.0.M4 (Milestone 4) Spring Integration Reference 19

Spring Integration

handle replies. The JnsGat eway requires references to a ConnectionFactory, and a
Desti nati on (or 'destinationName’). The following example defines a JnsGat eway that receives
from the IM S queue called "exampleQueue”. Note that the 'expectReply’ property has been set to 'true’ (it
is'false' by default):

<bean cl ass="org. springfranework.integration.adapter.jns.JnsCGat eway">
<property name="connectionFactory" ref="connecti onFactory"/>
<property nanme="destinati onName" val ue="exanpl eQueue"/>
<property name="expect Reply" val ue="true"/>

</ bean>

The JrsTar get implements the Tar get interface and is capable of mapping Spring Integration
Messages to JMS messages and then sending to a JIMS destination. It requires either a 'jmsTemplate
reference or both 'connectionFactory' and 'destination’ references (again, the 'destinationName' may be
provided in place of the 'destination). In the section called “Configuring Adapters’, you will see how to
configure a IM S target adapter with Spring Integration’'s namespace support.

3.3 RMI Adapters

The Rm Sour ceAdapt er is built upon Spring's Rm Ser vi ceExport er. However, since it is
adapting a MessageChannel , there is no need to specify the servicelnterface. Likewise, the
serviceName is automatically generated based on the channel name. Therefore, creating the adapter is as
simple as providing areference to its channel:

Rm Sour ceAdapt er rm Sour ceAdapt er = new Rm Sour ceAdapt er (channel) ;

The Rmi Tar get Adapt er encapsulates the creation of a proxy that is capable of communicating with
an Rm Sour ceAdapt er running in another process. Since the interface is aready known, the only
required information is the URL. The URL should include the host, port (default is '1099), and
'serviceName'. The 'serviceName' must match that created by the Rm Sour ceAdapt er (the prefix is
available as a constant).

String url = "http://sonehost: 1099/" + Rmi Sour ceAdapt er. SERVI CE_NAME_PREFI X + "soneChannel ";
Rmi Tar get Adapt er rmi Tar get Adapter = new Rmi Tar get Adapter (url);

3.4 HttpInvoker Adapters

The source and target adapters for Httplnvoker are very similar to the RMI adapters. For a source, only
the channel needs to be provided, and for a target, only the URL. If running in a Spring MVC
environment, then the Ht t pl nvoker Sour ceAdapt er simply needs to be defined and provided in a
Handl er Mappi ng. For example, the following would be exposed a the path
"http://somehost/path-mapped-to-di spatcher-servlet/httpl nvokerAdapter” when a simple
BeanNanmeUr | Handl er Mappi ng strategy is enabled:

<bean nanme="/htt pl nvoker Adapt er"
cl ass="org. springframework.integration.adapter.httpinvoker. H t pl nvoker Sour ceAdapt er " >
<constructor-arg ref="someChannel "/ >

1.0.0.M4 (Milestone 4) Spring Integration Reference 20

Spring Integration

</ bean>

When not running in a Spring MV C application, simply define a servlet in ‘web.xml' whose type is
Ht t pRequest Handl er Ser vl et and whose name matches the bean name of the source adapter. As
with the R Tar get Adapt er, the Ht t pl nvoker Tar get Adapt er only requires the URL that
matches an instance of Ht t pl nvoker Sour ceAdapt er running in aweb application.

3.5 File Adapters

TheFi | eSour ce requires the directory as a constructor argument:

public FileSource(File directory)
It can then be connected to a MessageChannel when referenced from a Sour ceEndpoi nt .

The Fi | eTar get constructor also requires the 'directory' argument. The target adapter also accepts an
implementation of the Fi | eNaneGener at or strategy that defines the following method:

String generat eFi | eNane(Message nessage)

3.6 FTP Adapters

To poll adirectory with FTP, configure an instance of Ft pSour ce and then connect it to a channel by
configuring a Sour ceEndpoi nt . The Ft pSour ce expects a number of properties for connecting to
the FTP server as shown below.

<bean i d="ft pSource"
cl ass="org. springframework.integration. adapter.ftp.FtpSourceAdapter">
<property nanme="host" val ue="exanpl e.org"/>
<property name="usernanme" val ue="soneuser"/>
<property nanme="password" val ue="sonmepassword"/>
<property name="| ocal Wor ki ngDi rectory" val ue="/sone/ path"/>
<property nanme="renot eWor ki nghi rectory" val ue="/sone/ path"/>
</ bean>

3.7 Mail Adapters

Spring Integration currently provides support for outbound email only with the Mai | Tar get. This
adapter delegates to a configured instance of Spring's JavaMai | Sender, and its various mapping
strategies use Spring's Mai | Message abstraction. By default text-based mails are created when the
handled message has a String-based payload. If the message payload is a byte array, then that will be
mapped to an attachment.

The adapter also delegates to a Mai | Header Gener at or for providing the mail's properties, such as
the recipients (TO, CC, and BCC), the from/reply-to, and the subject.

public interface Mil Header Generator {
voi d popul at eMai | MessageHeader (Mai | Message mai | Message, Message<?> nessage)

Manud

Spring Integration

}

The default implementation will look for attributes in the MessageHeader with the following constants
defining the keys:

Mai | Attribut eKeys. SUBJECT
Mai | Attri but eKeys. TO

Mai | Attri but eKeys. CC

Mai | Attribut eKeys. BCC

Mai | Attri but eKeys. FROM

Mai | Attri but eKeys. REPLY_TO

A static implementation is also available out-of-the-box and may be useful for testing. However, when
customizing, the properties would typically be generated dynamically based on the message itself. The
following is an example of a configured mail adapter.

<bean id="nuail Tar get Adapt er"
class="org. springfranework.integration.adapter. mail.Mil Target Adapter">
<property name="mail Sender" ref="javaMail Sender"/>
<property nanme="header Generator" ref="dynam cMai | MessageHeader Gener ator"/ >
</ bean>

3.8 Web Service Adapters

To invoke a Web Service upon sending a message to a channel, there are two options:
Si mpl eWebSer vi ceTar get Adapt er and Mar shal | i ngWebSer vi ceTar get Adapt er. The
former will accept either a St ri ng or j avax. xm .t ransf or m Sour ce as the message payload.
The latter provides support for any implementation of the Marshal | er and Unmarshal | er
interfaces. Both require the URI of the Web Serviceto be called.

si npl eAdapt er = new Si npl eWebSer vi ceTar get Adapter (uri);

mar shal | i ngAdapt er = new Marshal | i ngWebSer vi ceTar get Adapter (uri, marshaller);

Either adapter can then be referenced from a Handl er Endpoi nt that is subscribed to a
MessageChannel . The endpoint is then responsible for passing the response to the proper reply
channel. It will first check for an "output-channel” on the endpoint itself and will falback to a
returnAddress on the original message's header.

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering
client access [http://static.springframework.org/spring-wg/site/reference/html/client.html] as well as the
chapter covering Object/XML mapping
[http://static.springframework.org/spring-ws/site/reference/html/oxm.html].

3.9 Stream Adapters

Spring Integration also provides adapters for streams. Both Byt eStreanSource and
Char act er St r eanSour ce implement the Sour ce interface. By configuring one of these within a
Sour ceEndpoi nt, the polling period can be configured, and the Message Bus can automatically detect

1.0.0.M4 (Milestone 4) Spring Integration Reference 22

http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Spring Integration

and schedule them. The byte stream version requires an | nput St r eam and the character stream version
requires a Reader as the single constructor argument. The Byt eSt r eanSour ce aso accepts the
'bytesPerMessage’ property to determine how many bytes it will attempt to read into each Message.

For target streams, there are aso two implementations. Byt eStreaniTarget and
Char act er St r eanTar get . Each requires a single constructor argument - Qut put St r eamfor byte
streams or Wi t er for character streams, and each provides a second constructor that adds the optional
'bufferSize' property. Since both of these ultimately implement the Tar get interface, they can be
referenced from a Tar get Endpoi nt configuration as will be described in more detail in the section
called “Configuring Message Endpoints’.

3.10 ApplicationEvent Adapters

Spring Appl i cati onEvent s can aso be integrated as either a source or target for Spring Integration
message channels. To receive the events and send to a channel, simply define an instance of Spring
Integration's Appl i cati onEvent Sour ce (as with al source implementations, this can then be
configured within a Sour ceEndpoi nt and automatically detected by the message bus). The
Appl i cati onEvent Source aso implements Spring's Appl i cati onLi st ener interface. By
default it will pass all received events as Spring Integration Messages. To limit based on the type of
event, configure the list of event types that you want to receive with the 'eventTypes' property.

To send Spring Appl i cati onEvent s, register an instance of the Appl i cati onEvent Tar get
class as the 'target’ of a Tar get Endpoi nt (such configuration will be described in detail in the section
caled “Configuring Message Endpoints’). This target aso implements Spring's
Appl i cati onEvent Publ i sher Awar e interface and thus acts as a bridge between Spring
Integration Messages and Appl i cati onEvent s.

Manud

Spring Integration

4. Configuration

4.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your
particular needs and at what level you prefer to work. As with the Spring framework in general, it is aso
possible to mix and match the various techniques according to the particular problem at hand. For
example, you may choose the X SD-based namespace for the mgjority of configuration combined with a
handful of objects that are configured with annotations. As much as possible, the two provide consistent
naming. XML elements defined by the XSD schema will match the names of annotations, and the
attributes of those XML elements will match the names of annotation properties. Direct usage of the AP
is yet another option and is described in detail in Chapter 2, The Core API. We expect that most users will
choose one of the higher-level options, such as the namespace-based or annotation-driven configuration.

4.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the
terminology and concepts of enterprise integration. In many cases, the element names match those of the
Enterprise Integration Patterns [http://www.eai patterns.com].

To enable Spring Integration's namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xm ns="http://ww. springfranmework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springframework. org/schena/integration”
xsi :schemaLocati on="http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration-1.0.xsd">

You can choose any name after "xmins:"; integration is used here for clarity, but you might prefer a
shorter abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of
auto-completion may convince you to keep the longer name for clarity. Alternatively, you can create
configuration files that use the Spring I ntegration schema as the primary namespace:

<beans: beans xm ns="http://wwm. springfranmework. org/ schema/ i ntegration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="htt p: // ww. spri ngf ramewor k. or g/ schena/ beans"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans-2. 5. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. springfranewor k. org/ schema/ i ntegration/spring-integration-1.0.xsd">

When using this aternative, no prefix is necessary for the Spring Integration elements. On the other hand,
if you want to define a generic Spring "bean" within the same configuration file, then a prefix would be

1.0.0.M4 (Milestone 4) Spring Integration Reference 24

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

required for the bean element (<beans.bean ... />). Since it is generally a good idea to modularize the
configuration files themselves based on responsibility and/or architectural layer, you may find it
appropriate to use the latter approach in the integration-focused configuration files, since generic beans
are seldom necessary within those same files. For purposes of this documentation, we will assume the
"integration” namespaceis primary.

Configuring Message Channels

To create a Message Channel instance, you can use the generic ‘channel’ element:

<channel id="exanpl eChannel "/>

The default channel type is Point to Point. To create a Publish Subscribe channel, provide avalue of true
for the 'publish-subscribe' attribute of the channel element:

<channel i d="exanpl eChannel " publish-subscribe="true"/>

When the MessageBus detects and registers channels, it will establish a dispatcher for each channel.
The default dispatcher settings were previously displayed in Table 2.2, “Properties of the
DispatcherPolicy”. To customize these settings for a particular channel, add the ‘dispatcher-policy'
sub-element and provide one or more of the attributes shown below:

<channel id="exanpl eChannel" publish-subscribe="true">
<di spat cher - pol i cy max- nessages- per -t ask="25"
receive-tineout ="10"

retry-interval ="500"
shoul d-fail-on-rejection-limt="fal se"/>
</ channel >

To create a Datatype Channel [http://www.eaipatterns.com/DatatypeChannel.html] that only accepts
messages containing a certain payload type, provide the fully-qualified class name in the channel
element'sdat at ype attribute:

<channel id="nunber Channel" datatype="java.| ang. Nunber"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other words,
the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger or
j ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<channel id="stringO Nunber Channel" datatype="java.l ang. String,java.| ang. Nunber"/>

When using the "channel" element, the creation of the channel instances will be deferred to the
Channel Fact or y defined on the MessageBus (see below).

It is also possible to use more specific elements for the various channel types (as described in Section 2.4,
“MessageChannel”). Depending on the channel, these may provide additional configuration options.
Examples of each are shown below.

1.0.0.M4 (Milestone 4) Spring Integration Reference 25

http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/DatatypeChannel.html

Spring Integration

The <queue-channel/> element

To create a QueueChannel , use the "queue-channgl" element. By using this element, you can aso
specify the channel's capacity:

<queue- channel i d="exanpl eChannel" capacity="25"/>

The <priority-channel/> element

TocreateaPri ori t yChannel , usethe "priority-channel” element:

<priority-channel id="exanpleChannel"/>

By default, the channel will consult the MessagePri ori ty value in the message's header. However, a
custom Conpar at or reference may be provided instead. Also, note that the Pri ori t yChannel (like
the other types) does support the "datatype” attribute. As with the "queue-channel”, it also supports a
"capacity” attribute. The following example demonstrates all of these:

<priority-channel id="exanpleChannel"
dat at ype="exanpl e. W dget "
conpar at or ="w dget Conpar at or "
capaci ty="10"/>

The <rendezvous-channel/> element

The RendezvousChannel doesnot provide any additional configuration options.

<r endezvous- channel i d="exanpl eChannel "/>

The <direct-channel/> element

TheDi r ect Channel does not provide any additional configuration options.

<di rect - channel i d="exanpl eChannel "/>

The <thread-local-channel/> element

The Thr eadLocal Channel does not provide any additional configuration options.

<t hr ead- | ocal - channel i d="exanpl eChannel "/>

Message channels may also have interceptors as described in Section 2.5, “Channellnterceptor”. One or
more <interceptor> elements can be added as sub-elements of <channel> (or the more specific element
types). Provide the "ref" attribute to reference any Spring-managed object that implements the
Channel | nt er cept or interface:

<channel i d="exanpl eChannel ">
<interceptor ref="trafficMonitoringlnterceptor"/>
</ channel >

Manud

Spring Integration

In generdl, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Configuring Message Endpoints

Each of the three endpoint types (source, target, and handler) has its own element in the namespace.

The <source-endpoint/> element

A Sour ceEndpoi nt connects an implementation of the Sour ce interface to a MessageChannel .
The <source-endpoint/> therefore requires these two references as well as the scheduling information so
that the MessageBus can manage the message-receiving tasks.

<sour ce- endpoi nt sour ce="exanpl eSour ce" channel =" exanpl eChannel ">
<schedul e peri od="5000"/>
</ sour ce- endpoi nt >

The <target-endpoint/> element

A Tar get Endpoi nt connects a MessageChannel to an implementation of the Tar get interface.
The <target-endpoint/> requires these two references.

<t ar get - endpoi nt i nput - channel =" exanpl eChannel " t ar get ="exanpl eTarget"/ >

When the MessageBus registers the endpoint, it will activate the subscription by assigning the endpoint
to the input channel's dispatcher. The dispatcher is capable of handling multiple endpoint subscriptions
for its channel and delegates to a scheduler for managing the tasks that pull messages from the channel
and push them to the endpoints. To configure the polling period for an individual endpoint's schedule,
provide a'schedul€' sub-element with the 'period' in milliseconds:

<t ar get - endpoi nt i nput-channel =" exanpl eChannel " target ="exanpl eTar get ">
<schedul e peri od="3000"/>
</target - endpoi nt >

Note

Individual endpoint schedules only apply for "Point-to-Point" channels, since in that case
only a single subscriber needs to receive the message. On the other hand, when a Spring
Integration channel is configured as a "Publish-Subscribe" channel, then the dispatcher will
drive al endpoint notifications according to its own default schedule, and any ‘schedule
element configured for those endpoints will be ignored.

The <target-endpoint/> accepts additional attributes and child elements, but since these configuration
options are also available for the <handler-endpoint/> element, they will be discussed below.

The <handler-endpoint/> element

1.0.0.M4 (Milestone 4) Spring Integration Reference 27

Spring Integration

To create a Handler Endpoint instance, use the 'handler-endpoint’ element with the 'input-channel' and
'handler attributes:

<handl er - endpoi nt i nput - channel =" exanpl eChannel " handl er =" exanpl eHandl er"/ >

The configuration above assumes that "exampleHandler” is an actual implementation of the
MessageHandl er interface as described in Section 2.6, “MessageHandler”. To delegate to an arbitrary
method of any object, smply add the "method" attribute.

<handl er - endpoi nt i nput - channel =" exanpl eChannel " handl er =" sonePoj 0" net hod="sonmeMet hod"/ >

In either case (MessageHandl| er or arbitrary object/method), when the handling method returns a
non-null value, the endpoint will attempt to send the reply message to an appropriate reply channel. To
determine the reply channel, it will first check if an "output-channel” was provided in the endpoint
configuration:

<handl er - endpoi nt i nput - channel =" exanpl eChannel " out put - channel ="r epl yChannel "
handl er =" sonePoj 0" net hod="sonmeMet hod"/ >

If no "output-channel” is available, it will next check the message header's 'r et ur nAddr ess' property.
If that value is available, it will then check itstype. If it isaMessageChannel , the reply message will
be sent to that channel. If it is a St ri ng, then the endpoint will attempt to resolve the channel by
performing alookup inthe Channel Regi stry.

To reverse the order so that the 'returnAddress is given priority over the endpoint's "output-channel”, then
provide the "return-address-overrides' attribute with avalue of 'true':

<handl er - endpoi nt i nput - channel =" exanpl eChannel " out put - channel ="r epl yChannel "
handl er =" sonePoj 0" net hod="sonmeMet hod" return-address-overri des="true"/>

If neither is available, then aMessageHandl i ngExcept i on will be thrown.

Handler and Target Endpoints also support MessageSel ect ors as described in Section 2.9,
“MessageSelector”. To configure a selector with namespace support, simply add the "selector” attribute to
the endpoint definition and reference an implementation of the MessageSel ect or interface.

<handl er - endpoi nt i d="endpoi nt" input-channel ="channel" handl er ="handl er"
sel ect or =" exanpl eSel ector"/ >

Another important configuration option for handler and target endpoints is the concurrency policy. Each
endpoint is capable of managing a thread pool for its handler or target, and the values you provide for that
pool's core and max size can make a substantial difference in how the handler or target performs under
load. These settings are available per-endpoint since the performance characteristics of an endpoint's
handler or target is one of the major factors to consider (the other major factor being the expected volume
on the channel to which the endpoint subscribes). To enable concurrency for an endpoint that is
configured with the XML namespace support, provide the 'concurrency' sub-element and one or more of
the properties shown below:

<handl er - endpoi nt i nput - channel =" exanpl eChannel " handl er =" exanpl eHand| er " >

Manud

Spring Integration

</ handl er - endpoi nt >

Recall the default concurrency policy values as listed in Table 25, “Properties of the
ConcurrencyPolicy”. If no concurrency settings are provided (i.e. a null Concur rencyPol i cy), the
endpoint's handler or target will be invoked in the caller's thread. Note that the "caller” is usualy the
dispatcher except in the case of a Di r ect Channel (see the section called “DirectChannel” for more
detail).

Tip

For the concurrency settings, the default queue capacity of O triggers the creation of a
Synchr onousQueue. In many cases, this is preferable since the direct handoff eliminates
the chance of a message handling task being "stuck” in the queue (thread pool executors will
favor adding to the queue rather than increasing the pool size). Specifically, whenever a
dispatcher for a Point-to-Point channel has more than one subscribed endpoint, a task that is
rejected due to an exhausted thread pool can be handled immediately by another endpoint
whose pool has one or more threads available. On the other hand, when a particular
channel/endpoint may be expecting bursts of activity, setting a queue capacity value might be
the best way to accommodate the volume.

Configuring the Message Bus

As described in Section 2.7, “MessageBus’, the MessageBus plays a central role. Nevertheless, its
configuration is quite simple since it is primarily concerned with managing internal details based on the
configuration of channels and endpoints. The bus is aware of its host application context, and therefore is
also capable of auto-detecting the channels and endpoints. Typicaly, the MessageBus can be
configured with a single empty element:

<message- bus/ >

The Message Bus provides default error handling for its components in the form of a configurable error
channel, and the 'message-bus' element accepts a reference with its 'error-channel’ attribute:

<nessage- bus error-channel ="error Channel "/ >

<channel id="errorChannel" publish-subscribe="true" capacity="500"/>

When exceptions occur in a concurrent endpoint's execution of its MessageHand| er callback, those
exceptions will be wrapped in Er r or Messages and sent to the Message Bus' 'errorChannel’ by default.
To enable globa error handling, simply register a handler on that channel. For example, you can
configure Spring Integration's Payl oadTypeRout er asthe handler of an endpoint that is subscribed to
the 'errorChanndl’. That router can then spread the error messages across multiple channels based on
Excepti on type. However, since most of the errors will aready have been wrapped in
MessageDel i ver yExcepti on or MessageHand| i ngExcepti on, the
Root CauseErr or MessageRout er istypically abetter option.

The 'message-bus element accepts several more optional attributes. First, you can control whether the

1.0.0.M4 (Milestone 4) Spring Integration Reference 29

Spring Integration

MessageBus will be started automatically (the default) or will require explicit startup by invoking its
start () method (MessageBus implements Spring'sLi f ecycl e interface):

<nmessage- bus auto-startup="fal se"/>

Another configurable property is the size of the dispatcher thread pool. The dispatcher threads are
responsible for polling channels and then passing the messages to handlers.

<message- bus di spat cher - pool - si ze="25"/>

When the endpoints are concurrency-enabled as described in the previous section, the invocation of the
handling methods will happen within the handler thread pool and not the dispatcher pool. However, when
no concurrency policy is provided to an endpoint, then it will be invoked in the dispatcher's thread (with
the exception of Di r ect Channel s).

Also, the Message Bus is capable of automatically creating channel instances if an endpoint registers a
subscription by providing the name of a channel that the bus does not recognize.

<nmessage- bus aut o-create-channel s="true"/>

Finally, the type of channel that gets created automatically by the bus can be customized by using the
"channel-factory" attribute on the "message-bus" definition as in the following example:
<message- bus channel - f act ory="channel Fact or yBean"/ >

<beans: bean i d="channel Fact or yBean"
cl ass="org. springframework.integration.channel.factory.PriorityChannel Factory"/>

With this definition, all the channels created automatically will be Pri orityChannel instances.
Without the “"channel-factory” element, the Message Bus will assume a default
QueueChannel Factory.

Configuring Adapters

The most convenient way to configure Source and Target adapters is by using the namespace support.
The following examples demonstrate the namespace-based configuration of several sources and targets:
<j ms-source id="jnmsSource" connection-factory="connFactory" destination="i nQueue"/>

<!-- using the default "connectionFactory" reference -->
<jns-target id="jnmsTarget" destination="outQeue"/>

<file-source id="fil eSource" directory="/tnp/in"/>
<file-target id="fileTarget" directory="/tnp/out"/>
<rm -source id="rm Source" request-channel ="rm Sourcel nput"/>
<rm-target id="rm Target"

| ocal - channel ="r m Tar get Qut put "

r enot e- channel =" someRenot eChannel "

host =" sonehost "/ >

<htt pi nvoker -source id="httpSource" name="/sone/path" request-channel ="httplnvokerlnput"/>

Manud

Spring Integration

<httpi nvoker-target id="httpTarget" channel ="httplnvokerQutput" url="http://sonmehost/test"/>
<mai |l -target id="mail Target" host="sonmehost" usernanme="sonmeuser" password="sonmepassword"/>
<ws-target id="wsTarget" uri="http://exanple.org" channel ="wsQut put"/>

<ftp-source id="ftpSource"
host =" exanpl e. or g"
user nane="soneuser"
passwor d=" sonepasswor d"
| ocal - wor ki ng-di rect ory="/ sone/ pat h"
renot e- wor ki ng- di rect ory="/sone/ pat h"/>

In the examples above, notice that simple implementations of the Sour ce and Tar get interfaces do not
accept any 'channel’ references. To connect such sources and targets to a channel, register them within an
endpoint. For example, here is a File source with an endpoint whose polling will be scheduled to execute
every 30 seconds by the MessageBus.

<sour ce- endpoi nt source="fil eSource" channel =" exanpl eChannel ">
<schedul e peri od="30000"/>
</ sour ce- endpoi nt >

<file-source id="fil eSource" directory="/tnp/in"/>
Likewise, here is an example of a IMS target that is registered with a target-endpoint whose Messages
will be received from the "exampleChannel” that is polled every 500 milliseconds.

<t arget - endpoi nt i nput-channel =" exanpl eChannel " target="j nmsTarget">
<schedul e peri od="500"/>
</target - endpoi nt >

<jms-target id="jmsTarget" destinati on="targetDestination"/>

Enabling Annotation-Driven Configuration

The next section will describe Spring Integration's support for annotation-driven configuration. To enable
those features, add this single element to the XML-based configuration:

<annot ati on-dri ven/ >

4.3 Annotations

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to use
annotations. The class-level @/kssageEndpoi nt annotation indicates that the annotated class is
capable of being registered as an endpoint, and the method-level @Handl er annotation indicates that the
annotated method is capable of handling a message.

@kssageEndpoi nt (i nput ="f ooChannel ")
public class FooService {

@Handl er

public void processMessage(Message message) {

}

1.0.0.M4 (Milestone 4) Spring Integration Reference 31

Spring Integration

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message's payload type.

@essageEndpoi nt (i nput ="f ooChannel ")
public class FooService {

@Handl er
public void bar(Foo foo) {

}

When the method parameter should be mapped from a value in the MessageHeader , another option is
to usethe @Header At t ri but e and/or @Header Pr oper t y parameter annotations.

@essageEndpoi nt (i nput ="f ooChannel ")
public class FooService {

@Handl er
public void bar(@eaderAttribute("fooAttrib") Foo foo) {

}

@kssageEndpoi nt (i nput ="fooChannel ")
public class FooService {

@Handl er
public void bar(@eader Property("“foo") String input) {

}

As described in the previous section, when the handler method returns a non-null value, the endpoint will
attempt to send areply. Thisis consistent across both configuration options (namespace and annotations)
in that the the endpoint's output channel will be used if available, and the message header's
'returnAddress value will be the fallback. To configure the output channel for an annotation-driven
endpoint, provide the ‘output' attribute on the @vessageEndpoi nt .

@kessageEndpoi nt (i nput =" exanpl eChannel ", out put ="repl yChannel ")

Just as the 'schedule’ sub-element and its 'period' attribute can be provided for a namespace-based
endpoint, the @ol | ed annotation can be provided with the @/ ssageEndpoi nt annotation.

@kssageEndpoi nt (i nput =" exanpl eChannel ")
@ol | ed(peri 0d=3000)
public class FooService {

}
Likewise, @oncur r ency provides an annotation-based equivalent of the <concurrency/> element:

@kessageEndpoi nt (i nput ="f ooChannel ")
@oncurrency(coreSi ze=5, maxSi ze=20)
public class FooService {

Manud

Spring Integration

@Hand| er
public void bar(Foo foo) {

}

Two additional annotations are supported, and both act as a special form of handler method: @Rout er
and @plitter. As with the @dandl er annotation, methods annotated with either of these two
annotations can either accept the Message itself or the message payload type as the parameter. When
using the @Rout er annotation, the annotated method can return either the MessageChannel or
String type. In the case of the latter, the endpoint will resolve the channel name as it does for the
default output. Additionally, the method can return either a single value or a collection. When a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are al valid.

@Rout er

publ i c MessageChannel route(Message nmessage) {...}

@Rout er
public List<MessageChannel > rout e(Message nessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rrout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available
within the message header as either a property or attribute. Rather than requiring use of the Message
type as the method parameter, the @Rout er annotation may also use the same parameter annotations that
were introduced above.

@Rrout er
public String route(@eaderProperty("custonerType") String customnerType)

@Rout er
public List<String> route(@eaderAttribute("orderStatus") OrderStatus status)

The @bpl i tt er annotation is also applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a collection of any type. If the
returned values are not actual Message objects, then each of them will be sent as the payload of a
message. Those messages will be sent to the output channel as designated for the endpoint on which the
@Bplitter isdefined.

@plitter

Li st<Li neltenr extractltenms(Order order) {
return order.getltens()

}

The @Publ i sher annotation is convenient for sending messages with AOP after-returning advice. For
example, each time the following method is invoked, its return value will be sent to the "fooChannel":

@Publ i sher (channel ="f ooChannel ")

1.0.0.M4 (Milestone 4) Spring Integration Reference 33

Spring Integration

public String foo() {
return “bar";
}

Similarly, the @ubscri ber annotation triggers the retrieval of messages from a channel, and the
payload of each message will then be sent as input to an arbitrary method. This is one of the simplest
ways to configure asynchronous, event-driven behavior:

@ubscri ber (channel ="f ooChannel ")

public void log(String foo) {
System out . println(foo);

}

Manud

Spring Integration

5. Spring Integration Samples

5.1 The Cafe Sample

In this section, we will review a sample application that is included in the Spring Integration distribution.
This sample is inspired by one of the samples featured in Gregor Hohpe's Ramblings
[http://mww.eai patterns.com/ramblings.html].

The domain isthat of a Cafe, and the basic flow is depicted in the following diagram:

hotDrinks

placeOrder

The Dr i nkOr der object may contain multiple Dr i nks. Once the order is placed, a Splitter will break
the composite order message into a single message per drink. Each of these is then processed by a Router
that determines whether the drink is hot or cold (checking the Dr i nk object's 'islced' property). Finaly
the Bari st a prepares each drink, but hot and cold drink preparation are handled by two distinct
methods: 'prepareHotDrink’ and 'prepareColdDrink'.

Here isthe XML configuration:

<beans: beans xm ns="http://ww. spri ngfranmework. org/ schema/ i nt egration"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: beans="htt p: //ww. spri ngfranewor k. or g/ schena/ beans"

xm ns: cont ext ="htt p://ww. spri ngfranmewor k. or g/ schena/ cont ext "

xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans-2. 5. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. spri ngfranewor k. org/ schenma/ i ntegration/spring-integration-1.0.xsd
http://ww. springframework. or g/ schema/ cont ext
http: // ww. spri ngf ranewor k. or g/ schema/ cont ext/ spri ng- cont ext - 2. 5. xsd" >

<nmessage- bus/ >
<annot ati on-driven/ >
<cont ext: conponent - scan base- package="org. spri ngframewor k. i nt egrati on. sanpl es. cafe"/>

<channel id="orders"/>
<channel id="drinks"/>
<channel id="col dDri nks"/>
<channel id="hotDrinks"/>

<handl er - endpoi nt i nput-channel ="col dDri nks" handl er ="bari st a"
net hod=" pr epar eCol dDri nk" />

<handl er - endpoi nt i nput-channel ="hot Dri nks" handl er ="bari sta"
net hod="pr epar eHot Dri nk"/ >

<beans: bean id="cafe" class="org.springframework.integration.sanpl es. cafe. Cafe">
<beans: property name="order Channel " ref="orders"/>

1.0.0.M4 (Milestone 4) Spring Integration Reference 35

http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html

Spring Integration

</ beans: bean>
</ beans: beans>

Notice that the Message Bus is defined. It will automatically detect and register all channels and
endpoints. The 'annotation-driven' element will enable the detection of the splitter and router - both of
which carry the @/kssageEndpoi nt annotation. That annotation extends Spring's "stereotype"
annotations (by relying on the @Component meta-annotation), and so all classes carrying the endpoint
annotation are capabl e of being detected by the component-scanner.

@kessageEndpoi nt (i nput ="orders", output="drinks")
public class OrderSplitter {

@plitter
public List<Drink> split(DrinkOrder order) ({
return order.getDrinks();

}

@kssageEndpoi nt (i nput ="dri nks")
public class DrinkRouter {

@Rout er
public String resol veDri nkChannel (Drink drink) {

return (drink.islced()) ? "coldDrinks" : "hotDrinks";
}

Now turning back to the XML, you see that there are two <endpoint> elements. Each of these is
delegating to the same Bar i st a instance but different methods. The 'barista could have been defined in
the XML, but instead the @onponent annotation is applied:

@Conponent
public class Barista {

private | ong hotDrinkDel ay = 2000;
private |ong col dDrinkDel ay = 1000;

private Atonmiclnteger hotDrinkCounter = new Atomni clnteger();
private Atom cl nteger coldDri nkCounter = new Atom clnteger();

public void setHotDrinkDel ay(l ong hot Dri nkDel ay) {
thi s. hot Dri nkDel ay = hot Dri nkDel ay;

}

public void set Col dDri nkDel ay(| ong col dDri nkDel ay) {
this. col dDri nkDel ay = col dDri nkDel ay;

}
public void prepareHot Drink(Drink drink) {
try {
Thr ead. sl eep(t hi s. hot Dri nkDel ay) ;
} catch (InterruptedException e) {
Thread. current Thread().interrupt();
}
System out . println("prepared hot drink #" +
hot Dri nkCount er. i ncrement AndGet () + ": " + drink);
}
public void prepareCol dDri nk(Drink drink) {
try {

Thr ead. sl eep(t hi s. col dDri nkDel ay) ;
} catch (InterruptedException e) {

1.0.0.M4 (Milestone 4) Spring Integration Reference 36

Spring Integration

Thread. current Thread().interrupt();

}
System out. println("prepared cold drink #"' +

col dDri nkCounter.increment AndGet () + ": " + drink);

As you can see from the code excerpt above, the barista methods have different delays. This simulates
work being completed at different rates. When the Caf eDenp 'main’ method runs, it will loop 100 times
sending asingle hot drink and asingle cold drink each time.

public static void main(String[] args) {
Abst ract Appl i cati onCont ext context = null;
if(args.length > 0) {
context = new Fil eSyst emXm Appl i cati onCont ext (args);

el se {
context = new Cl assPat hXm Appl i cati onCont ext (" caf eDeno. xml ", Caf eDenp. cl ass);
}

context.start();
Cafe cafe = (Cafe) context.getBean("cafe");
DrinkOrder order = new DrinkOrder();
Drink hot Doubl eLatte = new Drink(DrinkType. LATTE, 2, false);
Drink icedTripl eMocha = new Drink(DrinkType. MOCHA, 3, true);
order. addDri nk(hot Doubl eLatte);
order. addDri nk(i cedTri pl eMocha);
for (int i =0; i < 100; i++) {
caf e. pl aceOrder (order);
}

To run this demo, go to the "samples® directory within the root of the Spring Integration distribution. On
Unix/Mac you can run ‘cafeDemo.sh’, and on Windows you can run 'cafeDemo.bat’. Each of these will by
default create a Spring Appl i cati onCont ext from the ‘cafeDemo.xml' file that is in the
"spring-integration-samples’ JAR and hence on the classpath (it is the same as the XML above).
However, a copy of that file is also available within the "samples" directory, so that you can provide the
file name as a command line argument to either ‘cafeDemo.sh’ or 'cafeDemo.bat’. This will allow you to
experiment with the configuration and immediately run the demo with your changes. It is probably a good
ideato first copy the origina file so that you can make as many changes as you want and still refer back
to the original to compare.

When you run cafeDemo, you will see that all 100 cold drinks are prepared in roughly the same amount
of time as only 50 of the hot drinks. This is to be expected based on their respective delays of 1000 and
2000 milliseconds. However, by configuring the endpoint concurrency, you can dramatically change the
results. For example, on my machine, the following single modification causes all 100 hot drinks to be
prepared before the 5th cold drink is ready:

<handl er - endpoi nt i nput-channel ="col dDri nks" handl er="bari sta" method="prepareCol dDri nk"/>
<handl er - endpoi nt i nput - channel ="hot Dri nks" handl er="bari sta" met hod="prepar eHot Dri nk">

<concurrency core="25" max="50"/>
</ handl er - endpoi nt >

In addition to experimenting with the 'concurrency’ settings, you can also try adding the 'schedule
sub-element as described in the section called “Configuring Message Endpoints’. Additionally, you can

Manud

Spring Integration

experiment with the channel's configuration, such as adding a 'dispatcher-policy' as described in the
section called “Configuring Message Channels’. If you want to explore the sample in more detail, the
source JAR is available in the "src” directory:
‘org.springframework.integration.samples-sources-1.0.0.M4.jar".

1.0.0.M4 (Milestone 4) Spring Integration Reference 38

Spring Integration

6. Additional Resources

6.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home
[http://www.springframework.org/spring-integration] at http://www.springframework.org. That site
serves as a hub of information and is the best place to find up-to-date announcements about the project as
well aslinksto articles, blogs, and new sample applications.

1.0.0.M4 (Milestone 4) Spring Integration Reference 39

http://www.springframework.org/spring-integration
http://www.springframework.org/spring-integration
http://www.springframework.org

	Spring Integration Reference Manual
	Table of Contents
	1. Spring Integration Overview
	1.1 Background
	1.2 Goals and Principles
	1.3 Main Components
	Message
	Message Source
	Message Target
	Message Handler
	Message Channel
	Message Endpoint
	Source Endpoint
	Target Endpoint
	Handler Endpoint

	Message Router
	Message Bus

	2. The Core API
	2.1 Message
	2.2 Source
	2.3 Target
	2.4 MessageChannel
	QueueChannel
	PriorityChannel
	RendezvousChannel
	DirectChannel
	ThreadLocalChannel

	2.5 ChannelInterceptor
	2.6 MessageHandler
	2.7 MessageBus
	2.8 MessageEndpoint
	2.9 MessageSelector
	2.10 RequestReplyTemplate
	2.11 MessagingGateway

	3. Adapters
	3.1 Introduction
	3.2 JMS Adapters
	3.3 RMI Adapters
	3.4 HttpInvoker Adapters
	3.5 File Adapters
	3.6 FTP Adapters
	3.7 Mail Adapters
	3.8 Web Service Adapters
	3.9 Stream Adapters
	3.10 ApplicationEvent Adapters

	4. Configuration
	4.1 Introduction
	4.2 Namespace Support
	Configuring Message Channels
	The <queue-channel/> element
	The <priority-channel/> element
	The <rendezvous-channel/> element
	The <direct-channel/> element
	The <thread-local-channel/> element

	Configuring Message Endpoints
	The <source-endpoint/> element
	The <target-endpoint/> element
	The <handler-endpoint/> element

	Configuring the Message Bus
	Configuring Adapters
	Enabling Annotation-Driven Configuration

	4.3 Annotations

	5. Spring Integration Samples
	5.1 The Cafe Sample

	6. Additional Resources
	6.1 Spring Integration Home

