Spring Integration Reference Manual

Mark Fisher
Marius Bogoevici

€ sPring

ur ce

1.0.0.M6 (Milestone 6)

© SpringSource Inc., 2008

Spring Integration

Table of Contents

1. Spring INtegration OVEIVIEWeiiiieeeiiiiiiieiee e e e e e et eee e e e e e s e s e e e e aeessaanereeeeeaaeesaaansnenees 1
O 2 T o 1 011 o PSPPI 1
1.2. GOAlS AN PrINCIPIES ...ttt e e e s 1
1.3. Main COMPONENES ...uvvviiiiieeeiiiiiiieee et e e e e s s et e e e e e e e e e st te e e e e e e e s s santbbeereeaeesssansnrraneeeaeeas 2

IVIESSATE ...ttt e e e nrnnnnnrnnnrnnnrne 2
S S2 o TS0 o 3
MESSAGE TANGELeueeeeieiiinriiitit ettt nn i nrrne 3
MESSAOE HANAIEot e e e e st e e e e e e e e neereeeas 4
MESSAPE ChaNNE]eiiiiiiiie e e e e e e e e e s st e e e e e e e s e e e nenreees 4
MESSA0E ENAPOINT ...ttt e e et e e e s eas 4

ChannEl AGAPLEScoiiiiieiee e e e e e e e e e e et aeeeeaeeas 5

SENVICE ACHVEION .oeiiieiiiiiieiee et e e e e s et e e e e e e e s e nnnraaneeeaeeas 6
S S= o T 0 6
o] 1 1= U UPERSRN 7
F o o= o = (o PR PPRPPT 7
MESSAGE BUS .. .eieiiiiiiiii et e e e e e e e e e a e e aaanes 7

A I = o £ A PR 9
A Y == o = SN 9
2.2. MESSAGESOUITEcoiiiieteieeee e e ettt e e e e e ettt e e e e e e s n bbb e e et e e e e e s s annbbre e e e e e e e e sannnrneeas 11
A Y = S-= o L= I = 12
2.4. MeSSagECRANNEloeiiieiiei e e 12

PUblishSUDSCIHTDEChANNE ... 13
QUEUECNANNE ... 13
PriorityChRannelooiiiiie e 14
ReNAEZVOUSCRANNELooiiiiiii e ee e e s 14
DIreCtChannel ..o e 14
ThreadLoCalChanneEl e e e e 15
2.5, ChannE INLEICEPLOLvvvieiieee e i e e s e e e e e e e e e s s et ae e e e e e e e e e e ennreaees 15
2.6. MESSAOEHBNUIES ...t e e e 16
2.7. MESSAGEBIUScoiiiiiiiiiiie ittt s e e et e ettt r e e e e e et e et e a e e e e e e e arr i aaaaaaane 16
2.8. MESSAgEENCPOINTeeieiiiiiiee ettt et e e e e e e e et e e e ane 17
2.9. MeSSagESEIECIOr ...coeeeieeee e 17
2.10. MessageEXChangeTeMPIEEccooiuiiiieiiiiee ettt 18
2.11. MESSAGINGGALEWEY -...eveeeereeeseiaiteeeeeeaaeeeaaeatteeeeeaaeesaantneeeeeaaeeessaannesaneeaaeeeeaaansnenees 19

G 0 o] (= £ RS PRR 21
G300 T 1 1 [F o 1 o o SRS 21
KN Y S Y 0 = o = = PR PPPRRROPPPRRN 21
3.3 RMIAGEPRLELS ...ttt ettt e e st e e e e b e e e e et e e e ane 22
3.4, HtpINVOKer Adaplerscoooveiieieeeee 22
R 1= Yo = o (< £ PP PP PPPPPTRPPPPRPN 23

1.0.0.M6 (Milestone 6) Spring Integration Reference

Spring Integration

G SR I AN = o] (= £ TR 23

ST M AGBPLES ..ottt e e 23

3.8. Web Service Adapters ..o 24

e S == 0 0 AN F= 0 (= £ TSRS 25
3.10. ApplicatioNEVENt AQEPLENSooiiiiiiiiieeiie et 25

O @o) 110 U (o] o ISR 26
g 1 11 0o [o o SO RERR 26

N =0 = = oS o o 1 PN 26
Configuring Message ChanNElSoooiiiiiiiiiiiee e 27

The <queue-channEl/> ElemMENteeviiiiiiiiiiiiieieeeee e 27

The <publish-subscribe-channel/> element ..o, 27

The <priority-channel/> element ..o 28

The <rendezvous-channel/> elementcccccovviieiii e 28

The <direct-channel/> elementccccciiiiiiie e 28

The <thread-local-channel/> element ..o, 28

Configuring Message ENAPOINTSvvieiiiieieeiiiiiee et 29

The inbound <channel-adapter/> element with a MessageSource 29

The outbound <channel-adapter/> with aMessageTargetccccccevveeeeiiiinnnen. 29

The <service-activator/> elementccuvveiiire i 29

Configuring the MESSAE BUSccuuviiiiiiie ettt 31
CoNfIQUITNG AGBPLENS ...ttt e e e e e e e enbe e e e anes 32

Enabling Annotation-Driven Configurationeeeeeeiiiiiiiiininir. 33

G T AN g1 =10 = USSP SSRRR 34

5. Spring INtegration SAMPIEScooi e e e e e e st e e e e e e e e ennnreeeeeeee s 37
5.1, The Caf@ SAMPIE e e e e s e e e e e e et rnees 37

6. AddItiONal RESOUICESeveeiiiiee e ittt e e e e s e e te e e e e e e s e s nea e e e e e e e e s e e ensnenaeeeaaeens 41
6.1. Spring INtegration HOMEcoo ittt e e e e et 41

1.0.0.M6 (Milestone 6) Spring Integration Reference

Spring Integration

1. Spring Integration Overview

1.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic
cross-cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially the
fact that it is based upon well-established best practices such as programming to interfaces and favoring
composition over inheritance. Spring's simplified abstractions and powerful support libraries boost
developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles.
It extends the Spring programming model into the messaging domain and builds upon Spring's existing
enterprise integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain business logic
should execute and wher e the response should be sent. It supports routing and transformation of messages
so that different transports and different data formats can be integrated without impacting testability. In
other words, the messaging and integration concerns are handled by the framework, so business
components are further isolated from the infrastructure and developers are relieved of complex integration
responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean"
elements, and of course direct usage of the underlying API. That API is based upon well-defined strategy
interfaces and non-invasive, delegating adapters. Spring Integration’'s design is inspired by the recognition
of a strong affinity between common patterns within Spring and the well-known Enterprise Integration
Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf (Addison
Wesley, 2004). Developers who have read that book should be immediately comfortable with the Spring
Integration concepts and terminology .

1.2 Goals and Principles

Spring Integration is motivated by the following goals:

* Provide asimple model for implementing complex enterprise integration solutions.

1.0.0.M6 (Milestone 6) Spring Integration Reference 1

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

 Facilitate asynchronous, message-driven behavior within a Spring-based application.

» Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration logic.

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse and
portability.

1.3 Main Components

From the vertical perspective, alayered architecture facilitates separation of concerns, and interface-based
contracts between layers promate loose coupling. Spring-based applications are typicaly designed this
way, and the Spring framework and portfolio provide a strong foundation for following this best practice
for the full-stack of an enterprise application. Message-driven architectures add a horizontal perspective,
yet these same goals are still relevant. Just as "layered architecture” is an extremely generic and abstract
paradigm, messaging systems typically follow the similarly abstract "pipes-and-filters’ model. The
"filters" represent any component that is capable of producing and/or consuming messages, and the
"pipes’ transport the messages between filters so that the components themsel ves remain |oosely-coupl ed.
It is important to note that these two high-level paradigms are not mutually exclusive. The underlying
messaging infrastructure that supports the "pipes" should still be encapsulated in a layer whose contracts
are defined as interfaces. Likewise, the "filters' themselves would typically be managed within a layer
that is logically above the application's service layer, interacting with those services through interfaces
much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be of
any type and the headers hold commonly required information such as id, timestamp, expiration, and
return address. Developers can also store any arbitrary key-value pair in the headers.

1.0.0.M6 (Milestone 6) Spring Integration Reference 2

Spring Integration

Message

Header

Payload

Message Source

Since a Spring Integration Message is a generic wrapper for any Object, there is no limit to the number of
potential sources for such messages. In fact, a source implementation can act as an adapter that converts
Objects from any other system into Spring Integration M essages.

receive [
c Source |-= 0 Consumer
_____ MBSSEQB | T

There are two types of source: those which require polling and those which send Messages directly.
Therefore, Spring Integration provides two main interfaces that extend the MessageSour ce interface:
Pol | abl eSour ce and Subscri babl eSour ce. While it is relatively easy to implement these
interfaces directly, an adapter is also available for invoking arbitrary methods on plain Objects. Also,
several MessageSour ce implementations are already available within the Spring Integration Adapters
module. For a detailed discussion of the various adapters, see Chapter 3, Adapters.

Message Target

Just as the MessageSour ce implementations enable Message reception, a MessageTar get handles
the responsibility of sending Messages. As with the MessageSour ce, aMessageTar get can act as
an adapter that converts Messages into the Objects expected by some other system.

send(Message)
e | (2
Message

Manud

Spring Integration

The MessageTarget interface may be implemented directly, but an adapter is also available for invoking
arbitrary methods on plain Objects (delegating to a MessageMapper strategy in the process). As with
MessageSources, several MessageTarget implementations are aready available within the Spring
Integration Adapters module as discussed in Chapter 3, Adapters.

Message Handler

As described above, the MessageSource and MessageTarget components support conversion between
Objects and Messages so that application code and/or external systems can be connected to a Spring
Integration application rather easily. However, both M essageSource and MessageTarget are unidirectional
while the application code or external system to be invoked may provide a return value. The
MessageHandl er interface supports these request-reply scenarios.

\ handle(Message) Input

Message

Requester | % ------------ [Output™y "

Message

Message
Handler

As with the MessageSource and MessageTarget, Spring Integration also provides an adapter that itself
implements the MessageHand| er interface while supporting the invocation of arbitrary methods on
plain Objects. For more information about the Message Handler, see Section 2.6, “MessageHandler”.

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to
a channel, and consumers receive Messages from a channel. By providing both send and receive
operations, a Message Channel basically combines the roles of MessageSource and MessageTarget.

send(Message) receive()
Producer Consumer

Message Channel

Every channel is also a MessageTar get, so Messages can be sent to a channel. Likewise, every
channel isaMessageSour ce, but as discussed above, Spring Integration defines two types of source:
pollable and subscribable. Subscribable channels include PublishSubscribeChannel and DirectChannel.
Pollable channels include QueueChannd, PriorityChannel, RendezvousChannel, and
ThreadlL ocalChannel. These are described in detail in Section 2.4, “MessageChannel”.

Message Endpoint

Thus far, the component diagrams show consumers, producers, and requesters invoking the
MessageSource, MessageTarget, and MessageHandlers respectively. However, one of the primary goals

1.0.0.M6 (Milestone 6) Spring Integration Reference 4

Spring Integration

of Spring Integration is to simplify the development of enterprise integration solutions through inversion
of control. This means that you should not have to implement such consumers, producers, and requesters
directly. Instead, you should be able to focus on your domain logic with an implementation based on plain
Objects. Then, by providing declarative configuration, you can "connect" your application code to the
messaging infrastructure provided by Spring Integration. The components responsible for these
connections are Message Endpoints.

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary role is to connect application code to the messaging framework and to do so in a
non-invasive manner. In other words, the application code should have no awareness of the Message
objects or the Message Channels. Thisis similar to the role of a Controller in the MV C paradigm. Just as
a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are
mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same in
both cases: isolate application code from the infrastructure. Spring Integration provides Message
Endpoints for connecting each of the component types described above. The description of each of the
main types of endpoint follows.

Channel Adapter

A Channel Adapter is an endpoint that connects either a MessageSource or a MessageTarget to a
MessageChannel. If a MessageSource is being adapted, then the adapter is responsible for receiving
Messages from the MessageSource and sending them to the MessageChannel. If a Message Target is
being adapted, then the adapter is responsible for receiving Messages from the MessageChannel and
sending them to the MessageTarget.

When a Channel Adapter is used to connect a PollableSource implementation to a Message Channel, the
invocation of the MessageSource's receive operation may be controlled by scheduling information
provided within the Channel Adapter's configuration. Any time the receive operation returns a non-null

Message, it is sent to the MessageChannel.
E Channel
Message

(7 g sowee Jo
Channel

Aninbound "Channel Adapter" endpoint connects a M essageSource to a MessageChannel

I
s | D

If the source being connected by the Channel Adapter is a SubscribableSource, then no scheduling
information should be provided. Instead the source will send the Message directly, and the Channel
Adapter will passit along to its Message Channel.

When a Channel Adapter is used to connect a MessageTarget implementation to a Pollable Message
Channel, the invocation of the MessageChannel's receive operation may be controlled by scheduling
information provided within the Channel Adapter's configuration. Any time a non-null Message is
received from the MessageChannel, it is sent to the MessageTarget.

Manud

Spring Integration

&
Channel

Adapter

Message

D[
Message ——»| Target
Channel

An outbound "Channel Adapter" endpoint connects a MessageChannel to a MessageTarget

If the MessageChannel being connected is not Pollable but Subscribable (e.g. Direct Channel or Publish
Subscribe Channel), then no scheduling information should be provided. Instead the channel will send
Messages directly, and the Channel Adapter will pass them along to the MessageTarget.

Service Activator

When the Object to be invoked is capable of returning a value, another type of endpoint is needed to
accommodate the additional responsibilities of the request/reply interaction. The general behavior is
similar to a Channel Adapter, but this type of endpaint - the Service Activator - must make a distinction
between the "input-channel" and the "output-channel". Also, the Service Activator invokes an operation
on some Message Handler to process the request Message. Whenever the Message-handling Object
returns a reply Message, that Message is sent to the output channel. If no output channel has been
configured, then the reply will be sent to the channel specified in the MessageHeader's "return address” if
available.

—
handle(Message) M;”PU’I
@ s [o o
Input Activator Output Homdior
Me
Channel ssage
Output
Channel
A request-reply "Service Activator" endpoint connects a MessageHandler to input and output

MessageChannels.

Message Router

A Message Router is a particular type of Message Endpoint that is capable of receiving a Message from a
MessageChannel and then deciding what channel or channels should receive the Message next (if any).
Typicaly the decision is based upon the Message's content and/or metadata available in the
MessageHeader. A Message Router is often used as a dynamic aternative to a statically configured
output channel on a Service Activator or other Message-handling endpoint.

1.0.0.M6 (Milestone 6) Spring Integration Reference 6

Spring Integration

Channel A

Message

M ge Router

Channel B

Splitter

A Splitter is another type of Message Endpoint whose responsibility isto accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.
Thisistypically used for dividing a"composite" payload object into a group of Messages containing the
sub-divided payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often downstream
consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more complex than a
Splitter, because it is required to maintain state (the Messages to-be-aggregated), to decide when the
complete group of Messages is available, and to timeout if necessary. Furthermore, in case of a timeout,
the Aggregator needs to know whether to send the partial results or to discard them to a separate channel.
Spring Integration provides a Conpl eti onSt r at egy as well as configurable settings for timeout,
whether to send partial results, and the discard channel.

Message Bus

The Message Bus acts as a registry for Message Channels and Message Endpoints. It also encapsulates
the complexity of message retrieval and dispatching. Essentialy, the Message Bus forms a logical
extension of the Spring application context into the messaging domain. For example, it will automatically
detect Message Channel and Message Endpoint components from within the application context. It
handles the scheduling of pollers, the creation of thread pools, and the lifecycle management of all
messaging components that can be initialized, started, and stopped. The Message Bus is the primary
example of inversion of control within Spring Integration.

Manud

Spring Integration

Message Bus

Endpoints

Task Channel
Scheduler Registry

Y

[Har::ilerJ [Target J
Application Context

11

1.0.0.M6 (Milestone 6) Spring Integration Reference

Spring Integration

2. The Core API

2.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message aso includes headers containing user-extensible properties as key-value
pairs. Here is the definition of the Message interface:
public interface Message<T> {
T get Payl oad() ;

MessageHeader s get Headers();

}
And the following headers are pre-defined:

Table 2.1. Pre-defined Message Headers

Header Name Header Type

ID java.lang.Object

TIMESTAMP javalang.Long

EXPIRATION_DATE java.util.Date

CORRELATION_ID javalang.Object

NEXT_TARGET javalang.Object (can be a String or
MessageTarget)

RETURN_ADDRESS javalang.Object (can be a String or
MessageTarget)

SEQUENCE _NUMBER javalang.Integer

SEQUENCE _SIZE javalang.Integer

PRIORITY MessagePriority (an enum)

Many source and target adapter implementations will also provide and/or expect certain headers, and
additional user-defined headers can aso be configured.

The base implementation of the Message interface is Generi cMessage<T>, and it provides two
constructors:

new Ceneri cMessage<T>(T payl oad);
new Generi cMessage<T>(T payl oad, Map<String, Object> headers)

1.0.0.M6 (Milestone 6) Spring Integration Reference 9

Spring Integration

When a Message is created, a random unique id will be generated. The constructor that accepts a Map of
headers will copy the provided headers to the newly created Message. There are also two convenient
subclasses available currently: StringMessage and Error Message. The latter accepts any
Thr owabl e object asits payload.

Y ou may notice that the Message interface defines retrieval methods for its payload and headers but no
setters. This is fully intentional so that each Message is unmodifiable after creation. Therefore, when a
Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if one of
those consumers needs to send a reply with a different payload type, it will need to create a new Message.
As aresult, the other consumers are not affected by those changes. Keep in mind, that multiple consumers
may access the same payload instance or header value, and whether such an instance is itself immutableis
a decision left to the developer. In other words, the contract for Messages is similar to that of an
unmodifiable Collection, and the MessageHeaders map further exemplifies that; even though the
MessageHeaders class implements j ava. uti | . Map, any attempt to invoke a put operation on the
MessageHeaders will result in an Unsuppor t edOper at i onExcepti on.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,
Spring Integration does provide a far more convenient way to construct Messages: MessageBui | der .
The MessageBuilder provides two factory methods for creating Messages from either an existing
Message or a payload Object. When building from an existing Message, the headers and payload of that
Message will be copied to the new Message:

Message<String> nmessagel = MessageBuil der. fromnmPayl oad("test")
. set Header ("foo", "bar")
Cbuild();

Message<String> nessage2 = MessageBui |l der. fromVessage(messagel) . buil d();

assert Equal s("test", nessage2.get Payl oad());
assert Equal s("bar", nessage2. get Headers().get("fo00"))

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the 'copy' methods.

Message<Stri ng> nmessage3 = MessageBui | der. fronPayl oad("t est 3")
. copyHeader s(nessagel. get Header s())
Cbuild();

Message<Stri ng> nmessage4 = MessageBui | der. fronPayl oad("t est4")
. set Header ("foo", 123)
. copyHeader sl f Absent (nessagel. get Headers())
Cbuild();

assert Equal s("bar", message3. get Headers().get("foo"));
assert Equal s(123, nessage4. get Headers().get("foo"));

Notice that the copyHeader sI f Absent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with set Header . Findly, there are set
methods available for the predefined headers as well as a non-destructive method for setting any header
(MessageHeaders also defines constants for the pre-defined header names).

Message<I nt eger > i nport ant Message = MessageBui | der. f romPayl oad(99)
.setPriority(MessagePriority.H GHEST)
Cbuild();

1.0.0.M6 (Milestone 6) Spring Integration Reference 10

Spring Integration

assert Equal s(MessagePriority. H GHEST, inportant Message. get Headers().getPriority());

Message<I nt eger > anot her Message = MessageBui | der. fromvessage(i nmport ant Message)
. set Header | f Absent (MessageHeaders. PRI ORI TY, MessagePriority. LON
Cbuild();

assert Equal s(MessagePriority. H GHEST, anot her Message. get Headers().getPriority());

The MessagePriority isonly considered when using a Pri ori t yChannel (as described in the
next section). It is defined as an enum with five possible values:

public enum MessagePriority {
HI GHEST,
HI GH,
NORMAL,
LOW
LOVNEST

The Message is obviously a very important part of the APl. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the datas type. As the
system evolves to support new types, or when the types themselves are modified and/or extended, the
messaging system will not be affected by such changes. On the other hand, when some component in the
messaging system does require access to information about the Message, such metadata can typically be
stored to and retrieved from the metadata in the M essage Headers.

2.2 MessageSource

As dluded to in the overview, the MessageSour ce interface is itself a marker interface for any
"source" of Messages. The two sub-interfaces - Pol | abl eSour ce and Subscri babl eSour ce -
accommodate two types of source: those that must be polled and those that send Messages on their own.
An example of the first type would be a source that represents a directory in the File-system, and an
example of the second type would be an inbound RMI invocation.

The PollableSource interface defines a single method for receiving Message objects.

public interface Pollabl eSource<T> extends MessageSource<T> {
Message<T> recei ve();
}

The Bl ocki ngSour ce interface extends Pol | abl eSour ce and adds a single method with a
timeout:

Message<T> recei ve(long timeout);

Spring Integration also provides a Met hodl nvoki ngSour ce implementation that serves as an adapter
for invoking any arbitrary method on a plain Object (i.e. there is no need to implement an interface). To
use the Met hodl nvoki ngSour ce, provide the Object reference and the method name.

Met hodl nvoki ngSour ce source = new Met hodl nvoki ngSour ce();

Manud

Spring Integration

sour ce. set Obj ect (new Sour ceCbject());
sour ce. set Met hodNane(" sour ceMet hod") ;
Message<?> result = source.receive();

It is also possible to configure a Met hodl nvoki ngSour ce in XML by providing a bean reference in
the "source" attribute of a <channel-adapter> element along with a"method" attribute.

<channel - adapt er source="sour ceObj ect" net hod="sourceMet hod" channel ="soneChannel "/ >

2.3 MessageTarget

The MessageTar get interface defines a single method for sending Message objects.

public interface MessageTarget ({
bool ean send(Message<?> nessage) ;
}

Aswith the MessageSour ce, Spring Integration also provides a Met hodl nvoki ngTar get adapter
class.

Met hodl nvoki ngTarget target = new Met hodl nvoki ngTarget () ;
target.set bj ect (new Target Obj ect());

target.set Met hodName("t ar get Met hod") ;
target.afterPropertiesSet();

target.send(new StringMessage(“test"));

When creating a Channel Adapter for this target, the corresponding XML configuration is very similar to
that of Met hodl nvoki ngSour ce.

<channel - adapt er channel ="soneChannel " target="target Gbj ect" nethod="target Met hod"/>

2.4 MessageChannel

While the Message plays the crucia role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers. Spring Integration's top-level
MessageChannel interfaceisdefined asfollows.

public interface MessageChannel extends MessageSource, Bl ockingTarget {
String getName();
}

Because it extends Bl ocki ngTar get , it inherits the following methods:

bool ean send(Message nessage);

bool ean send(Message nessage, |ong tineout);

When sending a message, the return value will be true if the message is sent successfully. If the send call
times out or isinterrupted, then it will return false.

Since Message Channels are a'so Message Sources, there are two sub-interfaces corresponding to the two
source types. Here isthe definition of Pol | abl eChannel .

1.0.0.M6 (Milestone 6) Spring Integration Reference 12

Spring Integration

public interface Pollabl eChannel extends MessageChannel, Bl ocki ngSource {
Li st <Message<?>> clear();
Li st <Message<?>> pur ge(MessageSel ector sel ector);

}
Since the PollableChannel interface extends BlockingSource, it aso inherits the following methods:

Message<T> receive();

Message<T> recei ve(l ong ti meout);

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

The subscribable channels implement the Subscri babl eSour ce interface. Instead of providing
receive methods for polling, these channels will send messages directly to their subscribers. The
Subscri babl eSour ce interface defines the following two methods:

bool ean subscri be(MessageTarget target)

bool ean unsubscri be(MessageTarget target);

Spring Integration provides several different Message Channel implementations. Each is briefly described
in the sections below.

PublishSubscribeChannel

The Publ i shSubscri beChannel implementation broadcasts any Message sent to it to all of its
subscribed consumers. This is most often used for sending Event Messages whose primary role is
notification as opposed to Document Messages which are generally intended to be processed by a single
consumer. Note that the Publ i shSubscri beChannel is intended for sending only. Since it
broadcasts to its subscribers directly when its send(Message) method is invoked, consumers cannot
poll for Messages (it does not implement Pol | abl eChannel and therefore has no recei ve()
method). Instead, any subscriber must be a MessageTar get itself, and the subscriber's
send(Message) method will beinvoked in turn.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike, the Publ i shSubscri beChannel , the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a no-argument
constructor (that uses a default capacity of 100) as well as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (i nt capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue

Manud

Spring Integration

has reached capacity, then the sender will block until room is available. Likewise, a receive call will
return immediately if a message is available on the queue, but if the queue is empty, then a receive call
may block until either a message is available or the timeout elapses. In either case, it is possible to force
an immediate return regardless of the queue's state by passing a timeout value of 0. Note however, that
caling the no-arg versionsof send() andr ecei ve() will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the Pri ori t yChannel isan
aternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the 'pri ori t y' header within each message. However,
for custom priority determination logic, a comparator of type Conpar at or <Message<?>> can be
provided to the Pri ori t yChannel 'sconstructor.

RendezvousChannel

The RendezvousChannel enables a"direct-handoff" scenario where a sender will block until another
party invokes the channel's r ecei ve() method or vice-versa. Internally, this implementation is quite
similar to the QueueChannel except that it uses a SynchronousQueue (a zero-capacity
implementation of Bl ocki ngQueue). This works well in situations where the sender and receiver are
operating in different threads but simply dropping the message in a queue asynchronously is too
dangerous. For example, the sender's thread could roll back a transaction if the send operation times out,
whereas with a QueueChannel , the message would have been stored to the internal queue and
potentially never received.

The RendezvousChannel is aso useful for implementing request-reply operations. The sender can
create a temporary, anonymous instance of RendezvousChannel which it then sets as the
returnAddress on a Message. After sending that Message, the sender can immediately call receive
(optionally providing atimeout value) in order to block while waiting for areply Message.

DirectChannel

The Direct Channel has point-to-point semantics, but otherwise is more similar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described above.
In other words, it does not implement the Pol | abl eChannel interface, but rather dispatches Messages
directly to a subscriber. As a point-to-point channel, however, it will only send each Message to a single
subscribed MessageTar get . Its primary purpose is to enable a single thread to perform the operations
on "both sides' of the channel. For example, if a receiving target is subscribed to a Di r ect Channel
then sending a Message to that channel will trigger invocation of that target's send(Message) method
directly in the sender's thread. The key motivation for providing a channel implementation with this
behavior is to support transactions that must span across the channel while still benefiting from the
abstraction and loose coupling that the channel provides. If the send call isinvoked within the scope of a
transaction, then the outcome of the target's invocation can play a role in determining the ultimate result
of that transaction (commit or rollback).

1.0.0.M6 (Milestone 6) Spring Integration Reference 14

Spring Integration

ThreadLocalChannel

The final channel implementation type is Thr eadLocal Channel . This channel also delegates to a
gueue internally, but the queue is bound to the current thread. That way the thread that sends to the
channel will later be able to receive those same Messages, but no other thread would be able to access
them. While probably the least common type of channel, this is useful for situations where
Di r ect Channel s are being used to enforce a single thread of operation but any reply Messages should
be sent to a "terminal" channel. If that terminal channel is a Thr eadLocal Channel , the original
sending thread can collect its replies from it.

2.5 Channelinterceptor

One of the advantages of a messaging architecture is the ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since the
Messages are being sent to and received from MessageChannel s, those channels provide an
opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations:

public interface Channel I nterceptor {
Message<?> preSend(Message<?> nessage, MessageChannel channel);
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);
bool ean preRecei ve(MessageChannel channel);

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

}
After implementing the interface, registering the interceptor with achannel isjust a matter of caling:

channel . addl nt er cept or (sonmeChannel | nt er cept or) ;

The methods that return a Message instance can be used for transforming the Message or can return 'null’
to prevent further processing (of course, any of the methods can throw an Exception). Also, the
pr eRecei ve method can return 'f al se' to prevent the receive operation from proceeding.

Because it is rarely necessary to implement al of the interceptor methods, a
Channel | nt er cept or Adapt er classis aso available for sub-classing. It provides no-op methods
(thevoi d method is empty, the Message returning methods return the Message parameter as-is, and the
bool ean method returnst r ue). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need asin the following example.

public class CountingChannel | nterceptor extends Channel | nterceptor Adapter {
private final Atom clnteger sendCount = new Atoni clnteger();
@verride
publ i c Message<?> preSend(Message<?> nessage, MessageChannel channel) {

sendCount . i ncr ement AndGCet () ;
return nmessage;

Manud

Spring Integration

2.6 MessageHandler

So far we have seen that generic message objects are sent-to and received-from simple channel aobjects.
Here is Spring Integration's callback interface for handling the Messages:

public interface MessageHandl er {
Message<?> handl e(Message<?> nessage) ;
}

The handler plays an important role, since it is typically responsible for translating between the generic
Message objects and the domain objects or primitive values expected by business components that
consume the message payload. That said, developers will rarely need to implement this interface directly.
While that option will always be available, we will soon discuss the higher-level configuration options
including both annotation-driven techniques and XML-based configuration with convenient namespace
support.

2.7 MessageBus

So far, you have seen that the Pol | abl eChannel provides arecei ve() method that returns a
Message, the subscribable MessageChannels invoke one or more subscribers directly, and the
MessageHandl er providesahandl e() method that accepts a Message. However, we have not yet
discussed how messages get passed from a channel to a handler. As mentioned earlier, the MessageBus
provides a runtime form of inversion of control, and one of the primary responsibilities that it assumesis
connecting the channels to the handlers. It aso connects MessageSources and MessageTargets to
channels (thereby creating Channel Adapters), and it manages the scheduling of polling dispatchers.
Ultimately, every MessageHandler should be invoked as if it is an event-driven consumer, and this works
fine when the handler's input source is a Subscri babl eSour ce. However, the bus creates and
manages these polling dispatchers so that even when handlers receive input from a Pol | abl eSour ce,
they will still behave as event-driven consumers.

The MessageBus is an example of a mediator. It performs a number of roles - mostly by delegating to
other strategies. One of its main responsibilities is to manage registration of the MessageChannel s
and endpoints, such as Channel Adapters and Service Activators. It recognizes any of these instances that
have been defined within its Appl i cat i onCont ext .

The message bus handles several of the concerns so that the channels, sources, targets, and
Message-handling objects can be as simple as possible. These responsibilities include the lifecycle
management of message endpoints, the activation of subscriptions, and the scheduling of dispatchers
(including the configuration of thread pools). The bus coordinates al of that behavior based upon the
metadata provided in bean definitions. Furthermore, those bean definitions may be provided via XML
and/or annotations (we will ook at examples of both configuration options shortly).

The busis responsible for activating all of its registered endpoints by connecting them to channels within

1.0.0.M6 (Milestone 6) Spring Integration Reference 16

Spring Integration

its registry, and if necessary scheduling a poller so that the endpoint can be event-driven even when
connected to a channdl that requires polling. For example, the poller for an outbound Channel Adapter
will poll the referenced "channel", and the poller for a Service Activator will poll the referenced
"input-channel”. If that "channel" or "input-channel” is subscribable rather than pollable, the bus will
simply activate the subscription. The important point is that the endpoint itself does not need to know
whether its source is pollable or subscribable.

2.8 MessageEndpoint

As described in Chapter 1, Spring Integration Overview, there are different types of Message Endpoint,
such as the Channel Adapter (inbound or outbound) and the Service Activator. Spring Integration
provides many other components that are aso endpoints, such as Routers, Splitters, and Aggregators.
Each endpoint may provide its own specific metadata so that the MessageBus can manage its
connection to channels and its poller (if necessary).

The scheduling metadata is provided as an implementation of the Schedul e interface. This is an
abstraction designed to allow extensibility of schedulers for messaging tasks. Currently, there are two
implementations. Pol | i ngSchedul e and Cr onSchedul e. The former has a period property, and
the latter has a cronExpression. The polling schedule may be configured based on throughput
expectations and/or the type of MessageSource (e.g. file-system vs. IMS).

While the MessageBus manages the scheduling of the pollers, it is often beneficial to have multiple task
executors with different concurrency settings for an endpoint or group of endpoints. This provides more
control over the number of threads available for each receive-and-handle unit of work and depending on
the type of task executor, may also enable dynamic adjustments. When the MessageBus activates an
endpoint, it will create and schedule the poller for that endpoint based on the endpoint's configuration.
Thiswill be described in more detail in the section called “ Configuring Message Endpoints”.

2.9 MessageSelector

As described above, each endpoint is registered with the message bus and is thereby subscribed to a
channel. Often it is necessary to provide additional dynamic logic to determine what messages the
endpoint should receive. The MessageSel ect or strategy interface fulfillsthat role.

public interface MessageSel ector {
bool ean accept (Message<?> nessage) ;

}
A MessageEndpoi nt can be configured with a selector (or selector-chain) and will only receive
messages that are accepted by each selector. Even though the interface is ssimple to implement, a couple
common selector implementations are provided. For example, the Payl oadTypeSel ect or provides
similar functionality to Datatype Channels (as described in the section called “Configuring Message
Channels’) except that in this case the type-matching can be done by the endpoint rather than the channel.

Manud

Spring Integration

Payl oadTypeSel ect or sel ector = new Payl oadTypeSel ector (String. cl ass, |Integer.class);
assert True(sel ector. accept (new Stri ngMessage("exanple")));

assert True(sel ector. accept (new Generi cMessage<| nt eger>(123)));

assert Fal se(sel ector. accept (new Generi cMessage<SoneOhj ect >(sonelbj ect)));

Another simple but useful MessageSel ect or provided out-of-the-box is the
Unexpi redMessageSel ect or . As the name suggests, it only accepts messages that have not yet
expired.

Essentially, using a selector provides reactive routing whereas the Datatype Channel and Message Router
provide proactive routing. However, selectors accommodate additional uses. For example, a
Pol | abl eChannel 's'purge’ method accepts a selector:

channel . purge(soneSel ector);

There is a Channel Pur ger utility class whose purge operation is a good candidate for Spring's IMX
support:

Channel Purger purger = new Channel Purger (new Exanpl eMessageSel ector (), channel);
pur ger. purge()

Implementations of MessageSel ect or might provide opportunities for reuse on channels in addition
to endpoints. For that reason, Spring Integration provides a simple selector-wrapping
Channel | nt er cept or that accepts one or more selectorsin its constructor.

MessageSel ecti ngl nterceptor interceptor =
new MessageSel ectingl nterceptor(sel ectorl, selector?2);
channel . addl nt er cept or (i nt erceptor)

2.10 MessageExchangeTemplate

Whereas the MessageHand| er interface provides the foundation for many of the components that
enable non-invasive invocation of your application code from the messaging system, sometimes it is
necessary to invoke the messaging system from your application code. Spring Integration provides a
MessageExchangeTenpl at e that supports a variety of message-exchanges, including request/reply
scenarios. For example, it is possible to send arequest and wait for areply.

MessageExchangeTenpl ate tenpl ate = new MessageExchangeTenpl at e() ;
Message reply = tenpl ate. sendAndRecei ve(new StringMessage("test"), soneChannel)

In that example, a temporary anonymous channel would be created internally by the template. The
'sendTimeout' and 'receiveTimeout' properties may aso be set on the template, and other exchange types
are also supported.

publ i c bool ean send(final Message<?> nessage, final MessageTarget target) { ... }
publ i c Message<?> sendAndRecei ve(final Message<?> request, final MessageTarget target) { .. }
publ i c Message<?> receive(final Poll abl eSource<?> source) { ... }

publ i c bool ean recei veAndForward(final Pol | abl eSource<?> source, final MessageTarget target) { ...

1.0.0.M6 (Milestone 6) Spring Integration Reference 18

Spring Integration

Additionally, a 'transactionManager' can be configured on a MessageExchangeTemplate as well as the
various transaction attributes:

tenpl at e. set Transact i onManager (transacti onManager) ;

tenpl at e. set Propagat i onBehavi or Nane(pr opagat i onBehavi or) ;
tenpl ate. setlsol ati onLevel Nane(i sol ati onLevel);

tenpl at e. set Transact i onTi meout (transacti onTi meout) ;

tenpl at e. set Transacti onReadOnl y(readOnl y) ;

tenpl at e. set Recei veTi neout (recei veTi meout) ;

tenpl at e. set SendTi meout (sendTi meout) ;

Finally, there is a also an asynchronous version called AsyncMessageExchangeTenpl at e whose
constructor accepts a TaskExecutor, and whose Message-returning methods return an
AsyncMessage. That is essentialy a wrapper for any Message that also implements
Fut ur e<Message<T>>:

AsyncMessageExchangeTenpl ate tenpl ate = new AsyncMessageExchangeTenpl at e(t askExecut or) ;
Message reply = tenpl ate. sendAndRecei ve(new Stri ngMessage("test"), soneChannel);

/] do sonme work in the neantine

reply.getPayload(); // blocks if still waiting for actual reply

2.11 MessagingGateway

Even though the MessageExchangeTenpl at e isfairly straightforward, it does not hide the details of
messaging from your application code. To support working with plain Objects instead of messages,
Spring Integration provides Si npl eMessagi ngGat eway with the following methods:

public void send(Cbject object) { ... }

public Object receive() { ... }

public Object sendAndRecei ve(Object object) { ... }
public void recei veAndForward() { ... }

It enables configuration of a request and/or reply channel and delegates to an instance of the
MessageMapper and MessageCr eat or strategy interfaces.

Si npl eMessagi ngGat eway gateway = new Si npl eMessagi ngGat eway() ;
gat eway. set Request Channel (r equest Channel) ;

gat eway. set Repl yChannel (repl yChannel) ;

gat eway. set MessageCr eat or (nmessageCreat or) ;

gat eway. set MessageMapper (nessageMapper) ;

bj ect result = gateway.sendAndRecei ve("test");

Working with Objects instead of Messages is an improvement. However, it would be even better to have
no dependency on the Spring Integration API at all - including the gateway class. For that reason, Spring
Integration also provides a Gat ewayPr oxyFact or yBean that generates a proxy for any interface and
internally invokes the gateway methods shown above. Namespace support is aso provided as
demonstrated by the following example.

<gat eway i d="fooService"
servi ce-interface="org. exanpl e. FooServi ce"
request - channel ="r equest Channel "

Manud

Spring Integration

repl y-channel ="r epl yChannel "
nmessage- cr eat or =" nessageCreat or"
message- mapper =" messageMapper "/ >

Then, the "fooService" can be injected into other beans, and the code that invokes the methods on that

proxied instance of the FooService interface has no awareness of the Spring Integration API. The general
approach is similar to that of Spring Remoting (RMI, Httplnvoker, etc.).

1.0.0.M6 (Milestone 6) Spring Integration Reference 20

Spring Integration

3. Adapters

3.1 Introduction

Spring Integration provides a number of implementations of the MessageSource and
MessageTar get interfaces that serve as adapters for interacting with external systems or components
that are not part of the messaging system. These source and target implementations can be configured
within the same channel-adapter element that we have already discussed. Essentially, the external system
or component sends-to and/or receives-from a MessageChannel . In the 1.0 Milestone 6 release,
Spring Integration includes source and target implementations for IMS, Files, FTP, Streams, and Spring
ApplicationEvents.

Adapters that allow an external system to perform request-reply operations across Spring Integration
MessageChannel s are actually examples of the Messaging Gateway pattern. Therefore, those
implementations are typically called "gateways' (whereas "source" and "target” are in-only and out-only
interactions respectively). For example, Spring Integration provides a Jnms Sour ce that is polled by the
bus-managed scheduler, but also provides a J s Gat eway . The gateway differs from the source in that it
is an event-driven consumer rather than a polling consumer, and it is capable of waiting for reply
messages. Spring Integration also provides gateways for RMI and Spring's Httplnvoker.

Finally, adapters that enable interaction with external systems by invoking them for request/reply
interactions (the response is sent back on a Message Channel) are typically called handlers in Spring
Integration, since they implement the MessageHandl er interface. Basically, these types of adapters
can be configured exactly like any POJO with the <service-activator> element. Spring Integration
provides RMI, Httplnvoker, and Web Service handler implementations.

All of these adapters are discussed in this section. However, namespace support is provided for many of
them and is typically the most convenient option for configuration. For examples, see the section called
“Configuring Adapters’.

3.2 JMS Adapters

Spring Integration provides two adapters for accepting JMS messages (as mentioned above):
Jns Sour ce and Jns Gat eway. The former uses Spring's Jns Tenpl at e to receive based on a polling
period. @~ The latter configures and delegates to an instance of Spring's
Def aul t Messageli st ener Cont ai ner .

The JmsSource requires a reference to either a single JnmsTenpl ate instance or both
Connecti onFactory and Desti nati on (a 'destinationName' can be provided in place of the
'destination’ reference). The JnsSour ce can then be referenced from a "channel-adapter” element that
connects the source to aMessageChannel instance. The following example defines a IM S source with
aJnsTenpl at e as aconstructor-argument.

1.0.0.M6 (Milestone 6) Spring Integration Reference 21

Spring Integration

<bean id="j msSource" class="org.springframework.integration.adapter.jnms.JnmsSource">
<constructor-arg ref="jnsTenpl ate"/>
</ bean>

In most cases, Spring Integration's message-driven Jns Gat eway is more appropriate since it delegates
toaMessagelLi st ener container, supports dynamically adjusting concurrent consumers, and can also
handle replies. The JnsGat eway requires references to a ConnectionFactory, and a
Destinati on (or 'destinationName). The following example defines a JnsGat eway that receives
from the IM S queue called "exampleQueue". Note that the ‘expectReply' property has been set to 'true’ (it
is'false’ by default):

<bean cl ass="org. springframework.integration.adapter.jns.JnmsCGteway" >
<property nanme="connectionFactory" ref="connecti onFactory"/>
<property nanme="desti nati onNane" val ue="exanpl eQueue"/>
<property nanme="expect Reply" val ue="true"/>

</ bean>

The JnsTar get implements the MessageTar get interface and is capable of mapping Spring
Integration Messages to JMS messages and then sending to a JMS destination. It requires either a
‘imsTemplate’ reference or both ‘connectionFactory' and ‘'destination’ references (again, the
'destinationName’ may be provided in place of the 'destination). In the section called “Configuring
Adapters’, you will see how to configure a JMS target adapter with Spring Integration's namespace
support.

3.3 RMI Adapters

The Rm Gat eway is built upon Spring's Rm Ser vi ceExport er. However, since it is adapting a
MessageChannel , there is no need to specify the servicelnterface. Likewise, the serviceName is
automatically generated based on the channel name. Therefore, creating the adapter is as simple as
providing areference to its channel:

Rm Gat eway rni Gateway = new Rmi Gat eway(channel);

The Rmi Handl er encapsulates the creation of a proxy that is capable of communicating with an
Rmi Gat eway running in another process. Since the interface is aready known, the only required
information is the URL. The URL should include the host, port (default is'1099"), and 'serviceName'. The
'serviceName' must match that created by the Rm Gat eway (the prefix is available as a constant).

String url = "http://sonehost: 1099/" + Rm Gateway. SERVI CE_NAME_PREFI X + "soneChannel ";
Rm Handl er rmi Handl er = new Rmi Handl er (url);

3.4 HttpInvoker Adapters

The adapters for Httplnvoker are very similar to the RMI adapters. For a source, only the channel needs
to be provided, and for a target, only the URL. If running in a Spring MVC environment, then the

1.0.0.M6 (Milestone 6) Spring Integration Reference 22

Spring Integration

Ht t pl nvoker Gat eway simply needs to be defined and provided in a Handl er Mappi ng. For
example, the following would be exposed at the path
"http://somehost/path-mapped-to-di spatcher-servl et/httpl nvoker A dapter™ when a simple
BeanNanmeUr | Handl er Mappi ng strategy is enabled:

<bean nanme="/htt pl nvoker Adapt er"
cl ass="org. springframework.integration.adapter.httpinvoker. Httpl nvoker Gat eway" >
<constructor-arg ref="someChannel "/>

</ bean>

When not running in a Spring MV C application, simply define a servlet in 'web.xml' whose type is
Ht t pRequest Handl er Ser vl et and whose name matches the bean name of the gateway adapter. As
with the Rmi Handl er, the Ht t pl nvoker Handl er only requires the URL that matches an instance
of Ht t pl nvoker Gat eway running in aweb application.

3.5 File Adapters

TheFi | eSour ce requires the directory as a constructor argument:

public FileSource(File directory)
It can then be connected to aMessageChannel when referenced from a " channel-adapter” element.

The Fi | eTar get constructor also requires the 'directory' argument. The target adapter also accepts an
implementation of the Fi | eNameGener at or strategy that defines the following method:

String generat eFi | eName(Message nmessage)

3.6 FTP Adapters

To poll adirectory with FTP, configure an instance of Ft pSour ce and then connect it to a channel by
configuring achannel - adapt er . The Ft pSour ce expects a number of properties for connecting to
the FTP server as shown below.

<bean id="ft pSource"
class="org. springframework.integration.adapter.ftp.FtpSource">
<property name="host" val ue="exanpl e.org"/>
<property nanme="usernane" val ue="soneuser"/>
<property name="password" val ue="sonepassword"/>
<property nanme="I|ocal Wr ki ngDi rectory" val ue="/sone/ path"/>
<property name="renot eWr ki ngDi rectory" val ue="/sone/ path"/>
</ bean>

3.7 Mail Adapters

Spring Integration currently provides support for outbound email only with the Mai | Tar get . This
adapter delegates to a configured instance of Spring's JavaMai | Sender, and its various mapping
strategies use Spring's Mai | Message abstraction. By default text-based mails are created when the

Manud

Spring Integration

handled message has a String-based payload. If the message payload is a byte array, then that will be
mapped to an attachment.

The adapter also delegates to a Mai | Header Gener at or for providing the mail's properties, such as
the recipients (TO, CC, and BCC), the from/reply-to, and the subject.

public interface Muil Header Generator {
voi d popul at eMai | MessageHeader (Mai | Message mai | Message, Message<?> nmessage) ;
}

The default implementation will look for values in the MessageHeader s with the following constants
defining the header names:

Mai | Header s. SUBJECT
Mai | Headers. TO

Mai | Header s. CC

Mai | Header s. BCC

Mai | Header s. FROM

Mai | Header s. REPLY_TO

A static implementation is also available out-of-the-box and may be useful for testing. However, when
customizing, the properties would typically be generated dynamically based on the message itself. The
following is an example of a configured mail adapter.

<bean id="nmil Target"

cl ass="org. springframework.integration.adapter.nail.Mil Target">

<property name="mail Sender" ref="javaMail Sender"/>

<property name="header Generator" ref="dynam cMai | MessageHeader Generat or"/ >
</ bean>

3.8 Web Service Adapters

To invoke a Web Service upon sending a message to a channel, there are two options:
Si mpl eWebSer vi ceHandl er and Mar shal | i ng\WebSer vi ceHandl er . The former will accept
either aString orjavax. xnl . transf orm Sour ce as the message payload. The latter provides
support for any implementation of the Mar shal | er and Unnar shal | er interfaces. Both require the
URI of the Web Service to be called.

si npl eHandl er = new Si npl eWebSer vi ceHandl er (uri);

mar shal | i ngHandl er = new Marshal | i ngWebSer vi ceHandl er (uri, marshaller);

Either adapter can then be referenced from a ser vi ce- acti vat or element that is subscribed to an
input-channel. The endpoint is then responsible for passing the response to the proper reply channel. It
will first check for an "output-channel" on the service-activator and will falback to a
RETURN_ADDRESSIn the original message's headers.

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering
client access as well as the chapter covering Object/ XML mapping.

1.0.0.M6 (Milestone 6) Spring Integration Reference 24

http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Spring Integration

3.9 Stream Adapters

Spring Integration also provides adapters for streams. Both Byt eStreanSource and
Char act er St r eanSour ce implement the Pol | abl eSour ce interface. By configuring one of
these within a channel-adapter element, the polling period can be configured, and the Message Bus can
automatically detect and schedule them. The byte stream version requires an | nput St r eam and the
character stream verson requires a Reader as the single constructor argument. The
Byt eSt r eanSour ce also accepts the 'bytesPerMessage’ property to determine how many bytes it will
attempt to read into each Message.

For target streams, there ae aso two implementations. Byt eStreaniTarget and
Char act er St r eanilrar get . Each requires a single constructor argument - Qut put St r eamfor byte
streams or Wi t er for character streams, and each provides a second constructor that adds the optional
‘bufferSize' property. Since both of these ultimately implement the MessageTar get interface, they can
be referenced from a channel-adapter configuration as will be described in more detail in the section
called “ Configuring Message Endpoints’.

3.10 ApplicationEvent Adapters

Spring Appl i cati onEvent s can aso be integrated as either a source or target for Spring Integration
message channels. To receive the events and send to a channel, simply define an instance of Spring
Integration's Appl i cati onEvent Sour ce (as with al source implementations, this can then be
configured within a "channel-adapter" element and automatically detected by the message bus). The
Appl i cati onEvent Sour ce aso implements Spring's Appl i cati onLi st ener interface. By
default it will pass all received events as Spring Integration Messages. To limit based on the type of
event, configure the list of event types that you want to receive with the 'eventTypes' property.

To send Spring Appl i cati onEvent s, register an instance of the Appl i cati onEvent Tar get
class as the 'target’ of a Channel Adapter (such configuration will be described in detail in the section
caled “Configuring Message Endpoints’). This target aso implements Spring's
Appl i cati onEvent Publ i sher Awar e interface and thus acts as a bridge between Spring
Integration Messages and Appl i cati onEvent s.

Manud

Spring Integration

4. Configuration

4.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your
particular needs and at what level you prefer to work. As with the Spring framework in general, it is aso
possible to mix and match the various techniques according to the particular problem at hand. For
example, you may choose the X SD-based namespace for the mgjority of configuration combined with a
handful of objects that are configured with annotations. As much as possible, the two provide consistent
naming. XML elements defined by the XSD schema will match the names of annotations, and the
attributes of those XML elements will match the names of annotation properties. Direct usage of the AP
is yet another option and is described in detail in Chapter 2, The Core API. We expect that most users will
choose one of the higher-level options, such as the namespace-based or annotation-driven configuration.

4.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the
terminology and concepts of enterprise integration. In many cases, the element names match those of the
Enterprise Integration Patterns.

To enable Spring Integration's namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xm ns="http://ww. springfranmework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springframework. org/schena/integration”
xsi :schemaLocati on="http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration-1.0.xsd">

You can choose any name after "xmins:"; integration is used here for clarity, but you might prefer a
shorter abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of
auto-completion may convince you to keep the longer name for clarity. Alternatively, you can create
configuration files that use the Spring I ntegration schema as the primary namespace:

<beans: beans xm ns="http://wwm. springfranmework. org/ schema/ i ntegration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="htt p: // ww. spri ngf ramewor k. or g/ schena/ beans"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans-2. 5. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. springfranewor k. org/ schema/ i ntegration/spring-integration-1.0.xsd">

When using this aternative, no prefix is necessary for the Spring Integration elements. On the other hand,
if you want to define a generic Spring "bean" within the same configuration file, then a prefix would be

1.0.0.M6 (Milestone 6) Spring Integration Reference 26

http://www.eaipatterns.com

Spring Integration

required for the bean element (<beans.bean ... />). Since it is generally a good idea to modularize the
configuration files themselves based on responsibility and/or architectural layer, you may find it
appropriate to use the latter approach in the integration-focused configuration files, since generic beans
are seldom necessary within those same files. For purposes of this documentation, we will assume the
"integration” namespaceis primary.

Configuring Message Channels
To create a Message Channel instance, you can use the generic ‘channel’ element:

<channel id="exanpl eChannel "/>

The default channel type is Point to Point. To create a Publish Subscribe channel, use the
"publish-subscribe-channel" element:

<publ i sh-subscri be- channel i d="exanpl eChannel />

To create a Datatype Channel that only accepts messages containing a certain payload type, provide the
fully-qualified class name in the channel element's dat at ype attribute:

<channel id="nunberChannel" datatype="java. | ang. Nunber"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other words,
the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger or
j ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<channel id="stringO Nunber Channel" datatype="java.lang. String,java.lang. Nunber"/>

When using the "channel" eement, the creation of the channel instances will be deferred to the
Channel Fact ory bean whose name is "channelFactory” if defined within the ApplicationContext. If
no such bean is defined, the default factory will be used. The default implementation is
QueueChannel Factory.

It is also possible to use more specific elements for the various channel types (as described in Section 2.4,
“MessageChannel”). Depending on the channel, these may provide additional configuration options.
Examples of each are shown below.

The <queue-channel/> element

To create a QueueChannel , use the "queue-channel” element. By using this element, you can also
specify the channel's capacity:

<queue- channel i d="exanpl eChannel" capacity="25"/>

The <publish-subscribe-channel/> element

1.0.0.M6 (Milestone 6) Spring Integration Reference 27

http://www.eaipatterns.com/DatatypeChannel.html

Spring Integration

To create aPubl i shSubscri beChannel , use the "publish-subscribe-channgl" element. When using
this element, you can also specify the "task-executor” used for publishing Messages (if noneis specified it
simply publishes in the sender's thread):

<publ i sh-subscri be-channel i d="exanpl eChannel" task-executor="sonmeTaskExecutor"/>

The <priority-channel/> element

TocreateaPri orit yChannel , usethe "priority-channel” element:

<priority-channel id="exanpl eChannel"/>

By default, the channel will consult the MessagePr i ori ty header of the message. However, a custom
Conpar at or reference may be provided instead. Also, note that the Pri ori t yChannel (like the
other types) does support the "datatype" attribute. As with the "queue-channel”, it also supports a
"capacity” attribute. The following example demonstrates all of these:

<priority-channel id="exanpl eChannel"
dat at ype="exanpl e. W dget "
conpar at or ="w dget Conpar at or "
capaci ty="10"/>

The <rendezvous-channel/> element

The RendezvousChannel doesnot provide any additional configuration options.

<rendezvous- channel i d="exanpl eChannel />

The <direct-channel/> element

TheDi r ect Channel does not provide any additional configuration options.

<di rect - channel id="exanpl eChannel "/>

The <thread-local-channel/> element

The Thr eadLocal Channel does not provide any additional configuration options.

<t hread- | ocal - channel i d="exanpl eChannel "/>

Message channels may also have interceptors as described in Section 2.5, “Channellnterceptor”. One or
more <interceptor> elements can be added as sub-elements of <channel> (or the more specific element
types). Provide the "ref" attribute to reference any Spring-managed object that implements the
Channel | nt er cept or interface:

<channel id="exanpl eChannel ">
<interceptor ref="trafficMonitoringlnterceptor"/>
</ channel >

Manud

Spring Integration

In generdl, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Configuring Message Endpoints

Each of the endpoint types (channel-adapter, service-activator, etc) hasits own element in the namespace.

The inbound <channel-adapter/> element with a MessageSource

A "channel-adapter" element can connect any implementation of the MessageSour ce interface to a
MessageChannel . When the MessageBus registers the endpoint, it will activate the subscription and
if necessary create a poller for the endpoint. The Message Bus delegates to a TaskSchedul er for
scheduling the poller based on its schedule. To configure the polling 'period’ or ‘cronExpression’ for an
individual channel-adapter's schedule, provide a 'poller' sub-element with the 'period' (in milliseconds) or
‘cron’ attribute:

<channel - adapt er source="sourcel" channel ="channel 1">
<pol | er peri od="5000"/>
</ channel - adapt er >

<channel - adapt er source="source2" channel ="channel 2">

<poller cron="30 * * * * 2"/>
</ channel - adapt er >

Note

Cron support does require the Quartz JAR and its transitive dependencies. Also, keep in mind
that pollers only apply for Pol | abl eChannel implementations. On the other hand,
subscribable channels (PublishSubscribeChannel and DirectChannel) will send Messages to
their subscribed targets directly.

The outbound <channel-adapter/> with a MessageTarget

A "channel-adapter" element can also connect a MessageChannel to any implementation of the
MessageTar get interface.

<channel - adapt er channel =" exanpl eChannel " tar get ="exanpl eTarget"/ >
Again, it ispossible to provide a poller:
<channel - adapt er channel =" exanpl eChannel " t ar get =" exanpl eTar get ">

<pol | er period="3000"/>
</ channel - adapt er >

The <service-activator/> element

To create a Service Activator, use the 'service-activator' element with the ‘input-channel’ and 'ref'
attributes:

1.0.0.M6 (Milestone 6) Spring Integration Reference 29

Spring Integration

<servi ce-activator input-channel ="exanpl eChannel" ref="exanpl eHandl er"/>

The configuration above assumes that "exampleHandler” is an actual implementation of the
MessageHandl er interface as described in Section 2.6, “MessageHandler”. To delegate to an arbitrary
method of any object, smply add the "method" attribute.

<servi ce-activator input-channel ="exanpl eChannel" ref="sonmePoj 0" method="sonmeMet hod"/>

In either case (MessageHandl| er or arbitrary object/method), when the handling method returns a
non-null value, the endpoint will attempt to send the reply message to an appropriate reply channel. To
determine the reply channel, it will first check if the NEXT_TARGET header contains a non-null value,
next it will check if an "output-channel" was provided in the endpoint configuration:

<servi ce-activator input-channel ="exanpl eChannel" out put-channel ="repl yChannel "
ref ="somePoj 0" net hod="soneMet hod"/ >

If no "output-channel" is available, it will finaly check the message header's RETURN_ADDRESS
property. If that value is available, it will then check its type. If it is a MessageTar get , the reply
message will be sent to that target. If itisa St r i ng, then the endpoint will attempt to resolve the channel
by performing a lookup in the Channel Regi stry. If the target cannot be resolved, then a
MessageHandl i ngExcept i on will be thrown.

Message Endpoints also support MessageSel ect or s as described in Section 2.9, “MessageSel ector”.
To configure a selector with namespace support, simply add the "selector” attribute to the endpoint
definition and reference an implementation of the MessageSel ect or interface.

<servi ce-activator id="endpoint" input-channel ="channel" ref="handler"
sel ect or =" exanpl eSel ector"/ >

Another important configuration option for message endpoints is the inclusion of
Endpoi nt | nt er cept or s. Theinterface is defined as follows:

public interface Endpointlnterceptor {
Message<?> preHandl e(Message<?> request Message) ;
Message<?> ar oundHandl e(Message<?> request Message, MessageHandl er handl er);
Message<?> post Handl e(Message<?> repl yMessage) ;

}
There is aso an EndpointinterceptorAdapter that provides no-op methods for convenience when
subclassing. Within an endpoint configuration, interceptors can be added within the <interceptors>
sub-element. It accepts either "ref" elements or inner "beans’:

<servi ce-activator id="exanpl eEndpoint"

i nput - channel ="r equest Channel "
ref ="some(hj ect "
net hod="soneMet hod"
out put - channel ="r epl yChannel ">

<pol | er period="1000"/>

<i nterceptors>

<ref bean="sonel nterceptor"/>

Manud

Spring Integration

<beans: bean cl ass="exanpl e. Anot her| nt erceptor"/>
</interceptors>
</ servi ce-activator>

Spring Integration also provides transaction support for the pollers so that each receive-and-forward
operation can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add
the <transactional/> sub-element. The attributes for this element should be familiar to anyone who has
experience with Spring's Transaction management:

<servi ce-activator id="exanpl eEndpoint"
i nput - channel ="r equest Channel "
ref ="somebj ect "
net hod="soneMet hod"
out put - channel ="r epl yChannel ">
<pol | er period="1000">
<transactional transaction-manager="txManager"
propagat i on="REQUI RES_NEW
i sol at i on=" REPEATABLE_READ"
ti meout ="10000"
read-onl y="fal se"/>
</ pol | er>
</ servi ce-activator>

Spring Integration also provides support for executing the pollers with a TaskExceut or . This enables
concurrency for an endpoint or group of endpoints. As a convenience, there is a'so namespace support for
creating a simple thread pool executor. The <pool-executor/> element defines attributes for common
concurrency settings such as core-size, max-size, and queue-capacity. Configuring a thread-pooling
executor can make a substantial difference in how the endpoint performs under load. These settings are
available per-endpoint since the performance characteristics of an endpoint's handler or is one of the
major factors to consider (the other major factor being the expected volume on the channel to which the
endpoint subscribes). To enable concurrency for an endpoint that is configured with the XML namespace
support, provide the 'task-executor' reference on its <poller/> element and then provide one or more of the
properties shown below:

<servi ce-activator input-channel ="exanpl eChannel" ref="exanpl eHandl er">
<pol | er period="5000" task-executor="pool"/>
</ servi ce-activator>

<pool - execut or id="pool" core-size="5" max-size="25" queue-capacity="20" keep-alive-seconds="120"

If no 'task-executor' is provided, the endpoint's handler or target will be invoked in the caler's thread.
Note that the "caller" is usualy the MessageBus task scheduler except in the case of a subscribable
channel. Also, keep in mind that you the 'task-executor' attribute can provide a reference to any
implementation of Spring's TaskExecut or interface.

Configuring the Message Bus

As described in Section 2.7, “MessageBus’, the MessageBus plays a central role. Nevertheless, its
configuration is quite simple since it is primarily concerned with managing internal details based on the
configuration of channels and endpoints. The bus is aware of its host application context, and therefore is
also capable of auto-detecting the channels and endpoints. Typicaly, the MessageBus can be
configured with a single empty element:

1.0.0.M6 (Milestone 6) Spring Integration Reference 31

/>

Spring Integration

<message- bus/ >

The Message Bus provides default error handling for its components in the form of a configurable error
channel, and it will first check for a channel bean named 'errorChannel’ within the context:

<nmessage- bus/ >

<channel id="errorChannel" capacity="500"/>

When exceptions occur in a scheduled poller task's execution, those exceptions will be wrapped in
Err or Messages and sent to the 'errorChannel’ by default. To enable global error handling, simply
register a handler on that channel. For example, you can configure Spring Integration's
Root CauseErr or MessageRout er as the handler of an endpoint that is subscribed to the
‘errorChannel’. That router can then spread the error messages across multiple channels based on
Excepti on type. However, since most of the errors will aready have been wrapped in
MessageDel i ver yExcepti on or MessageHandl i ngExcepti on, the
Root CauseErr or MessageRout er istypically abetter option.

The 'message-bus element accepts several more optional attributes. First, you can control whether the
MessageBus will be started automatically (the default) or will require explicit startup by invoking its
start () method (MessageBus implements Spring'sLi f ecycl e interface):

<nmessage- bus auto-startup="fal se"/>

Another configurable property is the size of the default dispatcher thread pool. The dispatcher threads are
responsible for polling channels and then passing the messages to handlers.

<nmessage- bus di spat cher - pool - si ze="25"/ >
When the endpoints are concurrency-enabled as described in the previous section, the invocation of the
handling methods will happen within the handler thread pool and not the dispatcher pool. However, when
no task-executor is provided to an endpoint's poller, then it will be invoked in the dispatcher's thread (with
the exception of subscribable channels).

Finally, the type of channel that gets created automatically by the bus can be customized by defining a
bean that implements the Channel Factory interface and whose name is " channel Factory".

<message- bus/ >

<beans: bean i d="channel Fact ory"
cl ass="org. springframework.integration.channel.factory.PriorityChannel Factory"/>

With this definition, all the channels created automatically will be Pri orit yChannel instances.
Without a"channel Factory" bean, the Message Bus will assume adefault QueueChannel Fact ory.

Configuring Adapters

The most convenient way to configure Source and Target adapters is by using the namespace support.
The following examples demonstrate the namespace-based configuration of several source, target,
gateway, and handler adapters:

Manud

Spring Integration

<j ms-source id="jnmsSource" connection-factory="connFactory" destination="i nQueue"/>

<!-- using the default "connectionFactory" reference -->
<jns-target id="jnmsTarget" destination="outQeue"/>

<file-source id="fil eSource" directory="/tnp/in"/>
<file-target id="fileTarget" directory="/tnp/out"/>
<rm -gateway id="rm Source" request-channel ="rm Sourcel nput"/>

<rm - handl er id="rmi Target"
| ocal - channel ="rm Tar get Qut put "
r enot e- channel =" soneRenot eChannel "
host ="sonehost "/ >

<ht t pi nvoker - gat eway i d="httpSource" name="/sone/path" request-channel ="htt pl nvoker| nput"/>
<htt pi nvoker - handl er id="httpTarget" channel ="httpl nvokerQut put" url="http://sonehost/test"/>
<mai |l -target id="mail Target" host="somehost" usernanme="someuser" password="sonmepassword"/>
<ws- handl er id="wsTarget" uri="http://exanple.org" channel ="wsQut put"/>

<ftp-source id="ftpSource"
host =" exanpl e. or g"
user nane="soneuser"
passwor d=" sonepasswor d"
| ocal - wor ki ng-di rect ory="/ sone/ pat h"
r enot e- wor ki ng- di rect ory="/sone/ pat h"/>

In the examples above, notice that simple implementations of the MessageSource and
MessageTar get interfaces do not accept any 'channel’ references. To connect such sources and targets
to a channel, register them within a 'channel-adapter'. For example, here is a File source with an endpoint
whose polling will be scheduled to execute every 30 seconds by the MessageBus.

<channel - adapt er source="fil eSource" channel =" exanpl eChannel ">
<pol | er peri od="30000"/>
</ channel - adapt er >

<file-source id="fil eSource" directory="/tnp/in"/>
Likewise, here is an example of a JMS target that is registered within a 'channel-adapter' and whose
Messages will be received from the "exampleChannel” that is polled every 500 milliseconds.

<channel - adapt er channel =" exanpl eChannel " target="j nmsTar get">
<pol | er period="500"/>
</ channel - adapt er >

<jns-target id="jnsTarget" destination="targetDestination"/>
Any Channel Adapter can be created without a "channel" reference in which case it will implicitly create

an instance of Di r ect Channel . The created channel's name will match the "id" attribute of the
<channel-adapter/> element. Therefore, if the "channel” is not provided, the "id" is required.

Enabling Annotation-Driven Configuration

The next section will describe Spring Integration's support for annotation-driven configuration. To enable

1.0.0.M6 (Milestone 6) Spring Integration Reference 33

Spring Integration

those features, add this single element to the XML -based configuration:

<annot ati on-driven/>

4.3 Annotations

In addition to the XML namespace support for configuring Message Endpoints, it is al'so possible to use
annotations. The class-level @/kssageEndpoi nt annotation indicates that the annotated class is
capable of being registered as an endpoint, and the method-level @and| er annotation indicates that the
annotated method is capable of handling a message.

@kessageEndpoi nt (i nput ="f ooChannel ")
public class FooService {

@Handl er
public void processMessage(Message message) ({

}
}

The @MessageEndpoint is not required. If you want to configure a POJO reference from the "ref"
attribute of a <service-activator/> element, it is sufficient to provide the @Handler method annotation. As
long as the "annotation-driven" support is enabled, a Spring-managed object with that method annotation

(or the others which are described below) will be post-processed such that it can be used as a reference
from an XML-configured endpoint.

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message's payload type.

public class FooService {

@Handl er
public void bar(Foo foo) {

}
}

When the method parameter should be mapped from a value in the MessageHeader , another option is
to use the parameter-level @Header annotation.

@kessageEndpoi nt (i nput ="f ooChannel ")
public class FooService {

@Hand| er
public void bar(@eader("fo0") Foo foo) {

}

As described in the previous section, when the handler method returns a non-null value, the endpoint will

Manud

Spring Integration

attempt to send areply. Thisis consistent across both configuration options (namespace and annotations)
in that the the endpoint's output channel will be used if available, and the message header's
RETURN_ADDRESS vaue will be the fallback. To configure the output channel for an
annotation-driven endpoint, provide the 'output’ attribute on the @/ ssageEndpoi nt .

@essageEndpoi nt (i nput =" exanpl eChannel *, out put ="repl yChannel ")

Just as the 'poller' sub-element and its 'period' attribute can be provided for a namespace-based endpoint,
the @0l | er annotation can be provided with the @/ ssageEndpoi nt annotation.

@kessageEndpoi nt (i nput =" exanpl eChannel ")
@ol | er (peri 0od=3000)
public class FooService {

}
Likewise, @oncur r ency provides an annotation-based equivalent of the <pool-executor/> element:

@kessageEndpoi nt (i nput ="f ooChannel ")
@oncurrency(coreSi ze=5, maxSi ze=20)
public class FooService {

@Handl er
public void bar(Foo foo) {

}

Severa additional annotations are supported, and three of these act as a specia form of handler method:
@rout er, @bpl i tter and @A\ggr egat or . As with the @andl er annotation, methods annotated
with these annotations can either accept the Message itself, the message payload, or a header value
(with @Header) as the parameter. In fact, the method can accept a combination, such as:

soneMet hod(String payl oad, @Header("x") int valueX, @leader("y") int val ueY);

When using the @Rout er annotation, the annotated method can return either the MessageChannel or
String type. In the case of the latter, the endpoint will resolve the channel name as it does for the
default output. Additionally, the method can return either a single value or a collection. When a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are all valid.

@Rrout er
publ i c MessageChannel route(Message nmessage) {...}

@Rout er
public List<MessageChannel > rout e(Message nessage) {...}

@Rrout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available

1.0.0.M6 (Milestone 6) Spring Integration Reference 35

Spring Integration

within the message header as either a property or attribute. Rather than requiring use of the Message
type as the method parameter, the @Rout er annotation may also use the same @Header parameter
annotation that was introduced above.

@Rout er
public List<String> route(@eader("orderStatus") OrderStatus status)

The @pl i tt er annotation is also applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a collection of any type. If the
returned values are not actual Message objects, then each of them will be sent as the payload of a
message. Those messages will be sent to the output channel as designated for the endpoint on which the
@Bplitter isdefined.

@plitter

Li st<Li neltenr extractltenms(Order order) {
return order.getltens()

}

The @\ggr egat or annotation may be used on a method that accepts a collection of Messages or
Message payload types and whose return value is a single Message or single Object that will be used as
the payload of a Message.

@\ggr egat or

publ i c Message<?> aggr egat eMessages(Li st <Message<?>> nessages) { ... }
@Aggr egat or

public Order aggregateOrder(List<Lineltenr itens) { ... }

Finally, the @ubl i sher isan annotation that triggers the creation of a Spring AOP Proxy such that the
return value, exception, or method invcation arguments can be sent to a Message Channel. For example,
each time the following method is invoked, its return value will be sent to the "fooChannel":

@ubl i sher (channel ="f ooChannel ")
public String foo() {

return "bar";
}

Thereturn value is published by default, but you can aso configure the payload type:

@Publ i sher (channel ="t est Channel ", payl oadType=MessagePubl i shi ngl nt er cept or. Payl oadType. ARGUVENTS)
public void publishArgunents(String s, Integer n) {

}

@ubl i sher (channel ="t est Channel ", payl oadType=MessagePubl i shi ngl nt er cept or. Payl oadType. EXCEPTI ON)
public void publishException() ({

t hrow new Runti neException("oops!");
}

Manud

Spring Integration

5. Spring Integration Samples

5.1 The Cafe Sample

In this section, we will review a sample application that is included in the Spring Integration distribution.
This sampleisinspired by one of the samples featured in Gregor Hohpe's Ramblings.

The domain isthat of a Cafe, and the basic flow is depicted in the following diagram:

hotDrinks

orders

placeOrder

The Dr i nkOr der object may contain multiple Dr i nks. Once the order is placed, a Splitter will break
the composite order message into a single message per drink. Each of these is then processed by a Router
that determines whether the drink is hot or cold (checking the Dr i nk object's 'islced' property). Finally
the Bari st a prepares each drink, but hot and cold drink preparation are handled by two distinct
methods: 'prepareHotDrink' and 'prepareColdDrink’.

Hereisthe XML configuration:

<beans: beans xm ns="http://wwm. springfranmework. org/ schema/integration"

xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: beans="htt p: // ww. spri ngf ramewor k. or g/ schena/ beans"

xm ns: cont ext="http://ww. springframework. or g/ schema/ cont ext "

xsi : schemalLocat i on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration-1.0.xsd
http://wwv. spri ngfranmewor k. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext-2.5. xsd">

<message- bus/ >
<annot ati on-dri ven/ >

<cont ext: conponent - scan base- package="org. spri ngframewor k. i nt egrati on. sanpl es. cafe"/>

<channel id="orders"/>

<channel id="drinks"/>

<channel id="col dDrinks"/>

<channel id="hotDrinks"/>

<servi ce-activator input-channel ="col dDri nks" ref="barista" nethod="prepareCol dDri nk"/>

<servi ce-activator input-channel ="hotDrinks" ref="barista" nmethod="prepareHotDrink"/>

<beans: bean id="cafe" class="org.springframework.integration.sanpl es.cafe. Cafe">
<beans: property name="order Channel " ref="orders"/>

</ beans: bean>

</ beans: beans>

1.0.0.M6 (Milestone 6) Spring Integration Reference 37

http://www.eaipatterns.com/ramblings.html

Spring Integration

Notice that the Message Bus is defined. It will automatically detect and register all channels and
endpoints. The 'annotation-driven’ element will enable the detection of the splitter and router - both of
which carry the @wessageEndpoi nt annotation. That annotation extends Spring's "stereotype’
annotations (by relying on the @Component meta-annotation), and so all classes carrying the endpoint
annotation are capabl e of being detected by the component-scanner.

@kssageEndpoi nt (i nput ="orders", output="drinks")
public class OrderSplitter {

@plitter
public List<Drink> split(DrinkOrder order) ({
return order.getDrinks();

}

@essageEndpoi nt (i nput ="dri nks")
public class DrinkRouter {

@Rout er
public String resol veDrinkChannel (Drink drink) {

return (drink.islced()) ? "coldDrinks" : "hotDrinks";
}

Now turning back to the XML, you see that there are two <service-activator> elements. Each of these is
delegating to the same Bar i st a instance but different methods. The 'barista’ could have been defined in
the XML, but instead the @Conponent annotation is applied:

@onponent
public class Barista {

private |ong hotDrinkDel ay = 5000;
private | ong col dDri nkDel ay = 1000;

private Atomi clnteger hotDrinkCounter = new Atomni clnteger();
private Atom clnteger col dDrinkCounter = new Atoniclnteger();

public void setHotDrinkDel ay(l ong hotDri nkDel ay) {
this. hotDrinkDel ay = hot Dri nkDel ay;

}

public void setCol dDri nkDel ay(| ong col dDri nkDel ay) {
this.col dDri nkDel ay = col dDri nkDel ay;

}
public void prepareHotDrink(Drink drink) {
try {
Thr ead. sl eep(t hi s. hot Dri nkDel ay) ;
System out. printl n(Thread. current Thread(). get Name()
+ " prepared hot drink #" + hotDrinkCounter.incrementAndGet() + ": " + drink);
} catch (InterruptedException e) {
Thread. current Thread().interrupt();
}
}
public void prepareCol dDrink(Drink drink) {
try {

Thread. sl eep(this. col dDri nkDel ay) ;
System out. printl n(Thread. current Thread() . get Name()
+ " prepared cold drink #' + col dDrinkCounter.incrementAndGet() + ": " + drink);
} catch (InterruptedException e) {
Thread. current Thread().interrupt();

1.0.0.M6 (Milestone 6) Spring Integration Reference 38

Spring Integration

As you can see from the code excerpt above, the barista methods have different delays (the hot drinks
take 5 times as long to prepare). This simulates work being completed at different rates. When the
Caf eDenp 'main’ method runs, it will loop 100 times sending a single hot drink and a single cold drink
each time.

public static void main(String[] args) {
Abst ract Appl i cati onCont ext context = null;
if(args.length > 0) {
context = new Fil eSyst emXm Appl i cati onCont ext (args);
}

el se {
context = new Cl assPat hXm Appl i cati onCont ext (" caf eDeno. xm ", Caf eDenp. cl ass);
}

context.start();
Cafe cafe = (Cafe) context.getBean("cafe");
DrinkOrder order = new DrinkOrder();
Drink hot Doubl eLatte = new Drink(DrinkType. LATTE, 2, false);
Drink icedTripl eMocha = new Drink(DrinkType. MOCHA, 3, true);
order. addDri nk(hot Doubl eLatte);
order. addDri nk(i cedTri pl eMocha);
for (int i =0; i < 100; i++) {
caf e. pl aceOrder (order);
}

To run this demo, go to the "samples' directory within the root of the Spring Integration distribution. On
Unix/Mac you can run ‘cafeDemo.sh’, and on Windows you can run 'cafeDemo.bat’. Each of these will by
default create a Spring Appli cati onCont ext from the ‘cafeDemo.xml’ file that is in the
"spring-integration-samples’ JAR and hence on the classpath (it is the same as the XML above).
However, a copy of that file is also available within the "samples" directory, so that you can provide the
file name as a command line argument to either ‘cafeDemo.sh’ or 'cafeDemo.bat’. This will allow you to
experiment with the configuration and immediately run the demo with your changes. It is probably a good
ideato first copy the origina file so that you can make as many changes as you want and still refer back
to the original to compare.

When you run cafeDemo, you will see that all 100 cold drinks are prepared in roughly the same amount
of time as only 20 of the hot drinks. This is to be expected based on their respective delays of 1000 and
5000 milliseconds. However, by configuring a poller with a concurrent task executor, you can
dramatically change the results. For example, you could use a thread pool executor with 5 workers for the
hot drink barista:

<servi ce-activator input-channel ="col dDrinks" ref="barista" method="prepareCol dDri nk"/>

<servi ce-activator input-channel ="hotDrinks" ref="barista" method="prepareHot Dri nk">

<pol | er period="1000" task-executor="pool"/>

</ servi ce-activator>

<pool - execut or id="pool" core-size="5"/>

Also, notice that the worker thread name is displayed with each invocation. Y ou should see that most of
the hot drinks are prepared by the task-executor threads, but that occasionaly it throttles the input by

Manud

Spring Integration

forcing the message-bus (the caller) to invoke the operation. In addition to experimenting with the
‘concurrency’ settings, you can also add the ‘transactional' sub-element as described in the section called
“Configuring Message Endpoints’. If you want to explore the sample in more detail, the source JAR is
availablein the "src" directory: ‘org.springframework.integration.samples-sources-1.0.0.M6.jar'.

1.0.0.M6 (Milestone 6) Spring Integration Reference 40

Spring Integration

6. Additional Resources

6.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home at
http://www.springframework.org. That site serves as a hub of information and is the best place to find
up-to-date announcements about the project as well as links to articles, blogs, and new sample
applications.

1.0.0.M6 (Milestone 6) Spring Integration Reference 41

http://www.springframework.org/spring-integration
http://www.springframework.org

	Spring Integration Reference Manual
	Table of Contents
	1. Spring Integration Overview
	1.1 Background
	1.2 Goals and Principles
	1.3 Main Components
	Message
	Message Source
	Message Target
	Message Handler
	Message Channel
	Message Endpoint
	Channel Adapter
	Service Activator

	Message Router
	Splitter
	Aggregator
	Message Bus

	2. The Core API
	2.1 Message
	2.2 MessageSource
	2.3 MessageTarget
	2.4 MessageChannel
	PublishSubscribeChannel
	QueueChannel
	PriorityChannel
	RendezvousChannel
	DirectChannel
	ThreadLocalChannel

	2.5 ChannelInterceptor
	2.6 MessageHandler
	2.7 MessageBus
	2.8 MessageEndpoint
	2.9 MessageSelector
	2.10 MessageExchangeTemplate
	2.11 MessagingGateway

	3. Adapters
	3.1 Introduction
	3.2 JMS Adapters
	3.3 RMI Adapters
	3.4 HttpInvoker Adapters
	3.5 File Adapters
	3.6 FTP Adapters
	3.7 Mail Adapters
	3.8 Web Service Adapters
	3.9 Stream Adapters
	3.10 ApplicationEvent Adapters

	4. Configuration
	4.1 Introduction
	4.2 Namespace Support
	Configuring Message Channels
	The <queue-channel/> element
	The <publish-subscribe-channel/> element
	The <priority-channel/> element
	The <rendezvous-channel/> element
	The <direct-channel/> element
	The <thread-local-channel/> element

	Configuring Message Endpoints
	The inbound <channel-adapter/> element with a MessageSource
	The outbound <channel-adapter/> with a MessageTarget
	The <service-activator/> element

	Configuring the Message Bus
	Configuring Adapters
	Enabling Annotation-Driven Configuration

	4.3 Annotations

	5. Spring Integration Samples
	5.1 The Cafe Sample

	6. Additional Resources
	6.1 Spring Integration Home

