
Spring Integration Reference Manual

2.0.0 Milestone 3

© SpringSource Inc., 2010

Table of Contents
1. Spring Integration Overview ..1

1.1. Background ...1
1.2. Goals and Principles ...1
1.3. Main Components ..2

Message ...2
Message Channel ..3
Message Endpoint ..3

1.4. Message Endpoints ...4
Transformer ...4
Filter ..4
Router ..5
Splitter ...5
Aggregator ...5
Service Activator ..6
Channel Adapter ...6

2. Message Construction ...8
2.1. The Message Interface ..8
2.2. Message Headers ...8
2.3. Message Implementations ...9
2.4. The MessageBuilder Helper Class ...10

3. Message Channels ...12
3.1. The MessageChannel Interface ..12

PollableChannel ...12
SubscribableChannel ..12

3.2. Message Channel Implementations ..13
PublishSubscribeChannel ..13
QueueChannel ..13
PriorityChannel ..13
RendezvousChannel ...14
DirectChannel ..14
ExecutorChannel ..16
ThreadLocalChannel ...16

3.3. Channel Interceptors ...16
3.4. MessageChannelTemplate ..18
3.5. Configuring Message Channels ...18

DirectChannel Configuration ...19
QueueChannel Configuration ..19
PublishSubscribeChannel Configuration ..20
ExecutorChannel ..20
PriorityChannel Configuration ...21

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference ii

RendezvousChannel Configuration ..21
ThreadLocalChannel Configuration ...21
Channel Interceptor Configuration ...21
Wire Tap ..22

4. Message Endpoints ...23
4.1. Message Handler ..23
4.2. Event Driven Consumer ..24
4.3. Polling Consumer ...24
4.4. Namespace Support ..26

5. Service Activator ..29
5.1. Introduction ...29
5.2. The <service-activator/> Element ..29

6. Channel Adapter ...31
6.1. The <inbound-channel-adapter> element ...31
6.2. The <outbound-channel-adapter/> element ..31

7. Router ..33
7.1. Router Implementations ..33

PayloadTypeRouter ..33
HeaderValueRouter ..33
RecipientListRouter ..35

7.2. The <router> element ...35
7.3. The @Router Annotation ..36

8. Filter ..37
8.1. Introduction ...37
8.2. The <filter> Element ..37

9. Transformer ..39
9.1. Introduction ...39
9.2. The <transformer> Element ..39
9.3. The @Transformer Annotation ...41

10. Splitter ...42
10.1. Introduction ...42
10.2. Programming model ...42
10.3. Configuring a Splitter using XML ...43
10.4. Configuring a Splitter with Annotations ...44

11. Aggregator ...45
11.1. Introduction ...45
11.2. Functionality ..45
11.3. Programming model ...45

AbstractMessageAggregator ..46
CompletionStrategy ..47
CorrelationStrategy ...48

11.4. Configuring an Aggregator with XML ...48
11.5. Configuring an Aggregator with Annotations ...51

12. Resequencer ...53
12.1. Introduction ...53

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference iii

12.2. Functionality ..53
12.3. Configuring a Resequencer with XML ...53

13. Delayer ..55
13.1. Introduction ...55
13.2. The <delayer> Element ...55

14. Message Handler Chain ...57
14.1. Introduction ...57
14.2. The <chain> Element ...58

15. Messaging Bridge ...59
15.1. Introduction ...59
15.2. The <bridge> Element ..59

16. Inbound Messaging Gateways ..61
16.1. SimpleMessagingGateway ..61
16.2. GatewayProxyFactoryBean ...61

17. Message Publishing ...63
17.1. Message Publishing Configuration ..63

Annotation-based approach via @Publisher annotation ...63
XML-based approach via <publisher> element ...64

18. File Support ..66
18.1. Introduction ...66
18.2. Reading Files ...66
18.3. Writing files ...67
18.4. File Transformers ...68

19. JMS Support ...70
19.1. Inbound Channel Adapter ...70
19.2. Message-Driven Channel Adapter ...71
19.3. Outbound Channel Adapter ...71
19.4. Inbound Gateway ...72
19.5. Outbound Gateway ...73
19.6. JMS Backed Message Channels ..73
19.7. JMS Samples ...75

20. Web Services Support ...76
20.1. Outbound Web Service Gateways ..76
20.2. Inbound Web Service Gateways ..76
20.3. Web Service Namespace Support ..77

21. RMI Support ...79
21.1. Introduction ...79
21.2. Outbound RMI ...79
21.3. Inbound RMI ...79
21.4. RMI namespace support ...79

22. HttpInvoker Support ..81
22.1. Introduction ...81
22.2. HttpInvoker Inbound Gateway ..81
22.3. HttpInvoker Outbound Gateway ..82
22.4. HttpInvoker Namespace Support ...82

Spring Integration

Manual

23. HTTP Support ..84
23.1. Introduction ...84
23.2. Http Inbound Gateway ..84
23.3. Http Outbound Gateway ...85
23.4. Http Namespace Support ..85

24. TCP and UDP Support ..87
24.1. Introduction ...87
24.2. UDP Adapters ..87
24.3. TCP Adapters ..89
24.4. IP Adapter Attributes ..90

25. Mail Support ...95
25.1. Mail-Sending Channel Adapter ...95
25.2. Mail-Receiving Channel Adapter ..95
25.3. Mail Namespace Support ..96

26. JMX Support ..98
26.1. Notification Listening Channel Adapter ...98
26.2. Notification Publishing Channel Adapter ...98
26.3. Attribute Polling Channel Adapter ...99
26.4. Operation Invoking Channel Adapter ...99
26.5. Control Bus .. 100

27. Stream Support ... 101
27.1. Introduction ... 101
27.2. Reading from streams ... 101
27.3. Writing to streams .. 101
27.4. Stream namespace support .. 102

28. Spring ApplicationEvent Support ... 103
28.1. Receiving Spring ApplicationEvents .. 103
28.2. Sending Spring ApplicationEvents .. 103

29. Dealing with XML Payloads .. 104
29.1. Introduction ... 104
29.2. Transforming xml payloads ... 104
29.3. Namespace support for xml transformers ... 105
29.4. Splitting xml messages ... 107
29.5. Routing xml messages using XPath ... 107
29.6. Selecting xml messages using XPath ... 108
29.7. XPath components namespace support ... 109

30. Security in Spring Integration .. 111
30.1. Introduction ... 111
30.2. Securing channels ... 111

A. Spring Integration Samples ... 113
A.1. The Cafe Sample ... 113
A.2. The XML Messaging Sample ... 117
A.3. The OSGi Samples .. 118

B. Configuration ... 122
B.1. Introduction .. 122

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference v

B.2. Namespace Support ... 122
B.3. Configuring the Task Scheduler .. 123
B.4. Error Handling .. 124
B.5. Annotation Support .. 125
B.6. Message Mapping rules and conventions ... 128

Simple Scenarios .. 128
Complex Scenarios ... 131

C. Additional Resources .. 133
C.1. Spring Integration Home .. 133

Spring Integration

Manual

1. Spring Integration Overview

1.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic
cross-cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially the
fact that it is based upon well-established best practices such as programming to interfaces and favoring
composition over inheritance. Spring's simplified abstractions and powerful support libraries boost
developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles.
It extends the Spring programming model into the messaging domain and builds upon Spring's existing
enterprise integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain business logic
should execute and where the response should be sent. It supports routing and transformation of messages
so that different transports and different data formats can be integrated without impacting testability. In
other words, the messaging and integration concerns are handled by the framework, so business
components are further isolated from the infrastructure and developers are relieved of complex integration
responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean"
elements, and of course direct usage of the underlying API. That API is based upon well-defined strategy
interfaces and non-invasive, delegating adapters. Spring Integration's design is inspired by the recognition
of a strong affinity between common patterns within Spring and the well-known Enterprise Integration
Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf (Addison
Wesley, 2004). Developers who have read that book should be immediately comfortable with the Spring
Integration concepts and terminology.

1.2 Goals and Principles

Spring Integration is motivated by the following goals:

• Provide a simple model for implementing complex enterprise integration solutions.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 1

http://www.eaipatterns.com
http://www.eaipatterns.com

• Facilitate asynchronous, message-driven behavior within a Spring-based application.

• Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

• Components should be loosely coupled for modularity and testability.

• The framework should enforce separation of concerns between business logic and integration logic.

• Extension points should be abstract in nature but within well-defined boundaries to promote reuse and
portability.

1.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-based
contracts between layers promote loose coupling. Spring-based applications are typically designed this
way, and the Spring framework and portfolio provide a strong foundation for following this best practice
for the full-stack of an enterprise application. Message-driven architectures add a horizontal perspective,
yet these same goals are still relevant. Just as "layered architecture" is an extremely generic and abstract
paradigm, messaging systems typically follow the similarly abstract "pipes-and-filters" model. The
"filters" represent any component that is capable of producing and/or consuming messages, and the
"pipes" transport the messages between filters so that the components themselves remain loosely-coupled.
It is important to note that these two high-level paradigms are not mutually exclusive. The underlying
messaging infrastructure that supports the "pipes" should still be encapsulated in a layer whose contracts
are defined as interfaces. Likewise, the "filters" themselves would typically be managed within a layer
that is logically above the application's service layer, interacting with those services through interfaces
much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be of
any type and the headers hold commonly required information such as id, timestamp, expiration, and
return address. Headers are also used for passing values to and from connected transports. For example,
when creating a Message from a received File, the file name may be stored in a header to be accessed by
downstream components. Likewise, if a Message's content is ultimately going to be sent by an outbound
Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured as Message header
values by an upstream component. Developers can also store any arbitrary key-value pairs in the headers.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 2

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to
a channel, and consumers receive Messages from a channel. The Message Channel therefore decouples
the messaging components, and also provides a convenient point for interception and monitoring of
Messages.

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a
Point-to-Point channel, at most one consumer can receive each Message sent to the channel.
Publish/Subscribe channels, on the other hand, will attempt to broadcast each Message to all of its
subscribers. Spring Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer
messages? In Spring Integration, Pollable Channels are capable of buffering Messages within a queue.
The advantage of buffering is that it allows for throttling the inbound Messages and thereby prevents
overloading a consumer. However, as the name suggests, this also adds some complexity, since a
consumer can only receive the Messages from such a channel if a poller is configured. On the other hand,
a consumer connected to a Subscribable Channel is simply Message-driven. The variety of channel
implementations available in Spring Integration will be discussed in detail in Section 3.2, “Message
Channel Implementations”.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration

Spring Integration

Manual

solutions through inversion of control. This means that you should not have to implement consumers and
producers directly, and you should not even have to build Messages and invoke send or receive operations
on a Message Channel. Instead, you should be able to focus on your specific domain model with an
implementation based on plain Objects. Then, by providing declarative configuration, you can "connect"
your domain-specific code to the messaging infrastructure provided by Spring Integration. The
components responsible for these connections are Message Endpoints. This does not mean that you will
necessarily connect your existing application code directly. Any real-world enterprise integration solution
will require some amount of code focused upon integration concerns such as routing and transformation.
The important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the goal should
be to provide a thin but dedicated layer that translates inbound requests into service layer invocations, and
then translates service layer return values into outbound replies. The next section will provide an
overview of the Message Endpoint types that handle these responsibilities, and in upcoming chapters, you
will see how Spring Integration's declarative configuration options provide a non-invasive way to use
each of these.

1.4 Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary role is to connect application code to the messaging framework and to do so in a
non-invasive manner. In other words, the application code should ideally have no awareness of the
Message objects or the Message Channels. This is similar to the role of a Controller in the MVC
paradigm. Just as a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as
Controllers are mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal
is the same in both cases: isolate application code from the infrastructure. These concepts are discussed at
length along with all of the patterns that follow in the Enterprise Integration Patterns book. Here, we
provide only a high-level description of the main endpoint types supported by Spring Integration and their
roles. The chapters that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message's content or structure and returning the
modified Message. Probably the most common type of transformer is one that converts the payload of the
Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a
transformer may be used to add, remove, or modify the Message's header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This simply
requires a boolean test method that may check for a particular payload content type, a property value, the
presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if not it will be
dropped (or for a more severe implementation, an Exception could be thrown). Message Filters are often

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 4

http://www.eaipatterns.com

used in conjunction with a Publish Subscribe channel, where multiple consumers may receive the same
Message and use the filter to narrow down the set of Messages to be processed based on some criteria.

Note
Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural
pattern with this specific endpoint type that selectively narrows down the Messages flowing
between two channels. The Pipes-and-Filters concept of "filter" matches more closely with
Spring Integration's Message Endpoint: any component that can be connected to Message
Channel(s) in order to send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message next
(if any). Typically the decision is based upon the Message's content and/or metadata available in the
Message Headers. A Message Router is often used as a dynamic alternative to a statically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise, a
Message Router provides a proactive alternative to the reactive Message Filters used by multiple
subscribers as described above.

Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.
This is typically used for dividing a "composite" payload object into a group of Messages containing the
sub-divided payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often downstream
consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more complex than a
Splitter, because it is required to maintain state (the Messages to-be-aggregated), to decide when the

Spring Integration

Manual

complete group of Messages is available, and to timeout if necessary. Furthermore, in case of a timeout,
the Aggregator needs to know whether to send the partial results or to discard them to a separate channel.
Spring Integration provides a CompletionStrategy as well as configurable settings for timeout,
whether to send partial results upon timeout, and the discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system. The
input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

Note
The output channel is optional, since each Message may also provide its own 'Return
Address' header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message's payload and converting if necessary (if the method does not expect a
Message-typed parameter). Whenever the service object's method returns a value, that return value will
likewise be converted to a reply Message if necessary (if it's not already a Message). That reply Message
is sent to the output channel. If no output channel has been configured, then the reply will be sent to the
channel specified in the Message's "return address" if available.

A request-reply "Service Activator" endpoint connects a target object's method to input and output
Message Channels.

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Request, JMS Message, etc). Depending on the transport, the Channel Adapter may
also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 6

An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

Spring Integration

Manual

2. Message Construction
The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message also includes headers containing user-extensible properties as key-value
pairs.

2.1 The Message Interface

Here is the definition of the Message interface:

public interface Message<T> {

T getPayload();

MessageHeaders getHeaders();

}

The Message is obviously a very important part of the API. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the data's type. As an
application evolves to support new types, or when the types themselves are modified and/or extended, the
messaging system will not be affected by such changes. On the other hand, when some component in the
messaging system does require access to information about the Message, such metadata can typically be
stored to and retrieved from the metadata in the Message Headers.

2.2 Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports any
Object types as header values. In fact, the MessageHeaders class implements the java.util.Map
interface:

public final class MessageHeaders implements Map<String, Object>, Serializable {
...

}

Note
Even though the MessageHeaders implements Map, it is effectively a read-only
implementation. Any attempt to put a value in the Map will result in an
UnsupportedOperationException. The same applies for remove and clear. Since
Messages may be passed to multiple consumers, the structure of the Map cannot be modified.
Likewise, the Message's payload Object can not be set after the initial creation. However, the
mutability of the header values themselves (or the payload Object) is intentionally left as a
decision for the framework user.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 8

As an implementation of Map, the headers can obviously be retrieved by calling get(..) with the name
of the header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. Here is an example of
each of these three options:

Object someValue = message.getHeaders().get("someKey");

CustomerId customerId = message.getHeaders().get("customerId", CustomerId.class);

Long timestamp = message.getHeaders().getTimestamp();

The following Message headers are pre-defined:

Table 2.1. Pre-defined Message Headers

Header Name Header Type

ID java.util.UUID

TIMESTAMP java.lang.Long

EXPIRATION_DATE java.lang.Long

CORRELATION_ID java.lang.Object

REPLY_CHANNEL java.lang.Object (can be a String or
MessageChannel)

ERROR_CHANNEL java.lang.Object (can be a String or
MessageChannel)

SEQUENCE_NUMBER java.lang.Integer

SEQUENCE_SIZE java.lang.Integer

PRIORITY MessagePriority (an enum)

Many inbound and outbound adapter implementations will also provide and/or expect certain headers,
and additional user-defined headers can also be configured.

2.3 Message Implementations

The base implementation of the Message interface is GenericMessage<T>, and it provides two
constructors:

new GenericMessage<T>(T payload);

new GenericMessage<T>(T payload, Map<String, Object> headers)

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 9

When a Message is created, a random unique id will be generated. The constructor that accepts a Map of
headers will copy the provided headers to the newly created Message.

There are also two convenient subclasses available: StringMessage and ErrorMessage. The
former accepts a String as its payload:

StringMessage message = new StringMessage("hello world");

String s = message.getPayload();

And, the latter accepts any Throwable object as its payload:

ErrorMessage message = new ErrorMessage(someThrowable);

Throwable t = message.getPayload();

Notice that these implementations take advantage of the fact that the GenericMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

2.4 The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but no
setters. The reason for this is that a Message cannot be modified after its initial creation. Therefore, when
a Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if one of
those consumers needs to send a reply with a different payload type, it will need to create a new Message.
As a result, the other consumers are not affected by those changes. Keep in mind, that multiple consumers
may access the same payload instance or header value, and whether such an instance is itself immutable is
a decision left to the developer. In other words, the contract for Messages is similar to that of an
unmodifiable Collection, and the MessageHeaders' map further exemplifies that; even though the
MessageHeaders class implements java.util.Map, any attempt to invoke a put operation (or 'remove'
or 'clear') on the MessageHeaders will result in an UnsupportedOperationException.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,
Spring Integration does provide a far more convenient way to construct Messages: MessageBuilder.
The MessageBuilder provides two factory methods for creating Messages from either an existing
Message or with a payload Object. When building from an existing Message, the headers and payload of
that Message will be copied to the new Message:

Message<String> message1 = MessageBuilder.withPayload("test")
.setHeader("foo", "bar")
.build();

Message<String> message2 = MessageBuilder.fromMessage(message1).build();

assertEquals("test", message2.getPayload());
assertEquals("bar", message2.getHeaders().get("foo"));

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the 'copy' methods.

Spring Integration

Manual

Message<String> message3 = MessageBuilder.withPayload("test3")
.copyHeaders(message1.getHeaders())
.build();

Message<String> message4 = MessageBuilder.withPayload("test4")
.setHeader("foo", 123)
.copyHeadersIfAbsent(message1.getHeaders())
.build();

assertEquals("bar", message3.getHeaders().get("foo"));
assertEquals(123, message4.getHeaders().get("foo"));

Notice that the copyHeadersIfAbsent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with setHeader. Finally, there are set
methods available for the predefined headers as well as a non-destructive method for setting any header
(MessageHeaders also defines constants for the pre-defined header names).

Message<Integer> importantMessage = MessageBuilder.withPayload(99)
.setPriority(MessagePriority.HIGHEST)
.build();

assertEquals(MessagePriority.HIGHEST, importantMessage.getHeaders().getPriority());

Message<Integer> anotherMessage = MessageBuilder.fromMessage(importantMessage)
.setHeaderIfAbsent(MessageHeaders.PRIORITY, MessagePriority.LOW)
.build();

assertEquals(MessagePriority.HIGHEST, anotherMessage.getHeaders().getPriority());

The MessagePriority is only considered when using a PriorityChannel (as described in the
next chapter). It is defined as an enum with five possible values:

public enum MessagePriority {
HIGHEST,
HIGH,
NORMAL,
LOW,
LOWEST

}

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 11

3. Message Channels
While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

3.1 The MessageChannel Interface

Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {

String getName();

boolean send(Message message);

boolean send(Message message, long timeout);
}

When sending a message, the return value will be true if the message is sent successfully. If the send call
times out or is interrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are two
sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior. Here
is the definition of PollableChannel.

public interface PollableChannel extends MessageChannel {

Message<?> receive();

Message<?> receive(long timeout);

List<Message<?>> clear();

List<Message<?>> purge(MessageSelector selector);

}

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

The SubscribableChannel base interface is implemented by channels that send Messages directly
to their subscribed MessageHandlers. Therefore, they do not provide receive methods for polling, but
instead define methods for managing those subscribers:

public interface SubscribableChannel extends MessageChannel {

boolean subscribe(MessageHandler handler);

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 12

boolean unsubscribe(MessageHandler handler);

}

3.2 Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly described
in the sections below.

PublishSubscribeChannel

The PublishSubscribeChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending Event Messages whose primary role is
notification as opposed to Document Messages which are generally intended to be processed by a single
handler. Note that the PublishSubscribeChannel is intended for sending only. Since it broadcasts
to its subscribers directly when its send(Message) method is invoked, consumers cannot poll for
Messages (it does not implement PollableChannel and therefore has no receive() method).
Instead, any subscriber must be a MessageHandler itself, and the subscriber's
handleMessage(Message) method will be invoked in turn.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the PublishSubscribeChannel, the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default
no-argument constructor (providing an essentially unbounded capacity of Integer.MAX_VALUE) as
well as a constructor that accepts the queue capacity:

public QueueChannel(int capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Or, if using the send call that
accepts a timeout, it will block until either room is available or the timeout period elapses, whichever
occurs first. Likewise, a receive call will return immediately if a message is available on the queue, but if
the queue is empty, then a receive call may block until either a message is available or the timeout
elapses. In either case, it is possible to force an immediate return regardless of the queue's state by passing
a timeout value of 0. Note however, that calls to the no-arg versions of send() and receive() will
block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the PriorityChannel is an

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 13

alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the 'priority' header within each message. However,
for custom priority determination logic, a comparator of type Comparator<Message<?>> can be
provided to the PriorityChannel's constructor.

RendezvousChannel

The RendezvousChannel enables a "direct-handoff" scenario where a sender will block until another
party invokes the channel's receive() method or vice-versa. Internally, this implementation is quite
similar to the QueueChannel except that it uses a SynchronousQueue (a zero-capacity
implementation of BlockingQueue). This works well in situations where the sender and receiver are
operating in different threads but simply dropping the message in a queue asynchronously is not
appropriate. In other words, with a RendezvousChannel at least the sender knows that some receiver
has accepted the message, whereas with a QueueChannel, the message would have been stored to the
internal queue and potentially never received.

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only.
When persistence is required, you can either invoke a database operation within a handler or
use Spring Integration's support for JMS-based Channel Adapters. The latter option allows
you to take advantage of any JMS provider's implementation for message persistence, and it
will be discussed in Chapter 19, JMS Support. However, when buffering in a queue is not
necessary, the simplest approach is to rely upon the DirectChannel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender can
create a temporary, anonymous instance of RendezvousChannel which it then sets as the
'replyChannel' header when building a Message. After sending that Message, the sender can immediately
call receive (optionally providing a timeout value) in order to block while waiting for a reply Message.
This is very similar to the implementation used internally by many of Spring Integration's request-reply
components.

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
PublishSubscribeChannel than any of the queue-based channel implementations described above.
It implements the SubscribableChannel interface instead of the PollableChannel interface, so
it dispatches Messages directly to a subscriber. As a point-to-point channel, however, it differs from the
PublishSubscribeChannel in that it will only send each Message to a single subscribed
MessageHandler.

In addition to being the simplest point-to-point channel option, one of its most important features is that it
enables a single thread to perform the operations on "both sides" of the channel. For example, if a handler
is subscribed to a DirectChannel, then sending a Message to that channel will trigger invocation of

Spring Integration

Manual

that handler's handleMessage(Message) method directly in the sender's thread, before the send()
method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support transactions
that must span across the channel while still benefiting from the abstraction and loose coupling that the
channel provides. If the send call is invoked within the scope of a transaction, then the outcome of the
handler's invocation (e.g. updating a database record) will play a role in determining the ultimate result of
that transaction (commit or rollback).

Note
Since the DirectChannel is the simplest option and does not add any additional overhead
that would be required for scheduling and managing the threads of a poller, it is the default
channel type within Spring Integration. The general idea is to define the channels for an
application and then to consider which of those need to provide buffering or to throttle input,
and then modify those to be queue-based PollableChannels. Likewise, if a channel
needs to broadcast messages, it should not be a DirectChannel but rather a
PublishSubscribeChannel. Below you will see how each of these can be configured.

The DirectChannel internally delegates to a Message Dispatcher to invoke its subscribed Message
Handlers, and that dispatcher can have a load-balancing strategy. The load-balancer determines how
invocations will be ordered in the case that there are multiple handlers subscribed to the same channel.
When using the namespace support described below, the default strategy is "round-robin" which
essentially load-balances across the handlers in rotation.

Note
The "round-robin" strategy is currently the only implementation available out-of-the-box in
Spring Integration. Other strategy implementations may be added in future versions.

The load-balancer also works in combination with a boolean failover property. If the "failover" value is
true (the default), then the dispatcher will fall back to any subsequent handlers as necessary when
preceding handlers throw Exceptions. The order is determined by an optional order value defined on the
handlers themselves or, if no such value exists, the order in which the handlers are subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler, then fallback in the
same fixed order sequence every time an error occurs, no load-balancing strategy should be provided. In
other words, the dispatcher still supports the failover boolean property even when no load-balancing is
enabled. Without load-balancing, however, the invocation of handlers will always begin with the first
according to their order. For example, this approach works well when there is a clear definition of
primary, secondary, tertiary, and so on. When using the namespace support, the "order" attribute on any
endpoint will determine that order.

Note
Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 15

one endpoint shares the same channel reference in the "input-channel" attribute.

ExecutorChannel

The ExecutorChannel is a point-to-point channel that supports the same dispatcher configuration as
DirectChannel (load-balancing strategy and the failover boolean property). The key difference
between these two dispatching channel types is that the ExecutorChannel delegates to an instance of
TaskExecutor to perform the dispatch. This means that the send method typically will not block, but it
also means that the handler invocation may not occur in the sender's thread. It therefore does not support
transactions spanning the sender and receiving handler.

Tip
Note that there are occasions where the sender may block. For example, when using a
TaskExecutor with a rejection-policy that throttles back on the client (such as the
ThreadPoolExecutor.CallerRunsPolicy), the sender's thread will execute the
method directly anytime the thread pool is at its maximum capacity and the executor's work
queue is full. Since that situation would only occur in a non-predictable way, that obviously
cannot be relied upon for transactions.

ThreadLocalChannel

The final channel implementation type is ThreadLocalChannel. This channel also delegates to a
queue internally, but the queue is bound to the current thread. That way the thread that sends to the
channel will later be able to receive those same Messages, but no other thread would be able to access
them. While probably the least common type of channel, this is useful for situations where
DirectChannels are being used to enforce a single thread of operation but any reply Messages should
be sent to a "terminal" channel. If that terminal channel is a ThreadLocalChannel, the original
sending thread can collect its replies from it.

3.3 Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since the
Messages are being sent to and received from MessageChannels, those channels provide an
opportunity for intercepting the send and receive operations. The ChannelInterceptor strategy
interface provides methods for each of those operations:

public interface ChannelInterceptor {

Message<?> preSend(Message<?> message, MessageChannel channel);

void postSend(Message<?> message, MessageChannel channel, boolean sent);

Spring Integration

Manual

boolean preReceive(MessageChannel channel);

Message<?> postReceive(Message<?> message, MessageChannel channel);
}

After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel.addInterceptor(someChannelInterceptor);

The methods that return a Message instance can be used for transforming the Message or can return 'null'
to prevent further processing (of course, any of the methods can throw a RuntimeException). Also, the
preReceive method can return 'false' to prevent the receive operation from proceeding.

Note
Keep in mind that receive() calls are only relevant for PollableChannels. In fact
the SubscribableChannel interface does not even define a receive() method. The
reason for this is that when a Message is sent to a SubscribableChannel it will be sent
directly to one or more subscribers depending on the type of channel (e.g. a
PublishSubscribeChannel sends to all of its subscribers). Therefore, the preReceive(..)
and postReceive(..) interceptor methods are only invoked when the interceptor is
applied to a PollableChannel.

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple interceptor that
sends the Message to another channel without otherwise altering the existing flow. It can be very useful
for debugging and monitoring. An example is shown in the section called “Wire Tap”.

Because it is rarely necessary to implement all of the interceptor methods, a
ChannelInterceptorAdapter class is also available for sub-classing. It provides no-op methods
(the void method is empty, the Message returning methods return the Message as-is, and the
boolean method returns true). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need as in the following example.

public class CountingChannelInterceptor extends ChannelInterceptorAdapter {

private final AtomicInteger sendCount = new AtomicInteger();

@Override
public Message<?> preSend(Message<?> message, MessageChannel channel) {

sendCount.incrementAndGet();
return message;

}
}

Tip
The order of invocation for the interceptor methods depends on the type of channel. As
described above, the queue-based channels are the only ones where the receive method is
intercepted in the first place. Additionally, the relationship between send and receive
interception depends on the timing of separate sender and receiver threads. For example, if a
receiver is already blocked while waiting for a message the order could be: preSend,
preReceive, postReceive, postSend. However, if a receiver polls after the sender has placed a
message on the channel and already returned, the order would be: preSend, postSend,

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 17

http://eaipatterns.com/WireTap.html

(some-time-elapses) preReceive, postReceive. The time that elapses in such a case depends
on a number of factors and is therefore generally unpredictable (in fact, the receive may never
happen!). Obviously, the type of queue also plays a role (e.g. rendezvous vs. priority). The
bottom line is that you cannot rely on the order beyond the fact that preSend will precede
postSend and preReceive will precede postReceive.

3.4 MessageChannelTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of your
application code from the messaging system. However, sometimes it is necessary to invoke the messaging
system from your application code. For convenience when implementing such use-cases, Spring
Integration provides a MessageChannelTemplate that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for a reply.

MessageChannelTemplate template = new MessageChannelTemplate();

Message reply = template.sendAndReceive(new StringMessage("test"), someChannel);

In that example, a temporary anonymous channel would be created internally by the template. The
'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and other exchange types
are also supported.

public boolean send(final Message<?> message, final MessageChannel channel) { ... }

public Message<?> sendAndReceive(final Message<?> request, final MessageChannel channel) { .. }

public Message<?> receive(final PollableChannel<?> channel) { ... }

Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or
header values instead of Message instances is described in Section 16.2,
“GatewayProxyFactoryBean”.

3.5 Configuring Message Channels

To create a Message Channel instance, you can use the 'channel' element:

<channel id="exampleChannel"/>

The default channel type is Point to Point. To create a Publish Subscribe channel, use the
"publish-subscribe-channel" element:

Spring Integration

Manual

<publish-subscribe-channel id="exampleChannel"/>

To create a Datatype Channel that only accepts messages containing a certain payload type, provide the
fully-qualified class name in the channel element's datatype attribute:

<channel id="numberChannel" datatype="java.lang.Number"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other words,
the "numberChannel" above would accept messages whose payload is java.lang.Integer or
java.lang.Double. Multiple types can be provided as a comma-delimited list:

<channel id="stringOrNumberChannel" datatype="java.lang.String,java.lang.Number"/>

When using the "channel" element without any sub-elements, it will create a DirectChannel instance
(a SubscribableChannel).

However, you can alternatively provide a variety of "queue" sub-elements to create any of the pollable
channel types (as described in Section 3.2, “Message Channel Implementations”). Examples of each are
shown below.

DirectChannel Configuration

As mentioned above, DirectChannel is the default type.

<channel id="directChannel"/>

A default channel will have a round-robin load-balancer and will also have failover enabled (See the
discussion in the section called “DirectChannel” for more detail). To disable one or both of these, add a
<dispatcher/> sub-element and configure the attributes:

<channel id="failFastChannel">
<dispatcher failover="false"/>

</channel>

<channel id="channelWithFixedOrderSequenceFailover">
<dispatcher load-balancer="none"/>

</channel>

QueueChannel Configuration

To create a QueueChannel, use the "queue" sub-element. You may specify the channel's capacity:

<channel id="queueChannel">
<queue capacity="25"/>

</channel>

Note
If you do not provide a value for the 'capacity' attribute on this <queue/> sub-element, the

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 19

http://www.eaipatterns.com/DatatypeChannel.html

resulting queue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly
recommended to set an explicit value for a bounded queue.

PublishSubscribeChannel Configuration

To create a PublishSubscribeChannel, use the "publish-subscribe-channel" element. When using
this element, you can also specify the "task-executor" used for publishing Messages (if none is specified it
simply publishes in the sender's thread):

<publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

If you are providing a Resequencer or Aggregator downstream from a PublishSubscribeChannel,
then you can set the 'apply-sequence' property on the channel to true. That will indicate that the channel
should set the sequence-size and sequence-number Message headers as well as the correlation id prior to
passing the Messages along. For example, if there are 5 subscribers, the sequence-size would be set to 5,
and the Messages would have sequence-number header values ranging from 1 to 5.

<publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

Note
The 'apply-sequence' value is false by default so that a Publish Subscribe Channel can send
the exact same Message instances to multiple outbound channels. Since Spring Integration
enforces immutability of the payload and header references, the channel creates new Message
instances with the same payload reference but different header values when the flag is set to
true.

ExecutorChannel

To create an ExecutorChannel, add the <dispatcher> sub-element along with a 'task-executor'
attribute. Its value can reference any TaskExecutor within the context. For example, this enables
configuration of a thread-pool for dispatching messages to subscribed handlers. As mentioned above, this
does break the "single-threaded" execution context between sender and receiver so that any active
transaction context will not be shared by the invocation of the handler (i.e. the handler may throw an
Exception, but the send invocation has already returned successfully).

<channel id="executorChannel">
<dispatcher task-executor="someExecutor"/>

</channel>

Note
The "load-balancer" and "failover" options are also both available on the dispatcher
sub-element as described above in the section called “DirectChannel Configuration”. The
same defaults apply as well. So, the channel will have a round-robin load-balancing strategy
with failover enabled unless explicit configuration is provided for one or both of those

Spring Integration

Manual

attributes.

<channel id="executorChannelWithoutFailover">
<dispatcher task-executor="someExecutor" failover="false"/>

</channel>

PriorityChannel Configuration

To create a PriorityChannel, use the "priority-queue" sub-element:

<channel id="priorityChannel">
<priority-queue capacity="20"/>

</channel>

By default, the channel will consult the MessagePriority header of the message. However, a custom
Comparator reference may be provided instead. Also, note that the PriorityChannel (like the
other types) does support the "datatype" attribute. As with the QueueChannel, it also supports a "capacity"
attribute. The following example demonstrates all of these:

<channel id="priorityChannel" datatype="example.Widget">
<priority-queue comparator="widgetComparator"

capacity="10"/>
</channel>

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not
provide any additional configuration options to those described above, and its queue does not accept any
capacity value since it is a 0-capacity direct handoff queue.

<channel id="rendezvousChannel"/>
<rendezvous-queue/>

</channel>

ThreadLocalChannel Configuration

The ThreadLocalChannel does not provide any additional configuration options.

<thread-local-channel id="threadLocalChannel"/>

Channel Interceptor Configuration

Message channels may also have interceptors as described in Section 3.3, “Channel Interceptors”. The
<interceptors> sub-element can be added within <channel> (or the more specific element types). Provide
the "ref" attribute to reference any Spring-managed object that implements the ChannelInterceptor
interface:

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 21

<channel id="exampleChannel">
<interceptors>

<ref bean="trafficMonitoringInterceptor"/>
</interceptors>

</channel>

In general, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure a Wire Tap on any channel within an 'interceptors' element. This is especially useful for
debugging, and can be used in conjunction with Spring Integration's logging Channel Adapter as follows:

<channel id="in">
<interceptors>

<wire-tap channel="logger"/>
</interceptors>

</channel>

<logging-channel-adapter id="logger" level="DEBUG"/>

Tip
The 'logging-channel-adapter' also accepts a boolean attribute: 'log-full-message'. That is
false by default so that only the payload is logged. Setting that to true enables logging of all
headers in addition to the payload.

Note

If namespace support is enabled, there are also two special channels defined within the
context by default: errorChannel and nullChannel. The 'nullChannel' acts like
/dev/null, simply logging any Message sent to it at DEBUG level and returning
immediately. Any time you face channel resolution errors for a reply that you don't care
about, you can set the affected component's 'output-channel' to reference 'nullChannel' (the
name 'nullChannel' is reserved within the context). The 'errorChannel' is used internally for
sending error messages, and it can be overridden with a custom configuration. It is discussed
in greater detail in Section B.4, “Error Handling”.

Spring Integration

Manual

4. Message Endpoints
The first part of this chapter covers some background theory and reveals quite a bit about the underlying
API that drives Spring Integration's various messaging components. This information can be helpful if
you want to really understand what's going on behind the scenes. However, if you want to get up and
running with the simplified namespace-based configuration of the various elements, feel free to skip
ahead to Section 4.4, “Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various messaging
components to channels. Over the next several chapters, you will see a number of different components
that consume Messages. Some of these are also capable of sending reply Messages. Sending Messages is
quite straightforward. As shown above in Chapter 3, Message Channels, it's easy to send a Message to a
Message Channel. However, receiving is a bit more complicated. The main reason is that there are two
types of consumers: Polling Consumers and Event Driven Consumers.

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially just listeners with a callback method. When connecting to one
of Spring Integration's subscribable Message Channels, this simple option works great. However, when
connecting to a buffering, pollable Message Channel, some component has to schedule and manage the
polling thread(s). Spring Integration provides two different endpoint implementations to accommodate
these two types of consumers. Therefore, the consumers themselves can simply implement the callback
interface. When polling is required, the endpoint acts as a "container" for the consumer instance. The
benefit is similar to that of using a container for hosting Message Driven Beans, but since these
consumers are simply Spring-managed Objects running within an ApplicationContext, it more closely
resembles Spring's own MessageListener containers.

4.1 Message Handler

Spring Integration's MessageHandler interface is implemented by many of the components within the
framework. In other words, this is not part of the public API, and a developer would not typically
implement MessageHandler directly. Nevertheless, it is used by a Message Consumer for actually
handling the consumed Messages, and so being aware of this strategy interface does help in terms of
understanding the overall role of a consumer. The interface is defined as follows:

public interface MessageHandler {

void handleMessage(Message<?> message);

}

Despite its simplicity, this provides the foundation for most of the components that will be covered in the
following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc). Those
components each perform very different functionality with the Messages they handle, but the
requirements for actually receiving a Message are the same, and the choice between polling and
event-driven behavior is also the same. Spring Integration provides two endpoint implementations that

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 23

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

"host" these callback-based handlers and allow them to be connected to Message Channels.

4.2 Event Driven Consumer

Because it is the simpler of the two, we will cover the Event Driven Consumer endpoint first. You may
recall that the SubscribableChannel interface provides a subscribe() method and that the
method accepts a MessageHandler parameter (as shown in the section called “SubscribableChannel”):

subscribableChannel.subscribe(messageHandler);

Since a handler that is subscribed to a channel does not have to actively poll that channel, this is an Event
Driven Consumer, and the implementation provided by Spring Integration accepts a a
SubscribableChannel and a MessageHandler:

SubscribableChannel channel = (SubscribableChannel) context.getBean("subscribableChannel");

EventDrivenConsumer consumer = new EventDrivenConsumer(channel, exampleHandler);

4.3 Polling Consumer

Spring Integration also provides a PollingConsumer, and it can be instantiated in the same way
except that the channel must implement PollableChannel:

PollableChannel channel = (PollableChannel) context.getBean("pollableChannel");

PollingConsumer consumer = new PollingConsumer(channel, exampleHandler);

There are many other configuration options for the Polling Consumer. For example, the trigger is a
required property:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setTrigger(new IntervalTrigger(30, TimeUnit.SECONDS));

Spring Integration currently provides two implementations of the Trigger interface:
IntervalTrigger and CronTrigger. The IntervalTrigger is typically defined with a simple
interval (in milliseconds), but also supports an 'initialDelay' property and a boolean 'fixedRate' property
(the default is false, i.e. fixed delay):

IntervalTrigger trigger = new IntervalTrigger(1000);
trigger.setInitialDelay(5000);
trigger.setFixedRate(true);

The CronTrigger simply requires a valid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

In addition to the trigger, several other polling-related configuration properties may be specified:

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 24

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setMaxMessagesPerPoll(10);

consumer.setReceiveTimeout(5000);

The 'maxMessagesPerPoll' property specifies the maximum number of messages to receive within a given
poll operation. This means that the poller will continue calling receive() without waiting until either null
is returned or that max is reached. For example, if a poller has a 10 second interval trigger and a
'maxMessagesPerPoll' setting of 25, and it is polling a channel that has 100 messages in its queue, all 100
messages can be retrieved within 40 seconds. It grabs 25, waits 10 seconds, grabs the next 25, and so on.

The 'receiveTimeout' property specifies the amount of time the poller should wait if no messages are
available when it invokes the receive operation. For example, consider two options that seem similar on
the surface but are actually quite different: the first has an interval trigger of 5 seconds and a receive
timeout of 50 milliseconds while the second has an interval trigger of 50 milliseconds and a receive
timeout of 5 seconds. The first one may receive a message up to 4950 milliseconds later than it arrived on
the channel (if that message arrived immediately after one of its poll calls returned). On the other hand,
the second configuration will never miss a message by more than 50 milliseconds. The difference is that
the second option requires a thread to wait, but as a result it is able to respond much more quickly to
arriving messages. This technique, known as "long polling", can be used to emulate event-driven behavior
on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecutor, and it can be configured to
participate in Spring-managed transactions. The following example shows the configuration of both:

PollingConsumer consumer = new PollingConsumer(channel, handler);

TaskExecutor taskExecutor = (TaskExecutor) context.getBean("exampleExecutor");
consumer.setTaskExecutor(taskExecutor);

PlatformTransactionManager txManager = (PlatformTransationManager) context.getBean("exampleTxManager");
consumer.setTransactionManager(txManager);

The examples above show dependency lookups, but keep in mind that these consumers will most often be
configured as Spring bean definitions. In fact, Spring Integration also provides a FactoryBean that
creates the appropriate consumer type based on the type of channel, and there is full XML namespace
support to even further hide those details. The namespace-based configuration will be featured as each
component type is introduced.

Note
Many of the MessageHandler implementations are also capable of generating reply
Messages. As mentioned above, sending Messages is trivial when compared to the Message
reception. Nevertheless, when and how many reply Messages are sent depends on the handler
type. For example, an Aggregator waits for a number of Messages to arrive and is often
configured as a downstream consumer for a Splitter which may generate multiple replies for
each Message it handles. When using the namespace configuration, you do not strictly need
to know all of the details, but it still might be worth knowing that several of these

Spring Integration

Manual

components share a common base class, the
AbstractReplyProducingMessageHandler, and it provides a
setOutputChannel(..) method.

4.4 Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements,
such as router, transformer, service-activator, and so on. Most of these will support an "input-channel"
attribute and many will support an "output-channel" attribute. After being parsed, these endpoint elements
produce an instance of either the PollingConsumer or the EventDrivenConsumer depending on
the type of the "input-channel" that is referenced: PollableChannel or SubscribableChannel
respectively. When the channel is pollable, then the polling behavior is determined based on the endpoint
element's "poller" sub-element. For example, a simple interval-based poller with a 1-second interval
would be configured like this:

<transformer input-channel="pollable"
ref="transformer"
output-channel="output">

<poller>
<interval-trigger interval="1000"/>

</poller>
</transformer>

For a poller based on a Cron expression, use the "cron-trigger" child element instead:

<transformer input-channel="pollable"
ref="transformer"
output-channel="output">

<poller>
<cron-trigger expression="*/10 * * * * MON-FRI"/>

</poller>
</transformer>

If the input channel is a PollableChannel, then the poller configuration is required. Specifically, as
mentioned above, the 'trigger' is a required property of the PollingConsumer class. Therefore, if you omit
the "poller" sub-element for a Polling Consumer endpoint's configuration, an Exception may be thrown.
However, it is also possible to create top-level pollers in which case only a "ref" is required:

<poller id="weekdayPoller">
<cron-trigger expression="*/10 * * * * MON-FRI"/>

</poller>

<transformer input-channel="pollable"
ref="transformer"
output-channel="output">

<poller ref="weekdayPoller"/>
</transformer>

In fact, to simplify the configuration, you can define a global default poller. A single top-level poller
within an ApplicationContext may have the default attribute with a value of "true". In that case, any
endpoint with a PollableChannel for its input-channel that is defined within the same ApplicationContext
and has no explicitly configured 'poller' sub-element will use that default.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 26

<poller id="defaultPoller" default="true" max-messages-per-poll="5">
<interval-trigger interval="3" time-unit="SECONDS"/>

</poller>

<!-- No <poller/> sub-element is necessary since there is a default -->
<transformer input-channel="pollable"

ref="transformer"
output-channel="output"/>

Spring Integration also provides transaction support for the pollers so that each receive-and-forward
operation can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add
the <transactional/> sub-element. The attributes for this element should be familiar to anyone who has
experience with Spring's Transaction management:

<poller>
<interval-trigger interval="1000"/>
<transactional transaction-manager="txManager"

propagation="REQUIRED"
isolation="REPEATABLE_READ"
timeout="10000"
read-only="false"/>

</poller>

The polling threads may be executed by any instance of Spring's TaskExecutor abstraction. This
enables concurrency for an endpoint or group of endpoints. As of Spring 3.0, there is a "task" namespace
in the core Spring Framework, and its <executor/> element supports the creation of a simple thread pool
executor. That element accepts attributes for common concurrency settings such as pool-size and
queue-capacity. Configuring a thread-pooling executor can make a substantial difference in how the
endpoint performs under load. These settings are available per-endpoint since the performance of an
endpoint is one of the major factors to consider (the other major factor being the expected volume on the
channel to which the endpoint subscribes). To enable concurrency for a polling endpoint that is
configured with the XML namespace support, provide the 'task-executor' reference on its <poller/>
element and then provide one or more of the properties shown below:

<poller task-executor="pool"/>
<interval-trigger interval="5" time-unit="SECONDS"/>

</poller>

<task:executor id="pool"
pool-size="5-25"
queue-capacity="20"
keep-alive="120"/>

If no 'task-executor' is provided, the consumer's handler will be invoked in the caller's thread. Note that
the "caller" is usually the default TaskScheduler (see Section B.3, “Configuring the Task
Scheduler”). Also, keep in mind that the 'task-executor' attribute can provide a reference to any
implementation of Spring's TaskExecutor interface by specifying the bean name. The "executor"
element above is simply provided for convenience.

As mentioned in the background section for Polling Consumers above, you can also configure a Polling
Consumer in such a way as to emulate event-driven behavior. With a long receive-timeout and a short
interval-trigger, you can ensure a very timely reaction to arriving messages even on a polled message
source. Note that this will only apply to sources that have a blocking wait call with a timeout. For

Spring Integration

Manual

example, the File poller does not block, each receive() call returns immediately and either contains new
files or not. Therefore, even if a poller contains a long receive-timeout, that value would never be usable
in such a scenario. On the other hand when using Spring Integration's own queue-based channels, the
timeout value does have a chance to participate. The following example demonstrates how a Polling
Consumer will receive Messages nearly instantaneously.

<service-activator input-channel="someQueueChannel"
output-channel="output">

<poller receive-timeout="30000">
<interval-trigger interval="10"/>

</poller>
</service-activator>

Using this approach does not carry much overhead since internally it is nothing more then a timed-wait
thread which does not require nearly as much CPU resource usage as a thrashing, infinite while loop for
example.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 28

5. Service Activator

5.1 Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel
so that it may play the role of a service. If the service produces output, it may also be connected to an
output channel. Alternatively, an output producing service may be located at the end of a processing
pipeline or message flow in which case, the inbound Message's "replyChannel" header can be used. This
is the default behavior if no output channel is defined, and as with most of the configuration options you'll
see here, the same behavior actually applies for most of the other components we have seen.

5.2 The <service-activator/> Element

To create a Service Activator, use the 'service-activator' element with the 'input-channel' and 'ref'
attributes:

<service-activator input-channel="exampleChannel" ref="exampleHandler"/>

The configuration above assumes that "exampleHandler" either contains a single method annotated with
the @ServiceActivator annotation or that it contains only one public method at all. To delegate to an
explicitly defined method of any object, simply add the "method" attribute.

<service-activator input-channel="exampleChannel" ref="somePojo" method="someMethod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the
reply message to an appropriate reply channel. To determine the reply channel, it will first check if an
"output-channel" was provided in the endpoint configuration:

<service-activator input-channel="exampleChannel" output-channel="replyChannel"
ref="somePojo" method="someMethod"/>

If no "output-channel" is available, it will then check the Message's REPLY_CHANNEL header value. If
that value is available, it will then check its type. If it is a MessageChannel, the reply message will be
sent to that channel. If it is a String, then the endpoint will attempt to resolve the channel name to a
channel instance. If the channel cannot be resolved, then a ChannelResolutionException will be
thrown.

The argument in the service method could be either a Message or an arbitrary type. If the latter, then it
will be assumed that it is a Message payload, which will be extracted from the message and injected into
such service method. This is generally the recommended approach as it follows and promotes a POJO
model when working with Spring Integration. Arguments may also have @Header, @Headers or
@MessageMapping annotations as described in Section B.5, “Annotation Support”

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 29

Note
Since v1.0.3 of Spring Integration, the service method is not required to have an argument at
all, which means you can now implement event-style Service Activators, where all you care
about is an invocation of the service method, not worrying about the contents of the message.
Think of it as a NULL JMS message. An example use-case for such an implementation could
be a simple counter/monitor of messages deposited on the input channel.

Using a "ref" attribute is generally recommended if the custom Service Activator handler implementation
can be reused in other <service-activator> definitions. However if the custom Service Activator
handler implementation should be scoped to a single definition of the <service-activator>, you
can use an inner bean definition:

<service-activator id="exampleServiceActivator" input-channel="inChannel"
output-channel = "outChannel" method="foo">

<beans:bean class="org.foo.ExampleServiceActivator"/>
</service-activator>

Note

Using both the "ref" attribute and an inner handler definition in the same
<service-activator> configuration is not allowed, as it creates an ambiguous
condition and will result in an Exception being thrown.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 30

6. Channel Adapter
A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to a
Message Channel. Spring Integration provides a number of adapters out of the box to support various
transports, such as JMS, File, HTTP, Web Services, and Mail. Those will be discussed in upcoming
chapters of this reference guide. However, this chapter focuses on the simple but flexible
Method-invoking Channel Adapter support. There are both inbound and outbound adapters, and each may
be configured with XML elements provided in the core namespace.

6.1 The <inbound-channel-adapter> element

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send a
non-null return value to a MessageChannel after converting it to a Message. When the adapter's
subscription is activated, a poller will attempt to receive messages from the source. The poller will be
scheduled with the TaskScheduler according to the provided configuration. To configure the polling
interval or cron expression for an individual channel-adapter, provide a 'poller' element with either an
'interval-trigger' (in milliseconds) or 'cron-trigger' sub-element.

<inbound-channel-adapter ref="source1" method="method1" channel="channel1">
<poller>

<interval-trigger interval="5000"/>
</poller>

</inbound-channel-adapter>

<inbound-channel-adapter ref="source2" method="method2" channel="channel2">
<poller>

<cron-trigger expression="30 * 9-17 * * MON-FRI"/>
</poller>

</channel-adapter>

Note

If no poller is provided, then a single default poller must be registered within the context. See
Section 4.4, “Namespace Support” for more detail.

6.2 The <outbound-channel-adapter/> element

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of Messages sent to that channel.

<outbound-channel-adapter channel="channel1" ref="target1" method="method1"/>

If the channel being adapted is a PollableChannel, provide a poller sub-element:

<outbound-channel-adapter channel="channel2" ref="target2" method="method2">
<poller>

<interval-trigger interval="3000"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 31

</poller>
</outbound-channel-adapter>
<beans:bean id="target1" class="org.bar.Foo"/>

Using a "ref" attribute is generally recommended if the POJO consumer implementation can be reused in
other <outbound-channel-adapter> definitions. However if the consumer implementation should
be scoped to a single definition of the <outbound-channel-adapter>, you can define it as inner
bean:

<outbound-channel-adapter channel="channel2" method="method2">
<beans:bean class="org.bar.Foo"/>

</outbound-channel-adapter>

Note

Using both the "ref" attribute and an inner handler definition in the same
<outbound-channel-adapter> configuration is not allowed, as it creates an
ambiguous condition and will result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly create
an instance of DirectChannel. The created channel's name will match the "id" attribute of the
<inbound-channel-adapter/> or <outbound-channel-adapter element. Therefore, if the "channel" is not
provided, the "id" is required.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 32

7. Router

7.1 Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require Spring
Integration's options for delegating to POJOs using the XML namespace support and/or Annotations.
Both of these are discussed below, but first we present a couple implementations that are available
out-of-the-box since they fulfill generic, but common, requirements.

PayloadTypeRouter

A PayloadTypeRouter will send Messages to the channel as defined by payload-type mappings.

<bean id="payloadTypeRouter" class="org.springframework.integration.router.PayloadTypeRouter">
<property name="payloadTypeChannelMap">

<map>
<entry key="java.lang.String" value-ref="stringChannel"/>
<entry key="java.lang.Integer" value-ref="integerChannel"/>

</map>
</property>

</bean>

Configuration of PayloadTypeRouter is also supported via the namespace provided by Spring
Integration (see Section B.2, “Namespace Support”), which essentially simplifies configuration by
combining <router/> configuration and its corresponding implementation defined using <bean/>
element into a single and more concise configuration element. The example below demonstrates
PayloadTypeRouter configuration which is equivalent to the one above using Spring Integration's
namespace support:

<payload-type-router input-channel="routingChannel">
<mapping type="java.lang.String" channel="stringChannel" />
<mapping type="java.lang.Integer" channel="integerChannel" />

</payload-type-router>

HeaderValueRouter

A HeaderValueRouter will send Messages to the channel based on the individual header value
mappings. When HeaderValueRouter is created it is initialized with the name of the header to be
evaluated, using constructor-arg. The value of the header could be one of two things:

1. Arbitrary value

2. Channel name

If arbitrary value, then a channelResolver should be provided to map header values to channel

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 33

names. The example below uses MapBasedChannelResolver to set up a map of header values to
channel names.

<bean id="myHeaderValueRouter"
class="org.springframework.integration.router.HeaderValueRouter">

<constructor-arg value="someHeaderName" />
<property name="channelResolver">

<bean class="org.springframework.integration.channel.MapBasedChannelResolver">
<property name="channelMap">
<map>

<entry key="someHeaderValue" value-ref="channelA" />
<entry key="someOtherHeaderValue" value-ref="channelB" />

</map>
</property>

</bean>
</property>

</bean>

If channelResolver is not specified, then the header value will be treated as a channel name making
configuration much simpler, where no channelResolver needs to be specified.

<bean id="myHeaderValueRouter"
class="org.springframework.integration.router.HeaderValueRouter">
<constructor-arg value="someHeaderName" />

</bean>

Similar to the PayloadTypeRouter, configuration of HeaderValueRouter is also supported via
namespace support provided by Spring Integration (see Section B.2, “Namespace Support”). The example
below demonstrates two types of namespace-based configuration of HeaderValueRouter which are
equivalent to the ones above using Spring Integration namespace support:

1. Configuration where mapping of header values to channels is required

<header-value-router input-channel="routingChannel" header-name="testHeader">
<mapping value="someHeaderValue" channel="channelA" />
<mapping value="someOtherHeaderValue" channel="channelB" />

</header-value-router>

2. Configuration where mapping of header values is not required if header values themselves represent
the channel names

<header-value-router input-channel="routingChannel" header-name="testHeader"/>

Note
The two router implementations shown above share some common properties, such as
"defaultOutputChannel" and "resolutionRequired". If "resolutionRequired" is set to "true",
and the router is unable to determine a target channel (e.g. there is no matching payload for a
PayloadTypeRouter and no "defaultOutputChannel" has been specified), then an Exception
will be thrown.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 34

RecipientListRouter

A RecipientListRouter will send each received Message to a statically-defined list of Message
Channels:

<bean id="recipientListRouter" class="org.springframework.integration.router.RecipientListRouter">
<property name="channels">

<list>
<ref bean="channel1"/>
<ref bean="channel2"/>
<ref bean="channel3"/>

</list>
</property>

</bean>

Configuration for RecipientListRouter is also supported via namespace support provided by
Spring Integration (see Section B.2, “Namespace Support”). The example below demonstrates
namespace-based configuration of RecipientListRouter and all the supported attributes using
Spring Integration namespace support:

<recipient-list-router id="customRouter" input-channel="routingChannel"
timeout="1234"
ignore-send-failures="true"
apply-sequence="true">

<recipient channel="channel1"/>
<recipient channel="channel2"/>

</recipient-list-router>

Note
The 'apply-sequence' flag here has the same affect as it does for a publish-subscribe-channel,
and like publish-subscribe-channel it is disabled by default on the recipient-list-router. Refer
to the section called “PublishSubscribeChannel Configuration” for more information.

7.2 The <router> element

The "router" element provides a simple way to connect a router to an input channel, and also accepts the
optional default output channel. The "ref" may provide the bean name of a custom Router implementation
(extending AbstractMessageRouter):

<router ref="payloadTypeRouter" input-channel="input1" default-output-channel="defaultOutput1"/>

<router ref="recipientListRouter" input-channel="input2" default-output-channel="defaultOutput2"/>

<router ref="customRouter" input-channel="input3" default-output-channel="defaultOutput3"/>

<beans:bean id="customRouterBean class="org.foo.MyCustomRouter"/>

Alternatively, the "ref" may point to a simple Object that contains the @Router annotation (see below), or
the "ref" may be combined with an explicit "method" name. When specifying a "method", the same
behavior applies as described in the @Router annotation section below.

Spring Integration

Manual

<router input-channel="input" ref="somePojo" method="someMethod"/>

Using a "ref" attribute is generally recommended if the custom router implementation can be reused in
other <router> definitions. However if the custom router implementation should be scoped to a
concrete definition of the <router>, you can provide an inner bean definition:

<router method="someMethod" input-channel="input3" default-output-channel="defaultOutput3">
<beans:bean class="org.foo.MyCustomRouter"/>

</router>

Note

Using both the "ref" attribute and an inner handler definition in the same <router>
configuration is not allowed, as it creates an ambiguous condition and will result in an
Exception being thrown.

7.3 The @Router Annotation

When using the @Router annotation, the annotated method can return either the MessageChannel or
String type. In the case of the latter, the endpoint will resolve the channel name as it does for the
default output. Additionally, the method can return either a single value or a collection. When a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are all valid.

@Router
public MessageChannel route(Message message) {...}

@Router
public List<MessageChannel> route(Message message) {...}

@Router
public String route(Foo payload) {...}

@Router
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available
within the message header as either a property or attribute. Rather than requiring use of the Message
type as the method parameter, the @Router annotation may also use the @Header parameter annotation
that is documented in Section B.5, “Annotation Support”.

@Router
public List<String> route(@Header("orderStatus") OrderStatus status)

Note
For routing of XML-based Messages, including XPath support, see Chapter 29, Dealing with
XML Payloads.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 36

8. Filter

8.1 Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on some
criteria such as a Message Header value or even content within the Message itself. Therefore, a Message
Filter is similar to a router, except that for each Message received from the filter's input channel, that
same Message may or may not be sent to the filter's output channel. Unlike the router, it makes no
decision regarding which Message Channel to send to but only decides whether to send.

Note
As you will see momentarily, the Filter does also support a discard channel, so in certain
cases it can play the role of a very simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to some
implementation of the MessageSelector interface. That interface is itself quite simple:

public interface MessageSelector {

boolean accept(Message<?> message);

}

The MessageFilter constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(someSelector);

8.2 The <filter> Element

The <filter> element is used to create a Message-selecting endpoint. In addition to "input-channel" and
"output-channel" attributes, it requires a "ref". The "ref" may point to a MessageSelector implementation:

<filter input-channel="input" ref="selector" output-channel="output"/>

<bean id="selector" class="example.MessageSelectorImpl"/>

Alternatively, the "method" attribute can be added at which point the "ref" may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages. The
return value of the method must be a boolean value. Any time the method returns 'true', the Message will
be passed along to the output-channel.

<filter input-channel="input" output-channel="output"
ref="exampleObject" method="someBooleanReturningMethod"/>

<bean id="exampleObject" class="example.SomeObject"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 37

If the selector or adapted POJO method returns false, there are a few settings that control the fate of the
rejected Message. By default (if configured like the example above), the rejected Messages will be
silently dropped. If rejection should instead indicate an error condition, then set the
'throw-exception-on-rejection' flag to true:

<filter input-channel="input" ref="selector"
output-channel="output" throw-exception-on-rejection="true"/>

If you want the rejected messages to go to a specific channel, provide that reference as the
'discard-channel':

<filter input-channel="input" ref="selector"
output-channel="output" discard-channel="rejectedMessages"/>

Note
A common usage for Message Filters is in conjunction with a Publish Subscribe Channel.
Many filter endpoints may be subscribed to the same channel, and they decide whether or not
to pass the Message for the next endpoint which could be any of the supported types (e.g.
Service Activator). This provides a reactive alternative to the more proactive approach of
using a Message Router with a single Point-to-Point input channel and multiple output
channels.

Using a "ref" attribute is generally recommended if the custom filter implementation can be reused in
other <filter> definitions. However if the custom filter implementation should be scoped to a single
<filter> element, provide an inner bean definition:

<filter method="someMethod" input-channel="inChannel" output-channel="outChannel">
<beans:bean class="org.foo.MyCustomFilter"/>

</filter>

Note

Using both the "ref" attribute and an inner handler definition in the same <filter>
configuration is not allowed, as it creates an ambiguous condition, and it will therefore result
in an Exception being thrown.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 38

9. Transformer

9.1 Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers
and Message Consumers. Rather than requiring every Message-producing component to know what type
is expected by the next consumer, Transformers can be added between those components. Generic
transformers, such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration's general
philosophy is not to require any particular format. Rather, for maximum flexibility, Spring Integration
aims to provide the simplest possible model for extension. As with the other endpoint types, the use of
declarative configuration in XML and/or Annotations enables simple POJOs to be adapted for the role of
Message Transformers. These configuration options will be described below.

Note
For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for
dealing with XML-based payloads if that is indeed the right choice for your application. For
more information on those transformers, see Chapter 29, Dealing with XML Payloads.

9.2 The <transformer> Element

The <transformer> element is used to create a Message-transforming endpoint. In addition to
"input-channel" and "output-channel" attributes, it requires a "ref". The "ref" may either point to an
Object that contains the @Transformer annotation on a single method (see below) or it may be combined
with an explicit method name value provided via the "method" attribute.

<transformer id="testTransformer" ref="testTransformerBean" input-channel="inChannel"
method="transform" output-channel="outChannel"/>

<beans:bean id="testTransformerBean" class="org.foo.TestTransformer" />

Using a "ref" attribute is generally recommended if the custom transformer handler implementation can
be reused in other <transformer> definitions. However if the custom transformer handler
implementation should be scoped to a single definition of the <transformer>, you can define an inner
bean definition:

<transformer id="testTransformer" input-channel="inChannel" method="transform"
output-channel="outChannel">

<beans:bean class="org.foo.TestTransformer"/>
</transformer>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 39

http://www.eaipatterns.com/CanonicalDataModel.html

Note

Using both the "ref" attribute and an inner handler definition in the same <transformer>
configuration is not allowed, as it creates an ambiguous condition and will result in an
Exception being thrown.

The method that is used for transformation may expect either the Message type or the payload type of
inbound Messages. It may also accept Message header values either individually or as a full map by using
the @Header and @Headers parameter annotations respectively. The return value of the method can be
any type. If the return value is itself a Message, that will be passed along to the transformer's output
channel. If the return type is a Map, and the original Message payload was not a Map, the entries in that
Map will be added to the Message headers of the original Message (the keys must be Strings). If the
return value is null, then no reply Message will be sent (effectively the same behavior as a Message Filter
returning false). Otherwise, the return value will be sent as the payload of an outbound reply Message.

There are a also a few Transformer implementations available out of the box. Because, it is fairly
common to use the toString() representation of an Object, Spring Integration provides an
ObjectToStringTransformer whose output is a Message with a String payload. That String is the
result of invoking the toString operation on the inbound Message's payload.

<object-to-string-transformer input-channel="in" output-channel="out"/>

A potential example for this would be sending some arbitrary object to the 'outbound-channel-adapter' in
the file namespace. Whereas that Channel Adapter only supports String, byte-array, or java.io.File
payloads by default, adding this transformer immediately before the adapter will handle the necessary
conversion. Of course, that works fine as long as the result of the toString() call is what you want to
be written to the File. Otherwise, you can just provide a custom POJO-based Transformer via the generic
'transformer' element shown previously.

Tip
When debugging, this transformer is not typically necessary since the
'logging-channel-adapter' is capable of logging the Message payload. Refer to the section
called “Wire Tap” for more detail.

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring
Integration provides symmetrical serialization transformers.

<payload-serializing-transformer input-channel="objectsIn" output-channel="bytesOut"/>

<payload-deserializing-transformer input-channel="bytesIn" output-channel="objectsOut"/>

If you only need to add headers to a Message, and they are not dynamically determined by Message
content, then referencing a custom implementation may be overkill. For that reason, Spring Integration
provides the 'header-enricher' element.

<header-enricher input-channel="in" output-channel="out">
<header name="foo" value="123"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 40

<header name="bar" ref="someBean"/>
</header-enricher>

9.3 The @Transformer Annotation

The @Transformer annotation can also be added to methods that expect either the Message type or
the message payload type. The return value will be handled in the exact same way as described above in
the section describing the <transformer> element.

@Transformer
Order generateOrder(String productId) {

return new Order(productId);
}

Transformer methods may also accept the @Header and @Headers annotations that is documented in
Section B.5, “Annotation Support”

@Transformer
Order generateOrder(String productId, @Header("customerName") String customer) {

return new Order(productId, customer);
}

Spring Integration

Manual

10. Splitter

10.1 Introduction

The Splitter is a component whose role is to partition a message in several parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that
includes an Aggregator.

10.2 Programming model

The API for performing splitting consists from one base class, AbstractMessageSplitter, which is a
MessageHandler implementation, encapsulating features which are common to splitters, such as filling in
the appropriate message headers CORRELATION_ID, SEQUENCE_SIZE, and SEQUENCE_NUMBER
on the messages that are produced. This allows to track down the messages and the results of their
processing (in a typical scenario, these headers would be copied over to the messages that are produced
by the various transforming endpoints), and use them, for example, in a Composed Message Processor
scenario.

An excerpt from AbstractMessageSplitter can be seen below:

public abstract class AbstractMessageSplitter
extends AbstractReplyProducingMessageConsumer {

...
protected abstract Object splitMessage(Message<?> message);

}

For implementing a specific Splitter in an application, a developer can extend AbstractMessageSplitter
and implement the splitMessage method, thus defining the actual logic for splitting the messages. The
return value can be one of the following:

• a Collection (or subclass thereof) or an array of Message objects - in this case the messages will be sent
as such (after the CORRELATION_ID, SEQUENCE_SIZE and SEQUENCE_NUMBER are
populated). Using this approach gives more control to the developer, for example for populating
custom message headers as part of the splitting process.

• a Collection (or subclass thereof) or an array of non-Message objects - works like the prior case, except
that each collection element will be used as a Message payload. Using this approach allows developers
to focus on the domain objects without having to consider the Messaging system and produces code
that is easier to test.

• a Message or non-Message object (but not a Collection or an Array) - it works like the previous cases,
except that there is a single message to be sent out.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 42

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method
that accepts a single argument and has a return value. In this case, the return value of the method will be
interpreted as described above. The input argument might either be a Message or a simple POJO. In the
latter case, the splitter will receive the payload of the incoming message. Since this decouples the code
from the Spring Integration API and will typically be easier to test, it is the recommended approach.

10.3 Configuring a Splitter using XML

A splitter can be configured through XML as follows:

<channel id="inputChannel"/>

<splitter id="splitter" ❶
ref="splitterBean" ❷
method="split" ❸
input-channel="inputChannel" ❹
output-channel="outputChannel" ❺/>

<channel id="outputChannel"/>

<beans:bean id="splitterBean" class="sample.PojoSplitter"/>

❶ The id of the splitter is optional.
❷ A reference to a bean defined in the application context. The bean must implement the splitting

logic as described in the section above. Optional. If reference to a bean is not provided, then it is
assumed that the payload of the Message that arrived on the input-channel is an
implementation of java.util.Collection and the default splitting logic will be applied on such
Collection, incorporating each individual element into a Message and depositing it on the
output-channel.

❸ The method (defined on the bean specified above) that implements the splitting logic. Optional.
❹ The input channel of the splitter. Required.
❺ The channel where the splitter will send the results of splitting the incoming message. Optional

(because incoming messages can specify a reply channel themselves).

Using a "ref" attribute is generally recommended if the custom splitter handler implementation can be
reused in other <splitter> definitions. However if the custom splitter handler implementation should
be scoped to a single definition of the <splitter>, you can configure an inner bean definition:

<splitter id="testSplitter" input-channel="inChannel" method="split"
output-channel="outChannel">

<beans:bean class="org.foo.TestSplitter"/>
</spliter>

Note

Using both a "ref" attribute and an inner handler definition in the same <splitter>
configuration is not allowed, as it creates an ambiguous condition and will result in an
Exception being thrown.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 43

10.4 Configuring a Splitter with Annotations

The @Splitter annotation is applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a collection of any type. If the
returned values are not actual Message objects, then each of them will be sent as the payload of a
message. Those messages will be sent to the output channel as designated for the endpoint on which the
@Splitter is defined.

@Splitter
List<LineItem> extractItems(Order order) {

return order.getItems()
}

Spring Integration

Manual

11. Aggregator

11.1 Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often downstream
consumers in a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is required to maintain state (the
Messages to-be-aggregated), to decide when the complete group of Messages is available, and to timeout
if necessary. Furthermore, in case of a timeout, the Aggregator needs to know whether to send the partial
results or to discard them to a separate channel.

11.2 Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group is
deemed complete. At that point, the Aggregator will create a single message by processing the whole
group, and will send that aggregated message as output.

As messages might arrive with a certain delay (or certain messages from the group might not arrive at
all), the Aggregator can specify a timeout (counted from the moment when the first message in the group
has arrived), and whether, in the case of a timeout, the group should be discarded, or the Aggregator
should merely attempt to create a single message out of what has arrived so far. An important aspect of
implementing an Aggregator is providing the logic that has to be executed when the aggregation (creation
of a single message out of many) takes place.

In Spring Integration, the grouping of the messages for aggregation is done by default based on their
CORRELATION_ID message header (i.e. the messages with the same CORRELATION_ID will be
grouped together). However, this can be customized, and the users can opt for other ways of specifying
how the messages should be grouped together, by using a CorrelationStrategy (see below).

An important concern with respect to the timeout is, what happens if late messages arrive after the
aggregation has taken place? In this case, a configuration option allows the user to decide whether they
should be discarded or not.

11.3 Programming model

The Aggregation API consists of a number of classes:

• The base class AbstractMessageAggregator and its subclass
MethodInvokingMessageAggregator

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 45

• The CompletionStrategy interface and its default implementation
SequenceSizeCompletionStrategy

• The CorrelationStrategy interface and its default implementation
HeaderAttributeCorrelationStrategy

AbstractMessageAggregator

The AbstractMessageAggregator is a MessageHandler implementation, encapsulating the
common functionalities of an Aggregator, which are:

• correlating messages into a group to be aggregated

• maintaining those messages until the group is complete

• deciding when the group is in fact complete

• processing the completed group into a single aggregated message

• recognizing and responding to a timed-out completion attempt

The responsibility of deciding how the messages should be grouped together is delegated to a
CorrelationStrategy instance. The responsibility of deciding whether the message group is
complete is delegated to a CompletionStrategy instance.

Here is a brief highlight of the base AbstractMessageAggregator (the responsibility of
implementing the aggregateMessages method is left to the developer):

public abstract class AbstractMessageAggregator
extends AbstractMessageBarrierHandler {

private volatile CompletionStrategy completionStrategy
= new SequenceSizeCompletionStrategy();

....

protected abstract Message<?> aggregateMessages(List<Message<?>> messages);

}

It also inherits the following default CorrelationStrategy:

private volatile CorrelationStrategy correlationStrategy =
new HeaderAttributeCorrelationStrategy(MessageHeaders.CORRELATION_ID);

When appropriate, the simplest option is the DefaultMessageAggregator. It creates a single
Message whose payload is a List of the payloads received for a given group. It uses the default
CorrelationStrategy and CompletionStrategy as shown above. This works well for simple
Scatter Gather implementations with either a Splitter, Publish Subscribe Channel, or Recipient List
Router upstream.

Note

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 46

When using a Publish Subscribe Channel or Recipient List Router in this type of scenario, be
sure to enable the flag to apply sequence. That will add the necessary headers (correlation id,
sequence number and sequence size). That behavior is enabled by default for Splitters in
Spring Integration, but it is not enabled for the Publish Subscribe Channel or Recipient List
Router because those components may be used in a variety of contexts where those headers
are not necessary.

When implementing a specific aggregator object for an application, a developer can extend
AbstractMessageAggregator and implement the aggregateMessages method. However,
there are better suited (which reads, less coupled to the API) solutions for implementing the aggregation
logic, which can be configured easily either through XML or through annotations.

In general, any ordinary Java class (i.e. POJO) can implement the aggregation algorithm. For doing so, it
must provide a method that accepts as an argument a single java.util.List (parametrized lists are supported
as well). This method will be invoked for aggregating messages, as follows:

• if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then
the whole list of messages accumulated for aggregation will be sent to the aggregator

• if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message,
then the method will receive the payloads of the accumulated messages

• if the return type is not assignable to Message, then it will be treated as the payload for a Message that
will be created automatically by the framework.

Note

In the interest of code simplicity, and promoting best practices such as low coupling,
testability, etc., the preferred way of implementing the aggregation logic is through a POJO,
and using the XML or annotation support for setting it up in the application.

CompletionStrategy

The CompletionStrategy interface is defined as follows:

public interface CompletionStrategy {

boolean isComplete(List<Message<?>> messages);

}

In general, any ordinary Java class (i.e. POJO) can implement the completion decision mechanism. For
doing so, it must provide a method that accepts as an argument a single java.util.List (parametrized lists
are supported as well), and returns a boolean value. This method will be invoked after the arrival of a new

Spring Integration

Manual

message, to decide whether the group is complete or not, as follows:

• if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then
the whole list of messages accumulated in the group will be sent to the method

• if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message,
then the method will receive the payloads of the accumulated messages

• the method must return true if the message group is complete and ready for aggregation, and false
otherwise.

Spring Integration provides an out-of-the box implementation for CompletionStrategy, the
SequenceSizeCompletionStrategy. This implementation uses the SEQUENCE_NUMBER and
SEQUENCE_SIZE of the arriving messages for deciding when a message group is complete and ready to
be aggregated. As shown above, it is also the default strategy.

CorrelationStrategy

The CorrelationStrategy interface is defined as follows:

public interface CorrelationStrategy {

Object getCorrelationKey(Message<?> message);

}

The method shall return an Object which represents the correlation key used for grouping messages
together. The key must satisfy the criteria used for a key in a Map with respect to the implementation of
equals() and hashCode().

In general, any ordinary Java class (i.e. POJO) can implement the correlation decision mechanism, and
the rules for mapping a message to a method's argument (or arguments) are the same as for a
ServiceActivator (including support for @Header annotations). The method must return a value,
and the value must not be null.

Spring Integration provides an out-of-the box implementation for CorrelationStrategy, the
HeaderAttributeCorrelationStrategy. This implementation returns the value of one of the
message headers (whose name is specified by a constructor argument) as the correlation key. By default,
the correlation strategy is a HeaderAttributeCorrelationStrategy returning the value of the
CORRELATION_ID header attribute.

11.4 Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggregator/>
element. Below you can see an example of an aggregator with all optional parameters defined.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 48

<channel id="inputChannel"/>

<aggregator id="completelyDefinedAggregator" ❶
input-channel="inputChannel" ❷
output-channel="outputChannel" ❸
discard-channel="discardChannel" ❹
ref="aggregatorBean" ❺
method="add" ❻
completion-strategy="completionStrategyBean" ❼
completion-strategy-method="checkCompleteness" ❽
correlation-strategy="correlationStrategyBean" ❾
correlation-strategy-method="groupNumbersByLastDigit" ❿
timeout="42" 11

send-partial-result-on-timeout="true" 12

reaper-interval="135" 13

tracked-correlation-id-capacity="99" 14

send-timeout="86420000" 15 />

<channel id="outputChannel"/>

<bean id="aggregatorBean" class="sample.PojoAggregator"/>

<bean id="completionStrategyBean" class="sample.PojoCompletionStrategy"/>

<bean id="correlationStrategyBean" class="sample.PojoCorrelationStrategy"/>

❶ The id of the aggregator is optional.
❷ The input channel of the aggregator. Required.
❸ The channel where the aggregator will send the aggregation results. Optional (because incoming

messages can specify a reply channel themselves).
❹ The channel where the aggregator will send the messages that timed out (if

send-partial-results-on-timeout is false). Optional.
❺ A reference to a bean defined in the application context. The bean must implement the aggregation

logic as described above. Required.
❻ A method defined on the bean referenced by ref, that implements the message aggregation

algorithm. Optional, with restrictions (see above).
❼ A reference to a bean that implements the decision algorithm as to whether a given message group is

complete. The bean can be an implementation of the CompletionStrategy interface or a POJO. In the
latter case the completion-strategy-method attribute must be defined as well. Optional (by default,
the aggregator will use sequence size) .

❽ A method defined on the bean referenced by completion-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires completion-strategy to
be present).

❾ A reference to a bean that implements the correlation strategy. The bean can be an implementation
of the CorrelationStrategy interface or a POJO. In the latter case the correlation-strategy-method
attribute must be defined as well. Optional (by default, the aggregator will use the correlation id
header attribute) .

❿ A method defined on the bean referenced by correlation-strategy, that implements the
correlation key algorithm. Optional, with restrictions (requires correlation-strategy to be
present).

11 The timeout (in milliseconds) for aggregating messages (counted from the arrival of the first
message). Optional.

Spring Integration

Manual

12 Whether upon the expiration of the timeout, the aggregator shall try to aggregate the messages that
have already arrived. Optional (false by default).

13 The interval (in milliseconds) at which a reaper task is executed, checking if there are any timed out
groups. Optional.

14 The capacity of the correlation id tracker. Remembers the already processed correlation ids,
preventing the formation of new groups for messages that arrive after their group has been already
processed (aggregated or discarded). Set this value to 0 if you do not want the messages to be
discarded in such a scenario. Optional.

15 The timeout for sending the aggregated messages to the output or reply channel. Optional.

Using a "ref" attribute is generally recommended if a custom aggregator handler implementation can be
reused in other <aggregator> definitions. However if a custom aggregator handler implementation
should be scoped to a concrete definition of the <aggregator>, you can use an inner bean definition
(starting with version 1.0.3) for custom aggregator handlers within the <aggregator> element:

<aggregator input-channel="input" method="sum" output-channel="output">
<beans:bean class="org.foo.ExampleAggregator"/>

</aggregator>

Note

Using both a "ref" attribute and an inner bean definition in the same <aggregator>
configuration is not allowed, as it creates an ambiguous condition. In such cases, an
Exception will be thrown.

An example implementation of the aggregator bean looks as follows:

public class PojoAggregator {

public Long add(List<Long> results) {
long total = 0l;
for (long partialResult: results) {
total += partialResult;

}
return total;

}

}

An implementation of the completion strategy bean for the example above may be as follows:

public class PojoCompletionStrategy {
...
public boolean checkCompleteness(List<Long> numbers) {

int sum = 0;
for (long number: numbers) {
sum += number;

}
return sum >= maxValue;

}
}

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 50

Note

Wherever it makes sense, the completion strategy method and the aggregator method can be
combined in a single bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrelationStrategy {
...
public Long groupNumbersByLastDigit(Long number) {

return number % 10;
}

}

For example, this aggregator would group numbers by some criterion (in our case the remainder after
dividing by 10) and will hold the group until the sum of the numbers which represents the payload
exceeds a certain value.

Note

Wherever it makes sense, the completion strategy method, correlation strategy method and
the aggregator method can be combined in a single bean (all of them or any two).

11.5 Configuring an Aggregator with Annotations

An aggregator configured using annotations can look like this.

public class Waiter {
...

@Aggregator #
public Delivery aggregatingMethod(List<OrderItem> items) {

...
}

@CompletionStrategy #
public boolean completionChecker(List<Message<?>> messages) {

...
}

@CorrelationStrategy #
public String correlateBy(OrderItem item) {

...
}

}

❶ An annotation indicating that this method shall be used as an aggregator. Must be specified if this
class will be used as an aggregator.

❷ An annotation indicating that this method shall be used as the completion strategy of an aggregator.

Spring Integration

Manual

If not present on any method, the aggregator will use the SequenceSizeCompletionStrategy.
❸ An annotation indicating that this method shall be used as the correlation strategy of an aggregator.

If no correlation strategy is indicated, the aggregator will use the
HeaderAttributeCorrelationStrategy based on CORRELATION_ID.

All of the configuration options provided by the xml element are also available for the @Aggregator
annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is defined on
the class, detected automatically through classpath scanning.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 52

12. Resequencer

12.1 Introduction

Related to the Aggregator, albeit different from a functional standpoint, is the Resequencer.

12.2 Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the
CORRELATION_ID to store messages in groups, the difference being that the Resequencer does not
process the messages in any way. It simply releases them in the order of their SEQUENCE_NUMBER
header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SIZE, has been released), or as soon as a valid sequence is available.
Another option is to set a timeout, deciding whether to drop the whole sequence if the timeout has
expired, and not all messages have arrived, or to release the messages accumulated so far, in the
appropriate order.

12.3 Configuring a Resequencer with XML

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<channel id="inputChannel"/>

<channel id="outputChannel"/>

<resequencer id="completelyDefinedResequencer" #
input-channel="inputChannel" #
output-channel="outputChannel" #
discard-channel="discardChannel" #
release-partial-sequences="true" #
timeout="42" #
send-partial-result-on-timeout="true" #
reaper-interval="135" #
tracked-correlation-id-capacity="99" #
send-timeout="86420000" # />

❶ The id of the resequencer is optional.
❷ The input channel of the resequencer. Required.
❸ The channel where the resequencer will send the reordered messages. Optional.
❹ The channel where the resequencer will send the messages that timed out (if

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 53

send-partial-result-on-timeout is false). Optional.
❺ Whether to send out ordered sequences as soon as they are available, or only after the whole

message group arrives. Optional (true by default).
❻ The timeout (in milliseconds) for reordering message sequences (counted from the arrival of the first

message). Optional.
❼ Whether, upon the expiration of the timeout, the ordered group shall be sent out (even if some of the

messages are missing). Optional (false by default).
❽ The interval (in milliseconds) at which a reaper task is executed, checking if there are any timed out

groups. Optional.
❾ The capacity of the correlation id tracker. Remembers the already processed correlation ids,

preventing the formation of new groups for messages that arrive after their group has been already
processed (reordered or discarded). Optional.

❿ The timeout for sending out messages. Optional.

Note
Since there is no custom behavior to be implemented in Java classes for resequencers, there is
no annotation support for it.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 54

13. Delayer

13.1 Introduction

A Delayer is a simple endpoint that allows a Message flow to be delayed by a certain interval. When a
Message is delayed, the original sender will not block. Instead, the delayed Messages will be scheduled
with an instance of java.util.concurrent.ScheduledExecutorService to be sent to the
output channel after the delay has passed. This approach is scalable even for rather long delays, since it
does not result in a large number of blocked sender Threads. On the contrary, in the typical case a thread
pool will be used for the actual execution of releasing the Messages. Below you will find several
examples of configuring a Delayer.

13.2 The <delayer> Element

The <delayer> element is used to delay the Message flow between two Message Channels. As with the
other endpoints, you can provide the "input-channel" and "output-channel" attributes, but the delayer also
requires at least the 'default-delay' attribute with the number of milliseconds that each Message should be
delayed.

<delayer input-channel="input" default-delay="3000" output-channel="output"/>

If you need per-Message determination of the delay, then you can also provide the name of a header
within the 'delay-header-name' attribute:

<delayer input-channel="input" output-channel="output"
default-delay="3000" delay-header-name="delay"/>

In the example above the 3 second delay would only apply in the case that the header value is not present
for a given inbound Message. If you only want to apply a delay to Messages that have an explicit header
value, then you can set the 'default-delay' to 0. For any Message that has a delay of 0 (or less), the
Message will be sent directly. In fact, if there is not a positive delay value for a Message, it will be sent to
the output channel on the calling Thread.

Tip
The delay handler actually supports header values that represent an interval in milliseconds
(any Object whose toString() method produces a value that can be parsed into a Long)
as well as java.util.Date instances representing an absolute time. In the former case,
the milliseconds will be counted from the current time (e.g. a value of 5000 would delay the
Message for at least 5 seconds from the time it is received by the Delayer). In the latter case,
with an actual Date instance, the Message will not be released until that Date occurs. In either
case, a value that equates to a non-positive delay, or a Date in the past, will not result in any
delay. Instead, it will be sent directly to the output channel in the original sender's Thread.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 55

The delayer delegates to an instance of Spring's TaskScheduler abstraction. The default scheduler is a
ThreadPoolTaskScheduler instance with a pool size of 1. If you want to delegate to a different
scheduler, you can provide a reference through the delayer element's 'scheduler' attribute:

<delayer input-channel="input" output-channel="output"
default-delay="0" delay-header-name="delay"
scheduler="exampleTaskScheduler"/>

<task:scheduler id="exampleTaskScheduler" pool-size="3"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 56

14. Message Handler Chain

14.1 Introduction

The MessageHandlerChain is an implementation of MessageHandler that can be configured as a
single Message Endpoint while actually delegating to a chain of other handlers, such as Filters,
Transformers, Splitters, and so on. This can lead to a much simpler configuration when several handlers
need to be connected in a fixed, linear progression. For example, it is fairly common to provide a
Transformer before other components. Similarly, when providing a Filter before some other component
in a chain, you are essentially creating a Selective Consumer. In either case, the chain only requires a
single input-channel and a single output-channel as opposed to the configuration of channels for each
individual component.

Tip
Spring Integration's Filter provides a boolean property 'throwExceptionOnRejection'. When
providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to 'true' (the default is false) so that the dispatcher
will know that the Message was rejected and as a result will attempt to pass the Message on
to other subscribers. If the Exception were not thrown, then it would appear to the dispatcher
as if the Message had been passed on successfully even though the Filter had dropped the
Message to prevent further processing.

The handler chain simplifies configuration while internally maintaining the same degree of loose coupling
between components, and it is trivial to modify the configuration if at some point a non-linear
arrangement is required.

Internally, the chain will be expanded into a linear setup of the listed endpoints, separated by direct
channels. The reply channel header will not be taken into account within the chain: only after the last
handler is invoked will the resulting message be forwarded on to the reply channel or the chain's output
channel. Because of this setup all handlers except the last require a setOutputChannel
implementation. The last handler only needs an output channel if the outputChannel on the
MessageHandlerChain is set.

Note

As with other endpoints, the output-channel is optional. If there is a reply Message at the end
of the chain, the output-channel takes precedence, but if not available, the chain handler will
check for a reply channel header on the inbound Message.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on
namespace support for the chain element. Most Spring Integration endpoints, like Service Activators and
Transformers, are suitable for use within a MessageHandlerChain.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 57

http://www.eaipatterns.com/MessageSelector.html

14.2 The <chain> Element

The <chain> element provides an 'input-channel' attribute, and if the last element in the chain is capable
of producing reply messages (optional), it also supports an 'output-channel' attribute. The sub-elements
are then filters, transformers, splitters, and service-activators. The last element may also be a router.

<chain input-channel="input" output-channel="output">
<filter ref="someSelector" throw-exception-on-rejection="true"/>
<header-enricher error-channel="customErrorChannel">

<header name="foo" value="bar"/>
</header-enricher>
<service-activator ref="someService" method="someMethod"/>

</chain>

The <header-enricher> element used in the above example will set a message header with name "foo" and
value "bar" on the message. A header enricher is a specialization of Transformer that touches only header
values. You could obtain the same result by implementing a MessageHandler that did the header
modifications and wiring that as a bean.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 58

15. Messaging Bridge

15.1 Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels or
Channel Adapters. For example, you may want to connect a PollableChannel to a
SubscribableChannel so that the subscribing endpoints do not have to worry about any polling
configuration. Instead, the Messaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle
inbound Messages. The poller's trigger will determine the rate at which messages arrive on the second
channel, and the poller's "maxMessagesPerPoll" property will enforce a limit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration's role would be limited to making the connection between these systems and managing a
poller if necessary. It is probably more common to have at least a Transformer between the two systems
to translate between their formats, and in that case, the channels would be provided as the 'input-channel'
and 'output-channel' of a Transformer endpoint. If data format translation is not required, the Messaging
Bridge may indeed be sufficient.

15.2 The <bridge> Element

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel" attributes:

<bridge input-channel="input" output-channel="output"/>

As mentioned above, a common use case for the Messaging Bridge is to connect a PollableChannel
to a SubscribableChannel, and when performing this role, the Messaging Bridge may also serve as
a throttler:

<bridge input-channel="pollable" output-channel="subscribable">
<poller max-messages-per-poll="10">

<interval-trigger interval="5" time-unit="SECONDS"/>
</poller>

</bridge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and
"stdout" adapters from Spring Integration's "stream" namespace.

<stream:stdin-channel-adapter id="stdin"/>

<stream:stdout-channel-adapter id="stdout"/>

<bridge id="echo" input-channel="stdin" output-channel="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 59

bridges, such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in
upcoming chapters.

Note

If no 'output-channel' is defined on a bridge, the reply channel provided by the inbound
Message will be used, if available. If neither output or reply channel is available, an
Exception will be thrown.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 60

16. Inbound Messaging Gateways

16.1 SimpleMessagingGateway

Even though the MessageChannelTemplate is fairly straightforward, it does not hide the details of
messaging from your application code. To support working with plain Objects instead of messages,
Spring Integration provides SimpleMessagingGateway with the following methods:

public void send(Object object) { ... }

public Object receive() { ... }

public Object sendAndReceive(Object object) { ... }

Message<?> sendAndReceiveMessage(Object object);

It enables configuration of a request and/or reply channel and delegates to instances of the
InboundMessageMapper and OutboundMessageMapper strategy interfaces.

SimpleMessagingGateway gateway = new SimpleMessagingGateway(inboundMapper, outboundMapper);
gateway.setRequestChannel(requestChannel);
gateway.setReplyChannel(replyChannel);
Object result = gateway.sendAndReceive("test");

16.2 GatewayProxyFactoryBean

Working with Objects instead of Messages is an improvement. However, it would be even better to have
no dependency on the Spring Integration API at all - including the gateway class. For that reason, Spring
Integration also provides a GatewayProxyFactoryBean that generates a proxy for any interface and
internally invokes the gateway methods shown above. Namespace support is also provided as
demonstrated by the following example.

<gateway id="fooService"
service-interface="org.example.FooService"
default-request-channel="requestChannel"
default-reply-channel="replyChannel"/>

Then, the "fooService" can be injected into other beans, and the code that invokes the methods on that
proxied instance of the FooService interface has no awareness of the Spring Integration API. The general
approach is similar to that of Spring Remoting (RMI, HttpInvoker, etc.). See the "Samples" Appendix for
an example that uses this "gateway" element (in the Cafe demo).

The reason that the attributes on the 'gateway' element are named 'default-request-channel' and
'default-reply-channel' is that you may also provide per-method channel references by using the
@Gateway annotation.

public interface Cafe {

@Gateway(requestChannel="orders")
void placeOrder(Order order);

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 61

}

It is also possible to pass values to be interpreted as Message headers on the Message that is created and
sent to the request channel by using the @Header annotation:

public interface FileWriter {

@Gateway(requestChannel="filesOut")
void write(byte[] content, @Header(FileHeaders.FILENAME) String filename);

}

If you prefer XML way of configuring Gateway methods, you can provide method sub-elements to the
gateway configuration (see below)

<si:gateway id="myGateway" service-interface="org.foo.bar.TestGateway"
default-request-channel="inputC">

<si:method name="echo" request-channel="inputA" reply-timeout="2" request-timeout="200"/>
<si:method name="echoUpperCase" request-channel="inputB"/>
<si:method name="echoViaDefault"/>

</si:gateway>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 62

17. Message Publishing
Message Publishing feature will allow you to send a message as a result of method invocation. For
example; Imagine you have a component and every time the state of this components changes you would
like to get notified. The easiest way to send notification would be to send a message to a dedicated
channel, but how would you connect the method invocation that changes the state of the object to a
message sending process and what should be the structure of the message? Message Publishing feature
will allow you to do just that.

17.1 Message Publishing Configuration

Spring Integration provides two approaches - XML and Annotation.

Annotation-based approach via @Publisher annotation

Annotation bassed approach allows you to annotate any method with @Publisher annotation and
provide configuration attributes which will dictate the structure of a Message. Invocation of such method
will be proxied through PublisherAnnotationAdvisor which will construct a Message and send
it to a channel.

Internally PublisherAnnotationAdvisor uses Spring 3.0 Expression Language support giving
you the flexibility and control over the structure of a Message it will build.

PublisherAnnotationAdvisor defines and binds the following variables:

• #return - will bind to a return value allowing you to reference it or its attributes (e.g., #return.foo where
'foo' is an attribute of the object bound to #return)

• #exception - will bind to an exception if one is thrown.

• #[parameName] - will be dynamically constructed pointing to the method parameter names (e.g.,
#fname as in the above method)

@Publisher(value="#return", channel="testChannel", headers="bar='123',fname=#fname")
public String setName(String fname, String lname){

return fname + " " + lname;
}

In the above example the Message will be constructed and its structure will be as follows:

• Message payload - will be of type String and contain the value returned by the method.

• Message headers will be 'bar' with value of "123" and 'fname' with value of 'fname' parameter of the
method.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 63

As with any other annotation you will need to register
PublisherAnnotationBeanPostProcessor

<bean class="org.springframework.integration.aop.PublisherAnnotationBeanPostProcessor"/>

XML-based approach via <publisher> element

XML-based approach allows you to configure Message Publishing via AOP-based configuration and
simple namespace-based configuration of MessagePublishingInterceptor. It certainly has
certain benefits over annotation based approach since it allows you to use AOP pointcut expressions, thus
possibly intercepting multiple methods at once or intercepting and publishing methods to which you don't
have a source code.

To configure Message Publishing via XML all you need is the following two things:

• Provide configuration for MessagePublishingInterceptor via <publisher> XML element

• Provide AOP configuration to apply MessagePublishingInterceptor

<beans:bean id="testBean" class="org.foo.bar.TestBean" />
<aop:config>

<aop:advisor advice-ref="interceptor" pointcut="bean(testBean)" />
</aop:config>

<publisher id="interceptor" default-channel="defaultChannel">
<method pattern="echo" payload="'Echoing: ' + #return" headers="foo='bar'" channel="echoChannel"/>
<method pattern="echoDef*" payload="#return"/>
<method pattern="foo*"/>

</publisher>

As you can see <publisher> uses the same variables as PublisherAnnotationAdvisor to
utilize the power of Spring 3.0 Expression Langage.

In the above example the execution of echo method of a testBean will rander the Message with the
following structure:

• Message payload - will be of type String and value of "Echoing: [value]" where value is the value
returned by an executed method.

• Message headers will be 'foo' with value of "bar".

• Message will be sent to echoChannel.

In the second method mapping the execution of any method that begins with echoDef of testBean
will result in the Message with the following structure.

• Message payload - will be the value returned by an executed method.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 64

• Since channel attriute is not provided, the Message will be sent to the defaultChannel defined
by the publisher.

The third mapping is almost identical to the previous (with the exceptipon of method pattern), since the
return value will be mapped to the Message paylad by default if nothing else is specifued.

For a simple maping rules you can rely on publisher defaults. For example:

<publisher id="anotherInterceptor"/>

This will map the return value of every method that matches the pointcut expression to a payload and will
be sent to a default-channel. If the defaultChannelis not specified (as above) the messages will be sent to
nullChannel

Spring Integration

Manual

18. File Support

18.1 Introduction

Spring Integration's File support extends the Spring Integration Core with a dedicated vocabulary to deal
with reading, writing, and transforming files. It provides a namespace that enables elements defining
Channel Adapters dedicated to files and support for Transformers that can read file contents into strings
or byte arrays.

This section will explain the workings of FileReadingMessageSource and
FileWritingMessageHandler and how to configure them as beans. Also the support for dealing
with files through file specific implementations of Transformer will be discussed. Finally the file
specific namespace will be explained.

18.2 Reading Files

A FileReadingMessageSource can be used to consume files from the filesystem. This is an
implementation of MessageSource that creates messages from a file system directory.

<bean id="pollableFileSource"
class="org.springframework.integration.file.FileReadingMessageSource"
p:inputDirectory="file:${input.directory}"/>

To prevent creating messages for certain files, you may supply a FileListFilter. By default, an
AcceptOnceFileListFilter is used. This filter ensures files are picked up only once from the
directory.

<bean id="pollableFileSource"
class="org.springframework.integration.file.FileReadingMessageSource"
p:inputDirectory="file:${input.directory}"
p:filter-ref="customFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default
AcceptOnceFileListFilter does not prevent this. In most cases, this can be prevented if the
file-writing process renames each file as soon as it is ready for reading. A pattern-matching filter that
accepts only files that are ready (e.g. based on a known suffix), composed with the default
AcceptOnceFileListFilter allows for this. The CompositeFileListFilter enables the
composition.

<bean id="pollableFileSource"
class="org.springframework.integration.file.FileReadingMessageSource"
p:inputDirectory="file:${input.directory}"
p:filter-ref="compositeFilter"/>

<bean id="compositeFilter" class="org.springframework.integration.file.CompositeFileListFilter">
<constructor-arg>

<list>
<bean class="org.springframework.integration.file.AcceptOnceFileListFilter" />

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 66

<bean class="org.springframework.integration.file.PatternMatchingFileListFilter">
<constructor-arg value="^test.*$"/>

</bean>
</list>

</constructor-arg>
</bean>

The configuration can be simplified using the file specific namespace. To do this use the following
template.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xmlns:file="http://www.springframework.org/schema/integration/file"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/file
http://www.springframework.org/schema/integration/file/spring-integration-file-1.0.xsd">

</beans>

Within this namespace you can reduce the FileReadingMessageSource and wrap it in an inbound Channel
Adapter like this:

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory}"/>

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory}"
filter="customFilterBean" />

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory}"
filename-pattern="^test.*$" />

The first channel adapter is relying on the default filter that just prevents duplication, the second is using a
custom filter, and the third is using the filename-pattern attribute to add a Pattern based filter to the
FileReadingMessageSource.

18.3 Writing files

To write messages to the file system you can use a FileWritingMessageHandler. This class can
deal with File, String, or byte array payloads. In its simplest form the
FileWritingMessageHandler only requires a destination directory for writing the files. The name
of the file to be written is determined by the handler's FileNameGenerator. The default
implementation looks for a Message header whose key matches the constant defined as
FileHeaders.FILENAME.

Additionally, you can configure the encoding and the charset that will be used in case of a String payload.

To make things easier you can configure the FileWritingMessageHandler as part of an outbound channel
adapter using the namespace.

<file:outbound-channel-adapter id="filesOut" directory="file:${input.directory.property}"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 67

The namespace based configuration also supports a delete-source-files attribute. If set to true,
it will trigger deletion of the original source files after writing to a destination. The default value for that
flag is false.

<file:outbound-channel-adapter id="filesOut"
directory="file:${output.directory}"
delete-source-files="true"/>

Note

The delete-source-files attribute will only have an effect if the inbound Message
has a File payload or if the FileHeaders.ORIGINAL_FILE header value contains either
the source File instance or a String representing the original file path.

In cases where you want to continue processing messages based on the written File you can use the
outbound-gateway instead. It plays a very similar role as the outbound-channel-adapter.
However after writing the File, it will also send it to the reply channel as the payload of a Message.

<file:outbound-gateway id="mover" request-channel="moveInput"
reply-channel="output"
directory="${output.directory}"
delete-source-files="true"/>

Note
The 'outbound-gateway' works well in cases where you want to first move a File and then
send it through a processing pipeline. In such cases, you may connect the file namespace's
'inbound-channel-adapter' element to the 'outbound-gateway' and then connect that gateway's
reply-channel to the beginning of the pipeline.

If you have more elaborate requirements or need to support additional payload types as input to be
converted to file content you could extend the FileWritingMessageHandler, but a much better option is to
rely on a Transformer.

18.4 File Transformers

To transform data read from the file system to objects and the other way around you need to do some
work. Contrary to FileReadingMessageSource and to a lesser extent
FileWritingMessageHandler, it is very likely that you will need your own mechanism to get the
job done. For this you can implement the Transformer interface. Or extend the
AbstractFilePayloadTransformer for inbound messages. Some obvious implementations have
been provided.

FileToByteArrayTransformer transforms Files into byte[]s using Spring's FileCopyUtils. It
is often better to use a sequence of transformers than to put all transformations in a single class. In that

Spring Integration

Manual

case the File to byte[] conversion might be a logical first step.

FileToStringTransformer will convert Files to Strings as the name suggests. If nothing else, this
can be useful for debugging (consider using with a Wire Tap).

To configure File specific transformers you can use the appropriate elements from the file namespace.

<file-to-bytes-transformer input-channel="input" output-channel="output"
delete-files="true"/>

<file:file-to-string-transformer input-channel="input" output-channel="output
delete-files="true" charset="UTF-8"/>

The delete-files option signals to the transformer that it should delete the inbound File after the
transformation is complete. This is in no way a replacement for using the
AcceptOnceFileListFilter when the FileReadingMessageSource is being used in a
multi-threaded environment (e.g. Spring Integration in general).

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 69

19. JMS Support
Spring Integration provides Channel Adapters for receiving and sending JMS messages. There are
actually two JMS-based inbound Channel Adapters. The first uses Spring's JmsTemplate to receive
based on a polling period. The second is "message-driven" and relies upon a Spring MessageListener
container. There is also an outbound Channel Adapter which uses the JmsTemplate to convert and
send a JMS Message on demand.

Whereas the JMS Channel Adapters are intended for unidirectional Messaging (send-only or
receive-only), Spring Integration also provides inbound and outbound JMS Gateways for request/reply
operations. The inbound gateway relies on one of Spring's MessageListener container implementations
for Message-driven reception that is also capable of sending a return value to the "reply-to" Destination as
provided by the received Message. The outbound Gateway sends a JMS Message to a
"request-destination" and then receives a reply Message. The "reply-destination" reference (or
"reply-destination-name") can be configured explicitly or else the outbound gateway will use a JMS
TemporaryQueue.

19.1 Inbound Channel Adapter

The inbound Channel Adapter requires a reference to either a single JmsTemplate instance or both
ConnectionFactory and Destination (a 'destinationName' can be provided in place of the
'destination' reference). The following example defines an inbound Channel Adapter with a
Destination reference.

<jms:inbound-channel-adapter id="jmsIn" destination="inQueue" channel="exampleChannel">
<integration:poller>

<integration:interval-trigger interval="30" time-unit="SECONDS"/>
</integration:poller>

</jms:inbound-channel-adapter>

Tip
Notice from the configuration that the inbound-channel-adapter is a Polling Consumer. That
means that it invokes receive() when triggered. This should only be used in situations where
polling is done relatively infrequently and timeliness is not important. For all other situations
(a vast majority of JMS-based use-cases), the message-driven-channel-adapter described
below is a better option.

Note
All of the JMS adapters that require a reference to the ConnectionFactory will automatically
look for a bean named "connectionFactory" by default. That is why you don't see a
"connection-factory" attribute in many of the examples. However, if your JMS
ConnectionFactory has a different bean name, then you will need to provide that attribute.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 70

If 'extract-payload' is set to true (which is the default), the received JMS Message will be passed through
the MessageConverter. When relying on the default SimpleMessageConverter, this means that the
resulting Spring Integration Message will have the JMS Message's body as its payload. A JMS
TextMessage will produce a String-based payload, a JMS BytesMessage will produce a byte array
payload, and a JMS ObjectMessage's Serializable instance will become the Spring Integration Message's
payload. If instead you prefer to have the raw JMS Message as the Spring Integration Message's payload,
then set 'extract-payload' to false.

<jms:inbound-channel-adapter id="jmsIn"
destination="inQueue"
channel="exampleChannel"
extract-payload="false"/>

<integration:poller>
<integration:interval-trigger interval="30" time-unit="SECONDS"/>

</integration:poller>
</jms:inbound-channel-adapter>

19.2 Message-Driven Channel Adapter

The "message-driven-channel-adapter" requires a reference to either an instance of a Spring
MessageListener container (any subclass of AbstractMessageListenerContainer) or both
ConnectionFactory and Destination (a 'destinationName' can be provided in place of the
'destination' reference). The following example defines a message-driven Channel Adapter with a
Destination reference.

<jms:message-driven-channel-adapter id="jmsIn" destination="inQueue" channel="exampleChannel"/>

Note
The Message-Driven adapter also accepts several properties that pertain to the
MessageListener container. These values are only considered if you do not provide an actual
'container' reference. In that case, an instance of DefaultMessageListenerContainer will be
created and configured based on these properties. For example, you can specify the
"transaction-manager" reference, the "concurrent-consumers" value, and several other
property references and values. Refer to the JavaDoc and Spring Integration's JMS Schema
(spring-integration-jms-1.0.xsd) for more detail.

The 'extract-payload' property has the same effect as described above, and once again its default value is
'true'. The poller sub-element is not applicable for a message-driven Channel Adapter, as it will be
actively invoked. For most usage scenarios, the message-driven approach is better since the Messages
will be passed along to the MessageChannel as soon as they are received from the underlying JMS
consumer.

19.3 Outbound Channel Adapter

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 71

The JmsSendingMessageHandler implements the MessageHandler interface and is capable of
converting Spring Integration Messages to JMS messages and then sending to a JMS destination. It
requires either a 'jmsTemplate' reference or both 'connectionFactory' and 'destination' references (again,
the 'destinationName' may be provided in place of the 'destination'). As with the inbound Channel
Adapter, the easiest way to configure this adapter is with the namespace support. The following
configuration will produce an adapter that receives Spring Integration Messages from the
"exampleChannel" and then converts those into JMS Messages and sends them to the JMS Destination
reference whose bean name is "outQueue".

<jms:outbound-channel-adapter id="jmsOut" destination="outQueue" channel="exampleChannel"/>

As with the inbound Channel Adapters, there is an 'extract-payload' property. However, the meaning is
reversed for the outbound adapter. Rather than applying to the JMS Message, the boolean property
applies to the Spring Integration Message payload. In other words, the decision is whether to pass the
Spring Integration Message itself as the JMS Message body or whether to pass the Spring Integration
Message's payload as the JMS Message body. The default value is once again 'true'. Therefore, if you pass
a Spring Integration Message whose payload is a String, a JMS TextMessage will be created. If on the
other hand you want to send the actual Spring Integration Message to another system via JMS, then
simply set this to 'false'.

Note
Regardless of the boolean value for payload extraction, the Spring Integration
MessageHeaders will map to JMS properties as long as you are relying on the default
converter or provide a reference to another instance of HeaderMappingMessageConverter
(the same holds true for 'inbound' adapters except that in those cases, it's the JMS properties
mapping to Spring Integration MessageHeaders).

19.4 Inbound Gateway

Spring Integration's message-driven JMS inbound-gateway delegates to a MessageListener
container, supports dynamically adjusting concurrent consumers, and can also handle replies. The
inbound gateway requires references to a ConnectionFactory, and a request Destination (or
'requestDestinationName'). The following example defines a JMS "inbound-gateway" that receives from
the JMS queue referenced by the bean id "inQueue" and sends to the Spring Integration channel named
"exampleChannel".

<jms:inbound-gateway id="jmsInGateway"
request-destination="inQueue"
request-channel="exampleChannel"/>

Since the gateways provide request/reply behavior instead of unidirectional send or receive, they also
have two distinct properties for the "payload extraction" (as discussed above for the Channel Adapters'
'extract-payload' setting). For an inbound-gateway, the 'extract-request-payload' property determines
whether the received JMS Message body will be extracted. If 'false', the JMS Message itself will become

Spring Integration

Manual

the Spring Integration Message payload. The default is 'true'.

Similarly, for an inbound-gateway the 'extract-reply-payload' property applies to the Spring Integration
Message that is going to be converted into a reply JMS Message. If you want to pass the whole Spring
Integration Message (as the body of a JMS ObjectMessage) then set this to 'false'. By default, it is also
'true' such that the Spring Integration Message payload will be converted into a JMS Message (e.g. String
payload becomes a JMS TextMessage).

19.5 Outbound Gateway

The outbound Gateway creates JMS Messages from Spring Integration Messages and then sends to a
'request-destination'. It will then handle the JMS reply Message either by using a selector to receive from
the 'reply-destination' that you configure, or if no 'reply-destination' is provided, it will create JMS
TemporaryQueues. Notice that the "reply-channel" is also provided.

<jms:outbound-gateway id="jmsOutGateway"
request-destination="outQueue"
request-channel="outboundJmsRequests"
reply-channel="jmsReplies"/>

The 'outbound-gateway' payload extraction properties are inversely related to those of the
'inbound-gateway' (see the discussion above). That means that the 'extract-request-payload' property value
applies to the Spring Integration Message that is being converted into a JMS Message to be sent as a
request, and the 'extract-reply-payload' property value applies to the JMS Message that is received as a
reply and then converted into a Spring Integration Message to be subsequently sent to the 'reply-channel'
as shown in the example configuration above.

Note
For all of these JMS adapters, you can also specify your own "message-converter" reference.
Simply provide the bean name of an instance of MessageConverter that is available
within the same ApplicationContext. Note, however, that when you provide your own
MessageConverter instance, it will still be wrapped within the
HeaderMappingMessageConverter. This means that the 'extract-request-payload' and
'extract-reply-payload' properties may effect what actual objects are passed to your converter.
The HeaderMappingMessageConverter itself simply delegates to a target MessageConverter
while also mapping the Spring Integration MessageHeaders to JMS Message properties and
vice-versa.

19.6 JMS Backed Message Channels

The Channel Adapters and Gateways featured above are all intended for applications that are integrating
with other external systems. The inbound options assume that some other system is sending JMS
Messages to the JMS Destination and the outbound options assume that some other system is receiving
from the Destination. The other system may or may not be a Spring Integration application. Of course,

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 73

when sending the Spring Integration Message instance as the body of the JMS Message itself (with the
'extract-payload' value set to false), it is assumed that the other system is based on Spring Integration.
However, that is by no means a requirement. That flexibility is one of the benefits of using a
Message-based integration option with the abstraction of "channels" or Destinations in the case of JMS.

There are cases where both the producer and consumer for a given JMS Destination are intended to be
part of the same application, running within the same process. This could be accomplished by using a pair
of inbound and outbound Channel Adapters. The problem with that approach is that two adapters are
required even though conceptually the goal is to have a single Message Channel. A better option is
supported as of Spring Integration version 2.0. Now it is possible to define a single "channel" when using
the JMS namespace.

<jms:channel id="jmsChannel" queue="exampleQueue"/>

The channel in the above example will behave much like a normal <channel/> element from the main
Spring Integration namespace. It can be referenced by both "input-channel" and "output-channel"
attributes of any endpoint. The difference is that this channel is backed by a JMS Queue instance named
"exampleQueue". This means that asynchronous messaging is possible between the producing and
consuming endpoints, but unlike the simpler asynchronous Message Channels created by adding a
<queue/> sub-element within a non-JMS <channel/> element, the Messages are not just stored in an
in-memory queue. Instead those Messages are passed within a JMS Message body, and the full power of
the underlying JMS provider is then available for that channel. Probably the most common rationale for
using this alternative would be to take advantage of the persistence made available by the store and
forward approach of JMS messaging. If configured properly, the JMS-backed Message Channel also
supports transactions. In other words, a producer would not actually write to a transactional JMS-backed
channel if its send operation is part of a transaction that rolls back. Likewise, a consumer would not
physically remove a JMS Message from the channel if the reception of that Message is part of a
transaction that rolls back. Note that the producer and consumer transactions are separate in such a
scenario. This is significantly different than the propagation of a transactional context across the simple,
synchronous <channel/> element that has no <queue/> sub-element.

Since the example above is referencing a JMS Queue instance, it will act as a point-to-point channel. If on
the other hand, publish/subscribe behavior is needed, then a separate element can be used, and a JMS
Topic can be referenced instead.

<jms:publish-subscribe-channel id="jmsChannel" topic="exampleTopic"/>

For either type of JMS-backed channel, the name of the destination may be provided instead of a
reference.

<jms:channel id="jmsQueueChannel" queue-name="exampleQueueName"/>

<jms:publish-subscribe-channel id="jmsTopicChannel" topic-name="exampleTopicName"/>

In the examples above, the Destination names would be resolved by Spring's default
DynamicDestinationResolver implementation, but any implementation of the

Spring Integration

Manual

DestinationResolver interface could be provided. Also, the JMS ConnectionFactory is a
required property of the channel, but by default the expected bean name would be "connectionFactory".
The example below provides both a custom instance for resolution of the JMS Destination names and a
different name for the ConnectionFactory.

<jms:channel id="jmsChannel" queue-name="exampleQueueName"
destination-resolver="customDestinationResolver"
connection-factory="customConnectionFactory"/>

19.7 JMS Samples

To experiment with these JMS adapters, check out the samples available within the "samples/jms"
directory in the distribution. There are two samples included. One provides inbound and outbound
Channel Adapters, and the other provides inbound and outbound Gateways. They are configured to run
with an embedded ActiveMQ process, but the "common.xml" file can easily be modified to support either
a different JMS provider or a standalone ActiveMQ process. In other words, you can split the
configuration so that the inbound and outbound adapters are running in separate JVMs. If you have
ActiveMQ installed, simply modify the "brokerURL" property within the configuration to use
"tcp://localhost:61616" for example (instead of "vm://localhost"). Both of the samples accept input via
stdin and then echo back to stdout. Look at the configuration to see how these messages are routed over
JMS.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 75

20. Web Services Support

20.1 Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both of which
build upon the Spring Web Services project: SimpleWebServiceOutboundGateway and
MarshallingWebServiceOutboundGateway. The former will accept either a String or
javax.xml.transform.Source as the message payload. The latter provides support for any
implementation of the Marshaller and Unmarshaller interfaces. Both require a Spring Web
Services DestinationProvider for determining the URI of the Web Service to be called.

simpleGateway = new SimpleWebServiceOutboundGateway(destinationProvider);

marshallingGateway = new MarshallingWebServiceOutboundGateway(destinationProvider, marshaller);

Note
When using the namespace support described below, you will only need to set a URI.
Internally, the parser will configure a fixed URI DestinationProvider implementation. If you
do need dynamic resolution of the URI at runtime, however, then the DestinationProvider can
provide such behavior as looking up the URI from a registry. See the Spring Web Services
javadoc for more information about the DestinationProvider strategy.

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering
client access as well as the chapter covering Object/XML mapping.

20.2 Inbound Web Service Gateways

To send a message to a channel upon receiving a Web Service invocation, there are two options again:
SimpleWebServiceInboundGateway and MarshallingWebServiceInboundGateway.
The former will extract a javax.xml.transform.Source from the WebServiceMessage and
set it as the message payload. The latter provides support for implementation of the Marshaller and
Unmarshaller interfaces. If the incoming web service message is a SOAP message the SOAP Action
header will be added to the headers of the Message that is forwarded onto the request channel.

simpleGateway = new SimpleWebServiceInboundGateway();
simpleGateway.setRequestChannel(forwardOntoThisChannel);
simpleGateway.setReplyChannel(listenForResponseHere); //Optional

marshallingGateway = new MarshallingWebServiceInboundGateway(marshaller);
//set request and optionally reply channel

Both gateways implement the Spring Web Services MessageEndpoint interface, so they can be
configured with a MessageDispatcherServlet as per standard Spring Web Services configuration.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 76

http://static.springframework.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

For more detail on how to use these components, see the Spring Web Services reference guide's chapter
covering creating a Web Service. The chapter covering Object/XML mapping is also applicable again.

20.3 Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway" element from the "ws"
namespace:

<ws:outbound-gateway id="simpleGateway"
request-channel="inputChannel"
uri="http://example.org"/>

Note
Notice that this example does not provide a 'reply-channel'. If the Web Service were to return
a non-empty response, the Message containing that response would be sent to the reply
channel provided in the request Message's REPLY_CHANNEL header, and if that were not
available a channel resolution Exception would be thrown. If you want to send the reply to
another channel instead, then provide a 'reply-channel' attribute on the 'outbound-gateway'
element.

Tip
When invoking a Web Service that returns an empty response after using a String payload for
the request Message, no reply Message will be sent by default. Therefore you don't need to set
a 'reply-channel' or have a REPLY_CHANNEL header in the request Message. If for any
reason you actually do want to receive the empty response as a Message, then provide the
'ignore-empty-responses' attribute with a value of false (this only applies for Strings, because
using a Source or Document object simply leads to a NULL response and will therefore never
generate a reply Message).

To set up an inbound Web Service Gateway, use the "inbound-gateway":

<ws:inbound-gateway id="simpleGateway"
request-channel="inputChannel"/>

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references. For outbound:

<ws:outbound-gateway id="marshallingGateway"
request-channel="requestChannel"
uri="http://example.org"
marshaller="someMarshaller"
unmarshaller="someUnmarshaller"/>

And for inbound:

<ws:inbound-gateway id="marshallingGateway"
request-channel="requestChannel"
marshaller="someMarshaller"
unmarshaller="someUnmarshaller"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 77

http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Note
Most Marshaller implementations also implement the Unmarshaller interface. When
using such a Marshaller, only the "marshaller" attribute is necessary. Even when using a
Marshaller, you may also provide a reference for the "request-callback" on the outbound
gateways.

For either outbound gateway type, a "destination-provider" attribute can be specified instead of the "uri"
(exactly one of them is required). You can then reference any Spring Web Services DestinationProvider
implementation (e.g. to lookup the URI at runtime from a registry).

For either outbound gateway type, the "message-factory" attribute can also be configured with a reference
to any Spring Web Services WebServiceMessageFactory implementation.

For the simple inbound gateway type, the "extract-payload" attribute can be set to false to forward the
entire WebServiceMessage instead of just its payload as a Message to the request channel. This
might be useful, for example, when a custom Transformer works against the WebServiceMessage
directly.

Spring Integration

Manual

21. RMI Support

21.1 Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over multiple
JVMs. The first section will deal with sending messages over RMI. The second section shows how to
receive messages over RMI. The last section shows how to define rmi channel adapters through the
namespace support.

21.2 Outbound RMI

To send messages from a channel over RMI, simply define an RmiOutboundGateway. This gateway
will use Spring's RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that to
invoke a remote interface that doesn't use Spring Integration you should use a service activator in
combination with Spring's RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

<bean id="rmiOutGateway" class=org.spf.integration.rmi.RmiOutboundGateway>
<constructor-arg value="rmi://host"/>
<property name="replyChannel" value="replies"/>

</bean>

21.3 Inbound RMI

To receive messages over RMI you need to use a RmiInboundGateway. This gateway can be
configured like this

<bean id="rmiOutGateway" class=org.spf.integration.rmi.RmiInboundGateway>
<property name="requestChannel" value="requests"/>

</bean>

21.4 RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The following
code snippet shows the different configuration options that are supported.

<rmi:inbound-gateway id="gatewayWithDefaults" request-channel="testChannel"/>

<rmi:inbound-gateway id="gatewayWithCustomProperties" request-channel="testChannel"
expect-reply="false" request-timeout="123" reply-timeout="456"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 79

<rmi:inbound-gateway id="gatewayWithHost" request-channel="testChannel"
registry-host="localhost"/>

<rmi:inbound-gateway id="gatewayWithPort" request-channel="testChannel"
registry-port="1234"/>

<rmi:inbound-gateway id="gatewayWithExecutorRef" request-channel="testChannel"
remote-invocation-executor="invocationExecutor"/>

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound rmi gateway.

<rmi:outbound-gateway id="gateway"
request-channel="localChannel"
remote-channel="testChannel"
host="localhost"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 80

22. HttpInvoker Support

22.1 Introduction

HttpInvoker is a Spring-specific remoting option that essentially enables Remote Procedure Calls (RPC)
over HTTP. In order to accomplish this, an outbound representation of a method invocation is serialized
using standard Java serialization and then passed within an HTTP POST request. After being invoked on
the target system, the method's return value is then serialized and written to the HTTP response. There are
two main requirements. First, you must be using Spring on both sides since the marshalling to and from
HTTP requests and responses is handled by the client-side invoker and server-side exporter. Second, the
Objects that you are passing must implement Serializable and be available on both the client and
server.

While traditional RPC provides physical decoupling, it does not offer nearly the same degree of logical
decoupling as a messaging-based system. In other words, both participants in an RPC-based invocation
must be aware of a specific interface and specific argument types. Interestingly, in Spring Integration, the
"parameter" being sent is a Spring Integration Message, and the interface is an internal detail of Spring
Integration's implementation. Therefore, the RPC mechanism is being used as a transport so that from the
end user's perspective, it is not necessary to consider the interface and argument types. It's just another
adapter to enable messaging between two systems.

22.2 HttpInvoker Inbound Gateway

To receive messages over http you can use an HttpInvokerInboundGateway. Here is an example
bean definition:

<bean id="inboundGateway"
class="org.springframework.integration.httpinvoker.HttpInvokerInboundGateway">

<property name="requestChannel" ref="requestChannel"/>
<property name="replyChannel" ref="replyChannel"/>
<property name="requestTimeout" value="30000"/>
<property name="replyTimeout" value="10000"/>

</bean>

Because the inbound gateway must be able to receive HTTP requests, it must be configured within a
Servlet container. The easiest way to do this is to provide a servlet definition in web.xml:

<servlet>
<servlet-name>inboundGateway</servlet-name>
<servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>

</servlet>

Notice that the servlet name matches the bean name.

Note
If you are running within a Spring MVC application and using the
BeanNameHandlerMapping, then the servlet definition is not necessary. In that case, the bean

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 81

name for your gateway can be matched against the URL path just like a Spring MVC
Controller bean.

22.3 HttpInvoker Outbound Gateway

To configure the HttpInvokerOutboundGateway write a bean definition like this:

<bean id="outboundGateway"
class="org.springframework.integration.httpinvoker.HttpInvokerOutboundGateway">

<property name="replyChannel" ref="replyChannel"/>
</bean>

The outbound gateway is a MessageHandler and can therefore be registered with either a
PollingConsumer or EventDrivenConsumer. The URL must match that defined by an inbound
HttpInvoker Gateway as described in the previous section.

22.4 HttpInvoker Namespace Support

Spring Integration provides an "httpinvoker" namespace and schema definition. To include it in your
configuration, simply provide the following URI within a namespace declaration:
'http://www.springframework.org/schema/integration/httpinvoker'. The schema location should then map
to
'http://www.springframework.org/schema/integration/httpinvoker/spring-integration-httpinvoker-1.0.xsd'.

To configure the inbound gateway you can choose to use the namespace support for it. The following
code snippet shows the different configuration options that are supported.

<httpinvoker:inbound-gateway id="inboundGateway"
request-channel="requestChannel"
request-timeout="10000"
expect-reply="false"
reply-timeout="30000"/>

Note
A 'reply-channel' may also be provided, but it is recommended to rely on the temporary
anonymous channel that will be created automatically for handling replies.

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound HttpInvoker gateway. Only the 'url' and
'request-channel' are required.

<httpinvoker:outbound-gateway id="outboundGateway"
url="http://localhost:8080/example"
request-channel="requestChannel"
request-timeout="5000"
reply-channel="replyChannel"

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 82

reply-timeout="10000"/>

Spring Integration

Manual

23. HTTP Support

23.1 Introduction

The HTTP support allows for the making of HTTP requests and the processing of inbound Http requests.
Because interaction over HTTP is always synchronous, even if all that is returned is a 200 status code the
Http support consists of two gateway implementations HttpInboundEndpoint and
HttpOutboundEndpoint.

23.2 Http Inbound Gateway

To receive messages over http you need to use an HttpInboundEndpoint. In common with the
HttpInvoker support the Http Inbound Gateway needs to be deployed within a servlet container. The
easiest way to do this is to provide a servlet definition in web.xml, see Section 22.2, “HttpInvoker
Inbound Gateway” for further details. Below is an example bean definition for a simple
HttpInboundEndpoint

<bean id="httpInbound" class="org.springframework.integration.http.HttpInboundEndpoint">
<property name="requestChannel" ref="httpRequestChannel" />
<property name="replyChannel" ref="httpReplyChannel" />

</bean>

The HttpInboundEndpoint accepts an instance of InboundRequestMapper which allows
customisation of the mapping from HttpServletRequest to Message. If none is provided an
instance of DefaultInboundRequestMapper will be used. This encapsulates a simple strategy,
which for example will create a String message for a POST request where the content type starts with
"text", see the Javadoc for full details.

Starting with this release MultiPart File support was implemented. If the request has been wrapped as a
MultipartHttpServletRequest, then the 'content type' can be checked. If it is known, and begins with
"text", then the MultipartFile will be copied to a String in the parameter map. If the content type does not
begin with "text", then the MultipartFile will be copied to a byte array within the parameter map instead.

Note
The HttpInboundEndpoint will locate a MultipartResolver in the context if one exists with the
bean name "multipartResolver" (the same name expected by Spring's DispatcherServlet). If it
does in fact locate that bean, then the support for MultipartFiles will be enabled on the
inbound request mapper. Otherwise, it will fail when trying to map a multipart-file request to
a Spring Integration Message. For more on Spring's support for MultipartResolvers, refer to
the Spring Reference Manual.

In sending a response to the client there are a number of ways to customise the behaviour of the gateway.
By default the gateway will simply acknowledge that the request was received by sending a 200 status

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 84

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

code back. It is possible to customise this response by providing an implementation of the Spring MVC
View which will be invoked with the created Message. In the case that the gateway should expect a
reply to the Message then setting the expectReply flag will cause the gateway to wait for a response
Message before creating an Http response. Below is an example of a gateway configured to use a
custom view and to wait for a response. It also shows how to customise the Http methods accepted by the
gateway, which are POST and GET by default.

<bean id="httpInbound" class="org.springframework.integration.http.HttpInboundEndpoint">
<property name="requestChannel" ref="httpRequestChannel" />
<property name="replyChannel" ref="httpReplyChannel" />
<property name="view" ref="jsonView" />
<property name="supportedMethods" >

<list>
<value>GET</value>
<value>DELETE</value>

</list>
</property>
<property name="expectReply" value="true" />
<property name="requestMapper" ref="customRequestMapper" />

</bean>

The message created from the request will be available in the Model map. The key that is used for that
map entry by default is 'requestMessage', but this can be overridden by setting the 'requestKey' property
on the endpoint's configuration.

23.3 Http Outbound Gateway

To configure the HttpOutboundEndpoint write a bean definition like this:

<bean id="httpOutbound" class="org.springframework.integration.http.HttpOutboundEndpoint" >
<property name="outputChannel" ref="responseChannel" />

</bean>

This bean definition will execute Http requests by first converting the message to the Http request using
an instance of DefaultOutboundRequestMapper. This will expect to find the request URL in the
message header under the key HttpHeaders.REQUEST_URL. It is also possible to set a default target
URL as a constructor argument along with other options as shown below.

<bean id="httpOutbound" class="org.springframework.integration.http.HttpOutboundEndpoint" >
<constructor-arg value="http://localhost:8080/example" />
<property name="outputChannel" ref="responseChannel" />
<property name="sendTimeout" value="5000" />
<property name="requestMapper" ref="customRequestMapper" />

</bean>

By default the Http request will be made using an instance of SimpleHttpRequestExecutor which
uses the JDK HttpURLConnection. Use of the Apache Commons Http Client is also supported
through the provided CommonsHttpRequestExecutor which can be injected into the outbound
gateway.

23.4 Http Namespace Support

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 85

Spring Integration provides an "http" namespace and schema definition. To include it in your
configuration, simply provide the following URI within a namespace declaration:
'http://www.springframework.org/schema/integration/http'. The schema location should then map to
'http://www.springframework.org/schema/integration/http/spring-integration-http-1.0.xsd'.

To configure an inbound http channel adapter which is an instance of HttpInboundEndpoint
configured not to expect a response.

<http:inbound-channel-adapter id="httpChannelAdapter" channel="requests" supported-methods="PUT, DELETE"/>

To configure an inbound http gateway which expects a response.

<http:inbound-gateway id="inboundGateway" request-channel="requests" reply-channel="responses"/>

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration options for an outbound Http gateway.

<http:outbound-gateway id="fullConfigWithoutMapper"
request-channel="requests"
default-url="http://localhost/test"
extract-request-payload="false"
charset="UTF-8"
request-executor="executor"
request-timeout="1234"
reply-channel="replies"/>

If you want to provide a custom OutboundRequestMapper, then a reference may be supplied to the
'request-mapper' attribute. In that case however you will not be allowed to set the default URL, charset,
and 'extract-request-payload' properties since those are all properties of the default mapper (see the
JavaDoc for DefaultOutboundRequestMapper for more information).

Spring Integration

Manual

24. TCP and UDP Support
Spring Integration provides Channel Adapters for receiving and sending messages over internet protocols.
Both UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) adapters are provided.
Each adapter provides for one-way communication over the underlying protocol. Gateways providing
two-way communication may be considered in a future release.

24.1 Introduction

Two flavors each of UDP inbound and outbound adapters are provided
UnicastSendingMessageHandler sends a datagram packet to a single destination.
UnicastReceivingChannelAdapter receives incoming datagram packets.
MulticastSendingMessageHandler sends (broadcasts) datagram packets to a multicast address.
MulticastReceivingChannelAdapter receives incoming datagram packets by joining to a
multicast address.

Two flavors each of TCP inbound and outbound adapters are provided
TcpNetSendingMessageHandler and TcpNioSendingMessageHandler send messages over
TCP. They are functionally equivalent, but use different underlying technology for socket
communication. Similarly, TcpNetReceivingChannelAdapter and
TcpNioReceivingChannelAdapter are the equivalent inbound channel adapters. The choice of
which to use in what circumstances is described below.

24.2 UDP Adapters

<ip:outbound-channel-adapter id="udpOut"
protocol="udp"
host="somehost"
port="11111"
multicast="false"
channel="exampleChannel" />

A simple UDP outbound channel adapter.

Tip
When setting multicast to true, provide the multicast address in the host attribute.

UDP is an efficient, but unreliable protocol. Two attributes are added to improve reliability. When
check-length is set to true, the adapter precedes the message data with a length field (4 bytes in network
byte order). This enables the receiving side to verify the length of the packet received. If a receiving
system uses a buffer that is too short the contain the packet, the packet can be truncated. The length
header provides a mechanism to detect this.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 87

<ip:outbound-channel-adapter id="udpOut"
protocol="udp"
host="somehost"
port="11111"
multicast="false"
check-length="true"
channel="exampleChannel" />

An outbound channel adapter that adds length checking to the datagram packets.

Tip
The recipient of the packet must also be configured to expect a length to precede the actual
data. For a Spring Integration UDP inbound channel adapter, set its check-length
attribute.

The second reliability improvement allows an application-level acknowledgment protocol to be used. The
receiver must send an acknowledgment to the sender within a specified time.

<ip:outbound-channel-adapter id="udpOut"
protocol="udp"
host="somehost"
port="11111"
multicast="false"
check-length="true"
acknowledge="true"
ack-host="thishost"
ack-port="22222"
ack-timeout="10000"
channel="exampleChannel" />

An outbound channel adapter that adds length checking to the datagram packets and waits for an
acknowledgment.

Tip
Setting acknowledge to true implies the recipient of the packet can interpret the header added
to the packet containing acknowledgment data (host and port). Most likely, the recipient will
be a Spring Integration inbound channel adapter.

Tip
When multicast is true, an additional attribute min-acks-for-success specifies how many
acknowledgments must be received within the ack-timeout.

For even more reliable networking, TCP can be used.

<ip:inbound-channel-adapter id="udpReceiver"
channel="udpOutChannel"
protocol="udp"
port="11111"
receive-buffer-size="500"
multicast="false"

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 88

check-length="true" />

A basic unicast inbound udp channel adapter.

<ip:inbound-channel-adapter id="udpReceiver"
channel="udpOutChannel"
protocol="udp"
port="11111"
receive-buffer-size="500"
multicast="true"
multicast-address="225.6.7.8"
check-length="true" />

A basic multicast inbound udp channel adapter.

24.3 TCP Adapters

Two versions of TCP inbound and outbound channel adapters are provided; these adapters use either
java.net.Socket IO, or java.nio.channels.SocketChannel IO. The choice of which to use depends on the
application. The TcpNet* adapters use java.net.Socket and the TcpNio* adapters use
java.nio.channels.ChannelSocket. It is not anticipated that much difference in performance, if any, would
exist between these technologies on the outbound side. This is because each outbound adapter sends data
over only one socket. On the receiving side however, consideration should be given to the number of
connections. For the TcpNetReceivingChannelAdapter a thread is dedicated to receiving data on
each connected socket; the pool size must therefore be set large enough to handle the expected number of
connections. For the TcpNioReceivingChannelAdapter threads are used on an as-needed basis
and it is likely that many fewer threads would be needed. If a small number of connections is expected,
we expect that the the TcpNetReceivingChannelAdapter will give the best performance. For large number
of connections, the TcpNioReceivingChannelAdapter will likely give the best performance. In addition,
the TcpNioReceivingChannelAdapter provides an attribute using-direct-buffers which attempts
to use direct buffers. See java.nio.ByteBuffer for more information about direct buffers.

Tip
It is not expected that direct buffers will offer much, if any, performance difference. You
should experiment with the use of TcpNxx* adapters, and direct buffers when using TcpNio*
adapters to determine the best performance in your environment.

TCP is a streaming protocol; this means that some structure has to be provided to data transported over
TCP, so the receiver can demarcate the data into discrete messages. Three standard message formats are
provided for this purpose; you can also provide code for your own custom format. The first of the three
standard formats is length-header, in which case a 4 byte length header precedes the data; this is the
default. The second is stx-etx in which the message data is preceded by an STX (0x02) character and
terminated with an ETX (0x03) character. The third is crlf in which the message is terminated with a
carriage return and line feed (\r\n). The first format (the default) is likely to be the most performant. This
is because we can determine exactly how many bytes to read to obtain the complete message. The other
two formats require examining each byte to determine if the end of the message has been received. The
length-header format can also handle binary data. The other two formats can only handle text data

Spring Integration

Manual

(specifcally, data that does not contain characters 0x02 and 0x03 for stx-etx and 0x0d and 0x0a for crlf).
This limitation can be avoided by appropriate character escaping techniques in the application layer. No
such escaping is provided by the adapters; therefore it is not recommened that these formats be used
without some transformation if the data may contain these characters.

<ip:outbound-channel-adapter id="tcpOut"
channel="inChannel"
protocol="tcp"
host="somehost"
port="11111"
message-format="length-header"
using-nio="true"
using-direct-buffers="false"
so-keep-alive="true"
so-timeout="10000"
/>

A basic outbound tcp channel adapter. This adapter uses java.nio.channels.SocketChannel. To use a
java.net.Socket, set using-nio to false and using-direct-buffers is not relevant.

<ip:inbound-channel-adapter id="tcp1"
channel="channel"
protocol="tcp"
port="11111"
message-format="length-header"
using-nio="true"
using-direct-buffers="false"
pool-size="2"
so-keep-alive="true"
so-timeout="10000"
/>

A basic inbound tcp channel adapter. This adapter uses java.nio.channels.SocketChannel. To use a
java.net.Socket, set using-nio to false and using-direct-buffers is not relevant.

24.4 IP Adapter Attributes

Table 24.1. IP Outbound Channel Adapter Attributes

Attribute Name TCP? UDP? Allowed Values Attribute Description

protocol Y Y tcp, udp Determines whether the adapter uses TCP
or UDP, over IP.

host Y Y The host name or ip address of the
destination. For multicast udp adapters, the
multicast address.

port Y Y The port on the destination.

multicast N Y true, false Whether or not the udp adapter uses
multicast.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 90

Attribute Name TCP? UDP? Allowed Values Attribute Description

acknowledge N Y true, false Whether or not a udp adapter requires an
acknowledgment from the destination.
when enabled, requires setting the
following 4 attributes.

ack-host N Y When acknowledge is true, indicates the
host or ip address to which the
acknowledgment should be sent. Usually
the current host, but may be different, for
example when Network Address Transation
(NAT) is being used.

ack-port N Y When acknowledge is true, indicates the
port to which the acknowledgment should
be sent. The adapter listens on this port for
acknowledgments.

ack-timeout N Y When acknowledge is true, indicates the
time in milliseconds that the adapter will
wait for an acknowlegment. If an
acknowlegment is not received in time, the
adapter will throw an exception.

min-acks-for-
success

N Y Defaults to 1. For multicast adapters, you
can set this to a larger value, requiring
acknowlegments from multiple
destinations.

check-length N Y true, false Whether or not a udp adapter includes a
data length field in the packet sent to the
destination.

time-to-live N Y For multicast adapters, specifies the time to
live attribute for the MulticastSocket;
controls the scope of the multicasts. Refer
to the Java API documentation for more
information.

using-nio Y N true, false Whether or not the tcp adapter is using
NIO. Refer to the java.nio package for more
information.

using-direct-buffers Y N true, false When using NIO, whether or not the tcp
adapter uses direct buffers. Refer to
java.nio.ByteBuffer documentation
for more information.

Spring Integration

Manual

Attribute Name TCP? UDP? Allowed Values Attribute Description

message-format Y N length-header,
stx-etx, crlf, custom

The formatting that the tcp adapter uses so
the receiver can demarcate messages.
Defaults to length-header. See the
discussion above for details about each
format.

custom-socket-
writer-class-name

Y N Subclass of
TcpNetSocket-
Writer or
TcpNioSocket-
Writer

When message-format is 'custom' the name
of the class that implements the custom
format. Must be a subclass of the
TcpNxxSocketWriter, depending on
whether using-nio is false or true.

so-timeout Y Y See java.net.Socket and
java.net.DatagramSocket
setSoTimeout() methods for more
information.

so-send-buffer-size Y Y See java.net.Socket and
java.net.DatagramSocket
setSendBufferSize() methods for more
information.

so-receive-buffer-
size

N Y Used for udp acknowlegment packets. See
java.net.DatagramSocket
setReceiveBufferSize() methods for more
information.

so-keep-alive Y N true, false See java.net.Socket.
setKeepAlive().

so-linger Y N Sets linger to true with supplied value. See
java.net.Socket.
setSoLinger().

so-tcp-no-delay Y N true, false See java.net.Socket.
setTcpNoDelay().

so-traffic-class Y N See java.net.Socket.
setTrafficClass().

Table 24.2. IP Inbound Channel Adapter Attributes

Attribute Name TCP? UDP? Allowed Values Attribute Description

protocol Y Y tcp, udp Determines whether the adapter uses TCP
or UDP, over IP.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 92

Attribute Name TCP? UDP? Allowed Values Attribute Description

port Y Y The port on which the adapter listens.

multicast N Y true, false Whether or not the udp adapter uses
multicast.

multicast-address N Y When multicast is true, the multicast
address to which the adapter joins.

pool-size Y Y Specifies the concurrency. For udp,
specifies how many packets can be handled
concurrently. For tcp, not using nio,
specifies the number of concurrent
connections supported by the adapter. For
tcp, using nio, specifies the number of tcp
fragments that are concurrently reassembled
into complete messages.

receive-buffer-size N Y For udp, the size of the buffer used to
receive DatagramPackets. Usually set to the
MTU size. If a smaller buffer is used than
the size of the sent packet, truncation can
occur. This can be detected by means of the
check-length attribute.

check-length N Y true, false Whether or not a udp adapter expects a data
length field in the packet received. Used to
detect packet truncation.

using-nio Y N true, false Whether or not the tcp adapter is using
NIO. Refer to the java.nio package for more
information.

using-direct-buffers Y N true, false When using NIO, whether or not the tcp
adapter uses direct buffers. Refer to
java.nio.ByteBuffer documentation for
more information.

message-format Y N length-header,
stx-etx, crlf, custom

The formatting that the tcp adapter uses so
the adapter can demarcate messages.
Defaults to length-header. See the
discussion above for details about each
format.

custom-socket-
reader-class-name

Y N Subclass of
TcpNetSocket-
Reader or
TcpNioSocket-

When message-format is 'custom' the name
of the class that implements the custom
format. Must be a subclass of the
TcpNxxSocketReader, depending on

Spring Integration

Manual

Attribute Name TCP? UDP? Allowed Values Attribute Description

Reader whether using-nio is false or true.

so-timeout Y Y See java.net.Socket and
java.net.DatagramSocket
setSoTimeout() methods for more
information.

so-send-buffer-size N Y Used for udp acknowlegment packets. See
java.net.DatagramSocket
setSendBufferSize() methods for more
information.

so-receive-buffer-
size

Y Y See java.net.Socket and
java.net.DatagramSocket
setReceiveBufferSize() for more
information.

so-keep-alive Y N true, false See java.net.Socket.
setKeepAlive().

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 94

25. Mail Support

25.1 Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the MailSendingMessageHandler. It
delegates to a configured instance of Spring's JavaMailSender:

JavaMailSender mailSender = (JavaMailSender) context.getBean("mailSender");

MailSendingMessageHandler mailSendingHandler = new MailSendingMessageHandler(mailSender);

MailSendingMessageHandler has various mapping strategies that use Spring's MailMessage
abstraction. If the received Message's payload is already a MailMessage instance, it will be sent directly.
Therefore, it is generally recommended to precede this consumer with a Transformer for non-trivial
MailMessage construction requirements. However, a few simple Message mapping strategies are
supported out-of-the-box. For example, if the message payload is a byte array, then that will be mapped to
an attachment. For simple text-based emails, you can provide a String-based Message payload. In that
case, a MailMessage will be created with that String as the text content. If you are working with a
Message payload type whose toString() method returns appropriate mail text content, then consider
adding Spring Integration's ObjectToStringTransformer prior to the outbound Mail adapter (see the
example within Section 9.2, “The <transformer> Element” for more detail).

The outbound MailMessage may also be configured with certain values from the MessageHeaders. If
available, values will be mapped to the outbound mail's properties, such as the recipients (TO, CC, and
BCC), the from/reply-to, and the subject. The header names are defined by the following constants:

MailHeaders.SUBJECT
MailHeaders.TO
MailHeaders.CC
MailHeaders.BCC
MailHeaders.FROM
MailHeaders.REPLY_TO

25.2 Mail-Receiving Channel Adapter

Spring Integration also provides support for inbound email with the
MailReceivingMessageSource. It delegates to a configured instance of Spring Integration's own
MailReceiver interface, and there are two implementations: Pop3MailReceiver and
ImapMailReceiver. The easiest way to instantiate either of these is by passing the 'uri' for a Mail
store to the receiver's constructor. For example:

MailReceiver receiver = new Pop3MailReceiver("pop3://usr:pwd@localhost/INBOX");

Another option for receiving mail is the IMAP "idle" command (if supported by the mail server you are
using). Spring Integration provides the ImapIdleChannelAdapter which is itself a

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 95

Message-producing endpoint. It delegates to an instance of the ImapMailReceiver but enables
asynchronous reception of Mail Messages. There are examples in the next section of configuring both
types of inbound Channel Adapter with Spring Integration's namespace support in the 'mail' schema.

25.3 Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the following
schema locations.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mail="http://www.springframework.org/schema/integration/mail"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration/mail
http://www.springframework.org/schema/integration/mail/spring-integration-mail-1.0.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the MailSender:

<mail:outbound-channel-adapter channel="outboundMail"
mail-sender="mailSender"/>

Alternatively, provide the host, username, and password:

<mail:outbound-channel-adapter channel="outboundMail"
host="somehost" username="someuser" password="somepassword"/>

Note
Keep in mind, as with any outbound Channel Adapter, if the referenced channel is a
PollableChannel, a <poller> sub-element should be provided with either an interval-trigger or
cron-trigger.

To configure an inbound Channel Adapter, you have the choice between polling or event-driven
(assuming your mail server supports IMAP IDLE - if not, then polling is the only option). A polling
Channel Adapter simply requires the store URI and the channel to send inbound Messages to. The URI
may begin with "pop3" or "imap":

<mail:inbound-channel-adapter channel="mailIn"
store-uri="imap://usr:pwd@imap.example.com/INBOX">

<poller max-messages-per-poll="3">
<interval-trigger interval="30" time-unit="SECONDS"/>

</poller>
</mail:inbound-channel-adapter>

If you do have IMAP idle support, then you may want to configure the "imap-idle-channel-adapter"
element instead. Since the "idle" command enables event-driven notifications, no poller is necessary for
this adapter. It will send a Message to the specified channel as soon as it receives the notification that new
mail is available:

<mail:imap-idle-channel-adapter channel="mailIn"
store-uri="imaps://usr:pwd@imap.example.com:993/INBOX"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 96

When using the namespace support, a header-enricher Message Transformer is also available. This
simplifies the application of the headers mentioned above to any Message prior to sending to the
Mail-sending Channel Adapter.

<mail:header-enricher subject="Example Mail"
to="to@example.org"
cc="cc@example.org"
bcc="bcc@example.org"
from="from@example.org"
reply-to="replyTo@example.org"
overwrite="false"/>

Spring Integration

Manual

26. JMX Support
Spring Integration provides Channel Adapters for receiving and publishing JMX Notifications. There is
also an inbound Channel Adapter for polling JMX MBean attribute values, and an outbound Channel
Adapter for invoking JMX MBean operations.

26.1 Notification Listening Channel Adapter

The Notification-listening Channel Adapter requires a JMX ObjectName for the MBean that publishes
Notifications to which this listener should be registered. A very simple configuration might look like this:

<jmx:notification-listening-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=publisher"/>

Tip
The notification-listening-channel-adapter registers with an MBeanServer at startup, and the
default bean name is "mbeanServer" which happens to be the same bean name generated
when using Spring's <context:mbean-server/> element. If you need to use a different name be
sure to include the "mbean-server" attribute.

The adapter can also accept a reference to a NotificationFilter and a "handback" Object to provide some
context that is passed back with each Notification. Both of those attributes are optional. Extending the
above example to include those attributes as well as an explicit MBeanServer bean name would produce
the following:

<jmx:notification-listening-channel-adapter id="adapter"
channel="channel"
mbean-server="someServer"
object-name="example.domain:name=somePublisher"
notification-fliter="notificationFilter"
handback="myHandback"/>

Since the notification-listening adapter is registered with the MBeanServer directly, it is event-driven and
does not require any poller configuration.

26.2 Notification Publishing Channel Adapter

The Notification-publishing Channel Adapter is relatively simple. It only requires a JMX ObjectName in
its configuration as shown below.

<context:mbean:export/>

<jmx:notification-publishing-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=publisher"/>

It does also require that an MBeanExporter be present in the context. That is why the

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 98

<context:mbean-export/> element is shown above as well.

When Messages are sent to the channel for this adapter, the Notification is created from the Message
content. If the payload is a String it will be passed as the "message" text for the Notification. Any other
payload type will be passed as the "userData" of the Notification.

JMX Notifications also have a "type", and it should be a dot-delimited String. There are two ways to
provide the type. Precedence will always be given to a Message header value associated with the
JmxHeaders.NOTIFICATION_TYPE key. On the other hand, you can rely on a fallback
"default-notification-type" attribute provided in the configuration.

<context:mbean:export/>

<jmx:notification-publishing-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=publisher"
default-notification-type="some.default.type"/>

26.3 Attribute Polling Channel Adapter

The attribute polling adapter is useful when you have a requirement to periodically check on some value
that is available through an MBean as a managed attribute. The poller can be configured in the same way
as any other polling adapter in Spring Integration (or it's possible to rely on the default poller). The
"object-name" and "attribute-name" are required. An MBeanServer reference is also required, but it will
automatically check for a bean named "mbeanServer" by default just like the
notification-listening-channel-adapter described above.

<jmx:attribute-polling-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=someService"
attribute-name="InvocationCount">

<si:poller max-messages-per-poll="1">
<si:interval-trigger interval="5000"/>

</si:poller>
</jmx:attribute-polling-channel-adapter>

26.4 Operation Invoking Channel Adapter

The operation-invoking-channel-adapter enables Message-driven invocation of any managed operation
exposed by an MBean. Each invocation requires the operation name to be invoked and the ObjectName of
the target MBean. In each case, the adapter will first check for header values on the Message itself. The
keys for these headers are defined as JmxHeaders.OPERATION_NAME and
JmxHeaders.OBJECT_NAME, respectively. If relying on those Message headers, the configuration is
trivial.

<jmx:operation-invoking-channel-adapter id="adapter"/>

That adapter only needs to be able to discover the "mbeanServer" bean. If a different bean name is
required, then provide the "mbean-server" attribute with a reference.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 99

The payload of the Message will be mapped to the parameters of the operation, if any. A Map-typed
payload with String keys is treated as name/value pairs whereas a List or array would be passed as a
simple argument list (with no explicit parameter names). If the operation requires a single parameter
value, then the payload can represent that single value, and if the operation requires no parameters, then
the payload would be ignored.

Similar to the behavior described above for the Notification type resoltion, the
operation-invoking-channel-adapter will also fallback to default values if provided:

<jmx:operation-invoking-channel-adapter id="adapter"
default-object-name="example.domain:name=TestBean"
default-operation-name="ping"/>

If you want to expose a channel for a single common operation to be invoked by Messages that need not
contain headers, then that option works well.

26.5 Control Bus

Spring Integration components themselves may be exposed as MBeans when the Control Bus is
configured. As described in (EIP), the idea behind the Control Bus is that the same messaging system can
be used for monitoring and managing the components within the framework as is used for
"application-level" messaging. In Spring Integration we build upon the adapters described above so that
it's possible to send Messages as a means of invoking exposed operations. Internally, the Control Bus uses
a Spring MBeanExporter instance to expose the various endpoints and channels. To create an instance of
the Control Bus, define a bean and provide a reference to an MBeanServer and a domain name (we will
be providing namespace support). The domain can be left out in which case the default domain is
"org.springframework.integration".

<bean id="controlBus" class="org.springframework.integration.control.ControlBus">
<constructor-arg ref="mbeanServer"/>
<constructor-arg value="example.domain"/>

</bean>

<bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean">
<property name="locateExistingServerIfPossible" value="true"/>

</bean>

The Control Bus has an "operationChannel" that can be accessed for invoking operations on the MBeans
that it has exported. This will also be covered by namespace support soon to make it easier to configure
references to that channel for other producers. We will likely add some other channels for notifications
and attribute polling as well.

The Control Bus functionality is a work in progress. At this time, one can perform some basic monitoring
of Message Channels and/or invoke Lifecycle operations (start/stop) on Message Endpoints. Now that the
foundation is available, however, we will be able to extend the attributes and operations that are being
exposed.

Spring Integration

Manual

http://www.eaipatterns.com/ControlBus.html

27. Stream Support

27.1 Introduction

In many cases application data is obtained from a stream. It is not recommended to send a reference to a
Stream as a message payload to a consumer. Instead messages are created from data that is read from an
input stream and message payloads are written to an output stream one by one.

27.2 Reading from streams

Spring Integration provides two adapters for streams. Both ByteStreamReadingMessageSource
and CharacterStreamReadingMessageSource implement MessageSource. By configuring
one of these within a channel-adapter element, the polling period can be configured, and the Message Bus
can automatically detect and schedule them. The byte stream version requires an InputStream, and the
character stream version requires a Reader as the single constructor argument. The
ByteStreamReadingMessageSource also accepts the 'bytesPerMessage' property to determine
how many bytes it will attempt to read into each Message. The default value is 1024

<bean class="org.springframework.integration.stream.ByteStreamReadingMessageSource">
<constructor-arg ref="someInputStream"/>
<property name="bytesPerMessage" value="2048"/>

</bean>

<bean class="org.springframework.integration.stream.CharacterStreamReadingMessageSource">
<constructor-arg ref="someReader"/>

</bean>

27.3 Writing to streams

For target streams, there are also two implementations: ByteStreamWritingMessageHandler and
CharacterStreamWritingMessageHandler. Each requires a single constructor argument -
OutputStream for byte streams or Writer for character streams, and each provides a second
constructor that adds the optional 'bufferSize'. Since both of these ultimately implement the
MessageHandler interface, they can be referenced from a channel-adapter configuration as described
in more detail in Chapter 6, Channel Adapter.

<bean class="org.springframework.integration.stream.ByteStreamWritingMessageHandler">
<constructor-arg ref="someOutputStream"/>
<constructor-arg value="1024"/>

</bean>

<bean class="org.springframework.integration.stream.CharacterStreamWritingMessageHandler">
<constructor-arg ref="someWriter"/>

</bean>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 101

27.4 Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace defined. The
following schema locations are needed to use it.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/integration/stream"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-integration-stream-1.0.xsd">

To configure the inbound channel adapter the following code snippet shows the different configuration
options that are supported.

<stdin-channel-adapter id="adapterWithDefaultCharset"/>

<stdin-channel-adapter id="adapterWithProvidedCharset" charset="UTF-8"/>

To configure the outbound channel adapter you can use the namespace support as well. The following
code snippet shows the different configuration for an outbound channel adapters.

<stdout-channel-adapter id="stdoutAdapterWithDefaultCharset" channel="testChannel"/>

<stdout-channel-adapter id="stdoutAdapterWithProvidedCharset" charset="UTF-8" channel="testChannel"/>

<stderr-channel-adapter id="stderrAdapter" channel="testChannel"/>

<stdout-channel-adapter id="newlineAdapter" append-newline="true" channel="testChannel"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 102

28. Spring ApplicationEvent Support
Spring Integration provides support for inbound and outbound ApplicationEvents as defined by the
underlying Spring Framework. For more information about the events and listeners, refer to the Spring
Reference Manual.

28.1 Receiving Spring ApplicationEvents

To receive events and send them to a channel, simply define an instance of Spring Integration's
ApplicationEventListeningChannelAdapter. This class is an implementation of Spring's
ApplicationListener interface. By default it will pass all received events as Spring Integration
Messages. To limit based on the type of event, configure the list of event types that you want to receive
with the 'eventTypes' property.

28.2 Sending Spring ApplicationEvents

To send Spring ApplicationEvents, create an instance of the
ApplicationEventPublishingMessageHandler and register it within an endpoint. This
implementation of the MessageHandler interface also implements Spring's
ApplicationEventPublisherAware interface and thus acts as a bridge between Spring
Integration Messages and ApplicationEvents.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 103

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

29. Dealing with XML Payloads

29.1 Introduction

Spring Integration's XML support extends the Spring Integration Core with implementations of splitter,
transformer, selector and router designed to make working with xml messages in Spring Integration
simple. The provided messaging components are designed to work with xml represented in a range of
formats including instances of java.lang.String, org.w3c.dom.Document and
javax.xml.transform.Source. It should be noted however that where a DOM representation is
required, for example in order to evaluate an XPath expression, the String payload will be converted
into the required type and then converted back again to String. Components that require an instance of
DocumentBuilder will create a namespace aware instance if one is not provided. Where greater
control of the document being created is required an appropriately configured instance of
DocumentBuilder should be provided.

29.2 Transforming xml payloads

This section will explain the workings of UnmarshallingTransformer,
MarshallingTransformer, XsltPayloadTransformer and how to configure them as beans.
All of the provided xml transformers extend AbstractTransformer or
AbstractPayloadTransformer and therefore implement Transformer. When configuring xml
transformers as beans in Spring Integration you would normally configure the transformer in conjunction
with either a MessageTransformingChannelInterceptor or a
MessageTransformingHandler. This allows the transformer to be used as either an interceptor,
which transforms the message as it is sent or received to the channel, or as an endpoint. Finally the
namespace support will be discussed which allows for the simple configuration of the transformers as
elements in XML.

UnmarshallingTransformer allows an xml Source to be unmarshalled using implementations of
Spring OXM Unmarshaller. Spring OXM provides several implementations supporting marshalling
and unmarshalling using JAXB, Castor and JiBX amongst others. Since the unmarshaller requires an
instance of Source where the message payload is not currently an instance of Source, conversion will
be attempted. Currently String and org.w3c.dom.Document payloads are supported. Custom
conversion to a Source is also supported by injecting an implementation of SourceFactory.

<bean id="unmarshallingTransformer"
class="org.springframework.integration.xml.transformer.UnmarshallingTransformer">

<constructor-arg>
<bean class="org.springframework.oxm.jaxb.Jaxb1Marshaller">

<property name="contextPath" value="org.example" />
</bean>

</constructor-arg>
</bean>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 104

The MarshallingTransformer allows an object graph to be converted into xml using a Spring
OXM Marshaller. By default the MarshallingTransformer will return a DomResult.
However the type of result can be controlled by configuring an alternative ResultFactory such as
StringResultFactory. In many cases it will be more convenient to transform the payload into an
alternative xml format. To achieve this configure a ResultTransformer. Two implementations are
provided, one which converts to String and another which converts to Document.

<bean id="marshallingTransformer"
class="org.springframework.integration.xml.transformer.MarshallingTransformer">

<constructor-arg>
<bean class="org.springframework.oxm.jaxb.Jaxb1Marshaller">

<property name="contextPath" value="org.example" />
</bean>

</constructor-arg>
<constructor-arg>

<bean class="org.springframework.integration.xml.transformer.ResultToDocumentTransformer" />
</constructor-arg>

</bean>

By default, the MarshallingTransformer will pass the payload Object to the Marshaller, but if
its boolean "extractPayload" property is set to "false", the entire Message instance will be passed to the
Marshaller instead. That may be useful for certain custom implementations of the Marshaller
interface, but typically the payload is the appropriate source Object for marshalling when delegating to
any of the various out-of-the-box Marshaller implementations.

XsltPayloadTransformer transforms xml payloads using xsl. The transformer requires an instance
of either Resource or Templates. Passing in a Templates instance allows for greater configuration
of the TransformerFactory used to create the template instance. As in the case of
XmlPayloadMarshallingTransformer by default XsltPayloadTransformer will create a
message with a Result payload. This can be customised by providing a ResultFactory and/or a
ResultTransformer.

<bean id="xsltPayloadTransformer"
class="org.springframework.integration.xml.transformer.XsltPayloadTransformer">

<constructor-arg value="classpath:org/example/xsl/transform.xsl" />
<constructor-arg>

<bean class="org.springframework.integration.xml.transformer.ResultToDocumentTransformer" />
</constructor-arg>

</bean>

29.3 Namespace support for xml transformers

Namespace support for all xml transformers is provided in the Spring Integration xml namespace, a
template for which can be seen below. The namespace support for transformers creates an instance of
either EventDrivenConsumer or PollingConsumer according to the type of the provided input
channel. The namespace support is designed to reduce the amount of xml configuration by allowing the
creation of an endpoint and transformer using one element.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 105

xmlns:integration="http://www.springframework.org/schema/integration"
xmlns:si-xml="http://www.springframework.org/schema/integration/xml"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/xml
http://www.springframework.org/schema/integration/xml/spring-integration-xml-1.0.xsd">

</beans>

The namespace support for UnmarshallingTransformer is shown below. Since the namespace is
now creating an endpoint instance rather than a transformer, a poller can also be nested within the
element to control the polling of the input channel.

<si-xml:unmarshalling-transformer id="defaultUnmarshaller"
input-channel="input"
output-channel="output"
unmarshaller="unmarshaller"/>

<si-xml:unmarshalling-transformer id="unmarshallerWithPoller"
input-channel="input"
output-channel="output"
unmarshaller="unmarshaller">
<si:poller>

<si:interval-trigger interval="2000"/>
</si:poller>

<si-xml:unmarshalling-transformer/>

The namespace support for the marshalling transformer requires an input channel, output channel and a
reference to a marshaller. The optional result-type attribute can be used to control the type of result
created, valid values are StringResult or DomResult (the default). Where the provided result types are not
sufficient a reference to a custom implementation of ResultFactory can be provided as an alternative
to setting the result-type attribute using the result-factory attribute. An optional result-transformer can
also be specified in order to convert the created Result after marshalling.

<si-xml:marshalling-transformer
input-channel="marshallingTransformerStringResultFactory"
output-channel="output"
marshaller="marshaller"
result-type="StringResult" />

<si-xml:marshalling-transformer
input-channel="marshallingTransformerWithResultTransformer"
output-channel="output"
marshaller="marshaller"
result-transformer="resultTransformer" />

<bean id="resultTransformer"
class="org.springframework.integration.xml.transformer.ResultToStringTransformer"/>

Namespace support for the XsltPayloadTransformer allows either a resource to be passed in in
order to create the Templates instance or alternatively a precreated Templates instance can be
passed in as a reference. In common with the marshalling transformer the type of the result output can be
controlled by specifying either the result-factory or result-type attribute. A result-transfomer attribute can
also be used to reference an implementation of ResultTransfomer where conversion of the result is
required before sending.

<si-xml:xslt-transformer id="xsltTransformerWithResource"

Spring Integration

Manual

input-channel="withResourceIn"
output-channel="output"
xsl-resource="org/springframework/integration/xml/config/test.xsl"/>

<si-xml:xslt-transformer id="xsltTransformerWithTemplatesAndResultTransformer"
input-channel="withTemplatesAndResultTransformerIn"
output-channel="output"
xsl-templates="templates"
result-transformer="resultTransformer"/>

29.4 Splitting xml messages

XPathMessageSplitter supports messages with either String or Document payloads. The
splitter uses the provided XPath expression to split the payload into a number of nodes. By default this
will result in each Node instance becoming the payload of a new message. Where it is preferred that each
message be a Document the createDocuments flag can be set. Where a String payload is passed in
the payload will be converted then split before being converted back to a number of String messages. The
XPath splitter implements MessageHandler and should therefore be configured in conjunction with
an appropriate endpoint (see the namespace support below for a simpler configuration alternative).

<bean id="splittingEndpoint"
class="org.springframework.integration.endpoint.EventDrivenConsumer">

<constructor-arg ref="orderChannel" />
<constructor-arg>

<bean class="org.springframework.integration.xml.splitter.XPathMessageSplitter">
<constructor-arg value="/order/items" />
<property name="documentBuilder" ref="customisedDocumentBuilder" />
<property name="outputChannel" ref="orderItemsChannel" />

</bean>
</constructor-arg>

</bean>

29.5 Routing xml messages using XPath

Two Router implementations based on XPath are provided XPathSingleChannelRouter and
XPathMultiChannelRouter. The implementations differ in respect to how many channels any
given message may be routed to, exactly one in the case of the single channel version or zero or more in
the case of the multichannel router. Both evaluate an XPath expression against the xml payload of the
message, supported payload types by default are Node, Document and String. For other payload
types a custom implementation of XmlPayloadConverter can be provided. The router
implementations use ChannelResolver to convert the result(s) of the XPath expression to a channel
name. By default a BeanFactoryChannelResolver strategy will be used, this means that the string
returned by the XPath evaluation should correspond directly to the name of a channel. Where this is not
the case an alternative implementation of ChannelResolver can be used. Where there is a simple
mapping from Xpath result to channel name the provided MapBasedChannelResolver can be used.

<!-- Expects a channel for each value of order type to exist -->
<bean id="singleChannelRoutingEndpoint"

class="org.springframework.integration.endpoint.EventDrivenConsumer">
<constructor-arg ref="orderChannel" />
<constructor-arg>

<bean class="org.springframework.integration.xml.router.XPathSingleChannelRouter">

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 107

<constructor-arg value="/order/@type" />
</bean>

</constructor-arg>
</bean>

<!-- Multi channel router which uses a map channel resolver to resolve the channel name
based on the XPath evaluation result Since the router is multi channel it may deliver
message to one or both of the configured channels -->

<bean id="multiChannelRoutingEndpoint"
class="org.springframework.integration.endpoint.EventDrivenConsumer">

<constructor-arg ref="orderChannel" />
<constructor-arg>

<bean class="org.springframework.integration.xml.router.XPathMultiChannelRouter">
<constructor-arg value="/order/recipient" />
<property name="channelResolver">

<bean class="org.springframework.integration.channel.MapBasedChannelResolver">
<constructor-arg>

<map>
<entry key="accounts"

value-ref="accountConfirmationChannel" />
<entry key="humanResources"

value-ref="humanResourcesConfirmationChannel" />
</map>

</constructor-arg>
</bean>

</property>
</bean>

</constructor-arg>
</bean>

29.6 Selecting xml messages using XPath

Two MessageSelector implementations are provided, BooleanTestXPathMessageSelector
and StringValueTestXPathMessageSelector. BooleanTestXPathMessageSelector
requires an XPathExpression which evaluates to a boolean, for example boolean(/one/two) which will
only select messages which have an element named two which is a child of a root element named one.
StringValueTestXPathMessageSelector evaluates any XPath expression as a String and
compares the result with the provided value.

<!-- Interceptor which rejects messages that do not have a root element order -->
<bean id="orderSelectingInterceptor"

class="org.springframework.integration.channel.interceptor.MessageSelectingInterceptor">
<constructor-arg>

<bean class="org.springframework.integration.xml.selector.BooleanTestXPathMessageSelector">
<constructor-arg value="boolean(/order)" />

</bean>
</constructor-arg>

</bean>

<!-- Interceptor which rejects messages that are not version one orders -->
<bean id="versionOneOrderSelectingInterceptor"

class="org.springframework.integration.channel.interceptor.MessageSelectingInterceptor">
<constructor-arg>

<bean class="org.springframework.integration.xml.selector.StringValueTestXPathMessageSelector">
<constructor-arg value="/order/@version" index="0"/>
<constructor-arg value="1" index="1"/>

</bean>
</constructor-arg>

</bean>

Spring Integration

Manual

29.7 XPath components namespace support

All XPath based components have namespace support allowing them to be configured as Message
Endpoints with the exception of the XPath selectors which are not designed to act as endpoints. Each
component allows the XPath to either be referenced at the top level or configured via a nested
xpath-expression element. So the following configurations of an xpath-selector are all valid and represent
the general form of XPath namespace support. All forms of XPath expression result in the creation of an
XPathExpression using the Spring XPathExpressionFactory

<si-xml:xpath-selector id="xpathRefSelector"
xpath-expression="refToXpathExpression"
evaluation-result-type="boolean" />

<si-xml:xpath-selector id="selectorWithNoNS" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/name"/>

</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithOneNS" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/ns1:name"

ns-prefix="ns1" ns-uri="www.example.org" />
</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithTwoNS" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/ns1:name/ns2:type">

<map>
<entry key="ns1" value="www.example.org/one" />
<entry key="ns2" value="www.example.org/two" />

</map>
</si-xml:xpath-expression>

</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithNamespaceMapRef" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/ns1:name/ns2:type"

namespace-map="defaultNamespaces"/>
</si-xml:xpath-selector>

<util:map id="defaultNamespaces">
<util:entry key="ns1" value="www.example.org/one" />
<util:entry key="ns2" value="www.example.org/two" />

</util:map>

XPath splitter namespace support allows the creation of a Message Endpoint with an input channel and
output channel.

<!-- Split the order into items creating a new message for each item node -->
<si-xml:xpath-splitter id="orderItemSplitter"

input-channel="orderChannel"
output-channel="orderItemsChannel">

<si-xml:xpath-expression expression="/order/items"/>
</si-xml:xpath-splitter>

<!-- Split the order into items creating a new document for each item-->
<si-xml:xpath-splitter id="orderItemDocumentSplitter"

input-channel="orderChannel"
output-channel="orderItemsChannel"
create-documents="true">

<si-xml:xpath-expression expression="/order/items"/>
<si:poller>

<si:interval-trigger interval="2000"/>
</si:poller>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 109

</si-xml:xpath-splitter>

XPath router namespace support allows for the creation of a Message Endpoint with an input channel but
no output channel since the output channel is determined dynamically. The multi-channel attribute causes
the creation of a multi channel router capable of routing a single message to many channels when true and
a single channel router when false.

<!-- route the message according to exactly one order type channel -->
<si-xml:xpath-router id="orderTypeRouter" input-channel="orderChannel" multi-channel="false">

<si-xml:xpath-expression expression="/order/type"/>
</si-xml:xpath-router>

<!-- route the order to all responders-->
<si-xml:xpath-router id="responderRouter" input-channel="orderChannel" multi-channel="true">

<si-xml:xpath-expression expression="/request/responders"/>
<si:poller>

<si:interval-trigger interval="2000"/>
</si:poller>

</si-xml:xpath-router>

Spring Integration

Manual

30. Security in Spring Integration

30.1 Introduction

Spring Integration provides integration with the Spring Security project to allow role based security
checks to be applied to channel send and receive invocations.

30.2 Securing channels

Spring Integration provides the interceptor ChannelSecurityInterceptor, which extends
AbstractSecurityInterceptor and intercepts send and receive calls on the channel. Access
decisions are then made with reference to ChannelInvocationDefinitionSource which
provides the definition of the send and receive security constraints. The interceptor requires that a valid
SecurityContext has been established by authenticating with Spring Security, see the Spring
Security reference documentation for details.

Namespace support is provided to allow easy configuration of security constraints. This consists of the
secured channels tag which allows definition of one or more channel name patterns in conjunction with a
definition of the security configuration for send and receive. The pattern is a
java.util.regexp.Pattern.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/integration"

xmlns:si-security="http://www.springframework.org/schema/integration/security"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:security="http://www.springframework.org/schema/security"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-2.0.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/security
http://www.springframework.org/schema/integration/security/spring-integration-security-1.0.xsd">

<si-security:secured-channels>
<si-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>

</si-security:secured-channels>

By default the secured-channels namespace element expects a bean named authenticationManager which
implements AuthenticationManager and a bean named accessDecisionManager which
implements AccessDecisionManager. Where this is not the case references to the appropriate beans
can be configured as attributes of the secured-channels element as below.

<si-security:secured-channels access-decision-manager="customAccessDecisionManager"
authentication-manager="customAuthenticationManager">

<si-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 111

http://static.springframework.org/spring-security/site/

</si-security:secured-channels>

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 112

Appendix A. Spring Integration
Samples

Note
Starting with the current release of Spring Integration the samples are distributed as
independent Maven-based projects (http://maven.apache.org/) to minimize the setup time.
Since each project is also an Eclipse-based project, they can be imported as is using the
Eclipse Import wizard. If you prefer another IDE, configuration should be very trivial, since a
special Maven profile was setup to download all of the required dependencies for all samples.
Detailed instructions on how to build and run the samples are provided in the README.txt
file located in the samples directory of the main distribution.

A.1 The Cafe Sample

In this section, we will review a sample application that is included in the Spring Integration distribution.
This sample is inspired by one of the samples featured in Gregor Hohpe's Ramblings.

The domain is that of a Cafe, and the basic flow is depicted in the following diagram:

The Order object may contain multiple OrderItems. Once the order is placed, a Splitter will break
the composite order message into a single message per drink. Each of these is then processed by a Router
that determines whether the drink is hot or cold (checking the OrderItem object's 'isIced' property). The
Barista prepares each drink, but hot and cold drink preparation are handled by two distinct methods:
'prepareHotDrink' and 'prepareColdDrink'. The prepared drinks are then sent to the Waiter where they are
aggregated into a Delivery object.

Here is the XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/integration"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:stream="http://www.springframework.org/schema/integration/stream"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 113

http://maven.apache.org/
http://www.eaipatterns.com/ramblings.html

http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-integration-stream-1.0.xsd">

<gateway id="cafe" service-interface="org.springframework.integration.samples.cafe.Cafe"/>

<channel id="orders"/>
<splitter input-channel="orders" ref="orderSplitter" method="split" output-channel="drinks"/>

<channel id="drinks"/>
<router input-channel="drinks" ref="drinkRouter" method="resolveOrderItemChannel"/>

<channel id="coldDrinks">
<queue capacity="10"/>

</channel>
<service-activator input-channel="coldDrinks" ref="barista"

method="prepareColdDrink" output-channel="preparedDrinks"/>

<channel id="hotDrinks">
<queue capacity="10"/>

</channel>
<service-activator input-channel="hotDrinks" ref="barista"

method="prepareHotDrink" output-channel="preparedDrinks"/>

<channel id="preparedDrinks"/>
<aggregator input-channel="preparedDrinks" ref="waiter"

method="prepareDelivery" output-channel="deliveries"/>

<stream:stdout-channel-adapter id="deliveries"/>

<beans:bean id="orderSplitter"
class="org.springframework.integration.samples.cafe.xml.OrderSplitter"/>

<beans:bean id="drinkRouter"
class="org.springframework.integration.samples.cafe.xml.DrinkRouter"/>

<beans:bean id="barista" class="org.springframework.integration.samples.cafe.xml.Barista"/>

<beans:bean id="waiter" class="org.springframework.integration.samples.cafe.xml.Waiter"/>

<poller id="poller" default="true">
<interval-trigger interval="1000"/>

</poller>

</beans:beans>

As you can see, each Message Endpoint is connected to input and/or output channels. Each endpoint will
manage its own Lifecycle (by default endpoints start automatically upon initialization - to prevent that
add the "auto-startup" attribute with a value of "false"). Most importantly, notice that the objects are
simple POJOs with strongly typed method arguments. For example, here is the Splitter:

public class OrderSplitter {

public List<OrderItem> split(Order order) {
return order.getItems();

}
}

In the case of the Router, the return value does not have to be a MessageChannel instance (although it
can be). As you see in this example, a String-value representing the channel name is returned instead.

public class DrinkRouter {

public String resolveOrderItemChannel(OrderItem orderItem) {
return (orderItem.isIced()) ? "coldDrinks" : "hotDrinks";

}

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 114

}

Now turning back to the XML, you see that there are two <service-activator> elements. Each of these is
delegating to the same Barista instance but different methods: 'prepareHotDrink' or 'prepareColdDrink'
corresponding to the two channels where order items have been routed.

public class Barista {

private long hotDrinkDelay = 5000;
private long coldDrinkDelay = 1000;

private AtomicInteger hotDrinkCounter = new AtomicInteger();
private AtomicInteger coldDrinkCounter = new AtomicInteger();

public void setHotDrinkDelay(long hotDrinkDelay) {
this.hotDrinkDelay = hotDrinkDelay;

}

public void setColdDrinkDelay(long coldDrinkDelay) {
this.coldDrinkDelay = coldDrinkDelay;

}

public Drink prepareHotDrink(OrderItem orderItem) {
try {

Thread.sleep(this.hotDrinkDelay);
System.out.println(Thread.currentThread().getName()

+ " prepared hot drink #" + hotDrinkCounter.incrementAndGet()
+ " for order #" + orderItem.getOrder().getNumber() + ": " + orderItem);

return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(),
orderItem.isIced(), orderItem.getShots());

}
catch (InterruptedException e) {

Thread.currentThread().interrupt();
return null;

}
}

public Drink prepareColdDrink(OrderItem orderItem) {
try {

Thread.sleep(this.coldDrinkDelay);
System.out.println(Thread.currentThread().getName()

+ " prepared cold drink #" + coldDrinkCounter.incrementAndGet()
+ " for order #" + orderItem.getOrder().getNumber() + ": " + orderItem);

return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(),
orderItem.isIced(), orderItem.getShots());

}
catch (InterruptedException e) {

Thread.currentThread().interrupt();
return null;

}
}

}

As you can see from the code excerpt above, the barista methods have different delays (the hot drinks
take 5 times as long to prepare). This simulates work being completed at different rates. When the
CafeDemo 'main' method runs, it will loop 100 times sending a single hot drink and a single cold drink
each time. It actually sends the messages by invoking the 'placeOrder' method on the Cafe interface.
Above, you will see that the <gateway> element is specified in the configuration file. This triggers the
creation of a proxy that implements the given 'service-interface' and connects it to a channel. The channel
name is provided on the @Gateway annotation of the Cafe interface.

Spring Integration

Manual

public interface Cafe {

@Gateway(requestChannel="orders")
void placeOrder(Order order);

}

Finally, have a look at the main() method of the CafeDemo itself.

public static void main(String[] args) {
AbstractApplicationContext context = null;
if (args.length > 0) {

context = new FileSystemXmlApplicationContext(args);
}
else {

context = new ClassPathXmlApplicationContext("cafeDemo.xml", CafeDemo.class);
}
Cafe cafe = (Cafe) context.getBean("cafe");
for (int i = 1; i <= 100; i++) {

Order order = new Order(i);
order.addItem(DrinkType.LATTE, 2, false);
order.addItem(DrinkType.MOCHA, 3, true);
cafe.placeOrder(order);

}
}

Tip
To run this sample as well as 8 others, refer to the README.txt within the "samples"
directory of the main distribution as described at the beginning of this chapter.

When you run cafeDemo, you will see that the cold drinks are initially prepared more quickly than the hot
drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of the hot drink
preparation. This is to be expected based on their respective delays of 1000 and 5000 milliseconds.
However, by configuring a poller with a concurrent task executor, you can dramatically change the
results. For example, you could use a thread pool executor with 5 workers for the hot drink barista while
keeping the cold drink barista as it is:

<service-activator input-channel="hotDrinks"
ref="barista"
method="prepareHotDrink"
output-channel="preparedDrinks"/>

<service-activator input-channel="hotDrinks"
ref="barista"
method="prepareHotDrink"
output-channel="preparedDrinks">

<poller task-executor="pool">
<interval-trigger interval="1000"/>

</poller>
</service-activator>

<task:executor id="pool" pool-size="5"/>

Also, notice that the worker thread name is displayed with each invocation. You will see that the hot
drinks are prepared by the task-executor threads. If you provide a much shorter poller interval (such as
100 milliseconds), then you will notice that occasionally it throttles the input by forcing the

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 116

task-scheduler (the caller) to invoke the operation.

Note
In addition to experimenting with the poller's concurrency settings, you can also add the
'transactional' sub-element and then refer to any PlatformTransactionManager instance within
the context.

A.2 The XML Messaging Sample

The xml messaging sample in the org.springframework.integration.samples.xml illustrates how to use
some of the provided components which deal with xml payloads. The sample uses the idea of processing
an order for books represented as xml.

First the order is split into a number of messages, each one representing a single order item using the
XPath splitter component.

<si-xml:xpath-splitter id="orderItemSplitter" input-channel="ordersChannel"
output-channel="stockCheckerChannel" create-documents="true">

<si-xml:xpath-expression expression="/orderNs:order/orderNs:orderItem" namespace-map="orderNamespaceMap" />
</si-xml:xpath-splitter>

A service activator is then used to pass the message into a stock checker POJO. The order item document
is enriched with information from the stock checker about order item stock level. This enriched order item
message is then used to route the message. In the case where the order item is in stock the message is
routed to the warehouse. The XPath router makes use of a MapBasedChannelResolver which maps
the XPath evaluation result to a channel reference.

<si-xml:xpath-router id="instockRouter" channel-resolver="mapChannelResolver"
input-channel="orderRoutingChannel" resolution-required="true">

<si-xml:xpath-expression expression="/orderNs:orderItem/@in-stock" namespace-map="orderNamespaceMap" />
</si-xml:xpath-router>

<bean id="mapChannelResolver"
class="org.springframework.integration.channel.MapBasedChannelResolver">
<property name="channelMap">

<map>
<entry key="true" value-ref="warehouseDispatchChannel" />
<entry key="false" value-ref="outOfStockChannel" />

</map>
</property>

</bean>

Where the order item is not in stock the message is transformed using xslt into a format suitable for
sending to the supplier.

<si-xml:xslt-transformer input-channel="outOfStockChannel" output-channel="resupplyOrderChannel"
xsl-resource="classpath:org/springframework/integration/samples/xml/bigBooksSupplierTransformer.xsl"/>

Spring Integration

Manual

A.3 The OSGi Samples

This release of Spring Integration includes several samples that are OSGi enabled as well as samples that
were specifically designed to show some of the other benefits of OSGi and Spring Integration when used
together. First lets look at the two familiar examples that are also configured to be valid OSGi bundles.
These are Hello World and Cafe. All you need to do to see these samples work in an OSGi environment is
deploy the generated JAR into such an environment.

Use Maven to generate the JAR by executing the 'mvn install' command on either of these projects. This
will generate the JAR file in the target directory. Now you can simply drop that JAR file into the
deployment directory of your OSGi platform. For example, if you are using SpringSource dm Server,
drop the files into the 'pickup' directory within the dm Server home directory.

Note
Prior to deploying and testing Spring Integration samples in the dm Server or any other OSGi
server platform, you must have the Spring Integration and Spring bundles installed on that
platform. For example, to install Spring Integration into SpringSource dm Server, copy all
JAR files that are located in the 'dist' directory of your Spring Integration distribution into the
'repository/bundles/usr' directory of your dm Server instance (see the dm Server User Guide
for more detail on how to install bundles).

The Spring Integration samples require a few other bundles to be installed. For the 1.0.3 release, the full
list including transitive dependencies is:

• org.apache.commons.codec-1.3.0.jar

• org.apache.commons.collections-3.2.0.jar

• org.apache.commons.httpclient-3.1.0.jar

• org.apache.ws.commons.schema-1.3.2.jar

• org.springframework.oxm-1.5.5.A.jar

• org.springframework.security-2.0.4.A.jar

• org.springframework.ws-1.5.5.A.jar

• org.springframework.xml-1.5.5.A.jar

These are all located within the 'lib' directory of the Spring Integration distribution. So, you can simply
copy those JARs into the dm Server 'repository/bundles/usr' directory as well.

Note
The Spring Framework bundles (aop, beans, context, etc.) are also included in the 'lib'
directory of the Spring Integration distribution, but they do not need to be installed since they

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 118

http://www.springsource.com/products/dmserver
http://static.springsource.com/projects/dm-server/1.0.x/user-guide/htmlsingle/user-guide.html

are already part of the dm Server infrastructure. Also, note that the versions listed above are
those included with the Spring Integration 1.0.3 release. Newer versions of individual JARs
may be used as long as they are within the range specified in the MANIFEST.MF files of
those bundles that depend upon them.

Tip
The bundles listed above are appropriate for a SpringSource dm Server 1.0.x deployment
environment with a Spring Framework 2.5.x foundation. That is the version against which
Spring Integration 1.0.3 has been developed and tested. However, as of the time of the Spring
Integration 1.0.3 release, the Spring Framework 3.0 release candidates are about to be
available, and the dm Server 2.0.x milestones are available. If you want to try running these
samples in that environment, then you will need to replace the Spring Security and Spring
Web Services bundles with versions that support Spring 3.0. The OXM functionality is
moving into the Spring Framework itself for the 3.0 release. Otherwise, Spring Integration
1.0.3 has been superficially tested against the Spring 3.0 snapshots available at the time of its
release. In fact, some internal changes were made in the 1.0.3 release specifically to support
Spring 3.0 (whereas 1.0.2 does not). Spring Integration 2.0 will be built upon a Spring 3.0
foundation.

To demonstrate some of the benefits of running Spring Integration projects in an OSGi environment (e.g.
modularity, OSGi service dynamics, etc.), we have included a couple new samples that are dedicated to
highlighting those benefits. In the 'samples' directory, you will find the following two projects:

• osgi-inbound (producer bundle)

• osgi-outbound (consumer bundle)

Unlike the other samples in the distribution, these are not Maven enabled. Instead, we have simply
configured them as valid dm Server Bundle projects. That means you can import these projects directly
into an STS workspace using the "Existing Projects into Workspace" option from the Eclipse Import
wizard. Then, you can take advantage of the STS dm Server tools to deploy them into a SpringSource dm
Server instance.

Note
A simple Ant 'build.xml' file has been included within each of these projects as well. The
build files contain a single 'jar' target. Therefore, after these projects have been built within
Eclipse/STS, you can generate the bundle (JAR) directly and deploy it manually.

The structure of these projects is very simple, yet the concepts they showcase are quite powerful. The
'osgi-inbound' module enables sending a Message to a Publish-Subscribe Channel using a Spring
Integration Gateway proxy. The interesting part, however, is that the Publish-Subscribe Channel is
exported as an OSGi service via the <osgi:service/> element. As a result, any other bundles can be
developed, deployed, and maintained independently yet still subscribe to that channel.

Spring Integration

Manual

The 'osgi-outbound' module is an example of such a subscribing consumer bundle. It uses the
corresponding <osgi:reference/> element to locate the channel exported by the 'osgi-inbound' bundle. It
also contains configuration for a <file:outbound-gateway/> which is a subscriber to that channel and will
write the Message content to a file once it arrives. It then sends a response Message with the name of the
file and its location.

To make it easy to run, we've exposed a command-line interface where you can type in the command, the
message, and the file name to execute the demo. This is exposed through the OSGi console. Likewise, the
response that provides the name and location of the resulting file will also be visible within the OSGi
console.

To run these samples, make sure your OSGi environment is properly configured to host Spring
Integration bundles (as described in the note above). Deploy the producer bundle (osgi-inbound) first, and
then deploy the consumer bundle (osgi-outbound). After you have deployed these bundles, open the OSGi
console and type the following command:

osgi> help

You will see the following amidst the output:

---Spring Integration CLI-based OSGi Demo---
siSend <message> <filename> - send text to be written to a file

As you can see, that describes the command that you will be able to use to send messages. If you are
interested in how it is implemented or want to customize message sending logic or even create a new
command look at InboundDemoBundleActivator.java in the consumer bundle.

Tip
When using the SpringSource Tool Suite, you can open the OSGi console by first opening the
dm Server view and then choosing the 'Server Console' tab at the bottom (to open the dm
Server view, navigate to the dm Server instance listed in the 'Servers' view and either
double-click or hit F3). Alternatively, you can open the OSGi console by connecting to port
2401 via telnet (as long as that is enabled, and for dm Server, it is enabled by default):

telnet localhost 2401

Now send a message by typing:

osgi> siSend "Hello World" hello.txt

You will see something similar to the following in the OSGi console:

Sending message: 'Hello World'
Message sent and its contents were written to:
/usr/local/dm-server/work/tmp/spring-integration-samples/output/hello.txt

Note
It is not necessary to wrap the message in quotes if it does not contain spaces. Go ahead and
open up the file and verify that the message content was written to it.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 120

Let's assume you wanted to change the directory to which the files are written or make any other change
to the consumer bundle (osgi-outboud). You only need to update the consumer bundle and not the
producer bundle. So, go ahead and change the directory in the 'osgi-outbound.xml' file located within
'src/META-INF/spring' and refresh the consumer bundle.

Tip
If using STS to deploy to dm Server, the refresh will happen automatically. If replacing
bundles manually, you can issue the command 'refresh n' in the OSGi console (where n would
be the ID of the bundle as displayed at any point after issuing the 'ss' command to see the
short status output).

You will see that the change takes affect immediately. Not only that, you could even start developing and
deploying new bundles that subscribe to the messages produced by the producer bundle the same way as
the existing consumer bundle (osgi-outbound) does. With a publish-subscribe-channel any newly
deployed bundles would start receiving each Message as well.

Note
If you also want to modify and refresh the producer bundle, be sure to refresh the consumer
bundle afterwards as well. This is necessary because the consumer's subscription must be
explicitly re-enabled after the producer's channel disappears. You could alternatively deploy a
relatively static bundle that defines channels so that producers and consumers can be
completely dynamic without affecting each other at all. In Spring Integration 2.0, we plan to
support automatic re-subscription and more through the use of a Control Bus.

That pretty much wraps up this very simple example. Hopefully it has successfully demonstrated the
benefits of modularity and OSGi service dynamics while working with Spring Integration. Feel free to
experiment by following some of the suggestions mentioned above. For deeper coverage of the
applicability of OSGi when used with Spring Integration, read this blog by Spring Integration team
member Iwein Fuld.

Spring Integration

Manual

http://blog.springsource.com/2009/02/27/spring-integration-on-dm-server/

Appendix B. Configuration

B.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your
particular needs and at what level you prefer to work. As with the Spring framework in general, it is also
possible to mix and match the various techniques according to the particular problem at hand. For
example, you may choose the XSD-based namespace for the majority of configuration combined with a
handful of objects that are configured with annotations. As much as possible, the two provide consistent
naming. XML elements defined by the XSD schema will match the names of annotations, and the
attributes of those XML elements will match the names of annotation properties. Direct usage of the API
is of course always an option, but we expect that most users will choose one of the higher-level options,
or a combination of the namespace-based and annotation-driven configuration.

B.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the
terminology and concepts of enterprise integration. In many cases, the element names match those of the
Enterprise Integration Patterns.

To enable Spring Integration's core namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd">

You can choose any name after "xmlns:"; integration is used here for clarity, but you might prefer a
shorter abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of
auto-completion may convince you to keep the longer name for clarity. Alternatively, you can create
configuration files that use the Spring Integration schema as the primary namespace:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd">

When using this alternative, no prefix is necessary for the Spring Integration elements. On the other hand,
if you want to define a generic Spring "bean" within the same configuration file, then a prefix would be

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 122

http://www.eaipatterns.com

required for the bean element (<beans:bean ... />). Since it is generally a good idea to modularize the
configuration files themselves based on responsibility and/or architectural layer, you may find it
appropriate to use the latter approach in the integration-focused configuration files, since generic beans
are seldom necessary within those same files. For purposes of this documentation, we will assume the
"integration" namespace is primary.

Many other namespaces are provided within the Spring Integration distribution. In fact, each adapter type
(JMS, File, etc.) that provides namespace support defines its elements within a separate schema. In order
to use these elements, simply add the necessary namespaces with an "xmlns" entry and the corresponding
"schemaLocation" mapping. For example, the following root element shows several of these namespace
declarations:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xmlns:file="http://www.springframework.org/schema/integration/file"
xmlns:jms="http://www.springframework.org/schema/integration/jms"
xmlns:mail="http://www.springframework.org/schema/integration/mail"
xmlns:rmi="http://www.springframework.org/schema/integration/rmi"
xmlns:ws="http://www.springframework.org/schema/integration/ws"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/file
http://www.springframework.org/schema/integration/file/spring-integration-file-1.0.xsd
http://www.springframework.org/schema/integration/jms
http://www.springframework.org/schema/integration/jms/spring-integration-jms-1.0.xsd
http://www.springframework.org/schema/integration/mail
http://www.springframework.org/schema/integration/mail/spring-integration-mail-1.0.xsd
http://www.springframework.org/schema/integration/rmi
http://www.springframework.org/schema/integration/rmi/spring-integration-rmi-1.0.xsd
http://www.springframework.org/schema/integration/ws
http://www.springframework.org/schema/integration/ws/spring-integration-ws-1.0.xsd">

...
</beans>

The reference manual provides specific examples of the various elements in their corresponding chapters.
Here, the main thing to recognize is the consistency of the naming for each namespace URI and schema
location.

B.3 Configuring the Task Scheduler

In Spring Integration, the ApplicationContext plays the central role of a Message Bus, and there are only
a couple configuration options to be aware of. First, you may want to control the central TaskScheduler
instance. You can do so by providing a single bean with the name "taskScheduler". This is also defined as
a constant:

IntegrationContextUtils.TASK_SCHEDULER_BEAN_NAME

By default Spring Integration uses the SimpleTaskScheduler implementation. That in turn just
delegates to any instance of Spring's TaskExecutor abstraction. Therefore, it's rather trivial to supply
your own configuration. The "taskScheduler" bean is then responsible for managing all pollers. The

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 123

TaskScheduler will startup automatically by default. If you provide your own instance of
SimpleTaskScheduler however, you can set the 'autoStartup' property to false instead.

When Polling Consumers provide an explicit task-executor reference in their configuration, the
invocation of the handler methods will happen within that executor's thread pool and not the main
scheduler pool. However, when no task-executor is provided for an endpoint's poller, it will be invoked
by one of the main scheduler's threads.

Note
An endpoint is a Polling Consumer if its input channel is one of the queue-based (i.e.
pollable) channels. On the other hand, Event Driven Consumers are those whose input
channels have dispatchers instead of queues (i.e. they are subscribable). Such endpoints have
no poller configuration since their handlers will be invoked directly.

The next section will describe what happens if Exceptions occur within the asynchronous invocations.

B.4 Error Handling

As described in the overview at the very beginning of this manual, one of the main motivations behind a
Message-oriented framework like Spring Integration is to promote loose-coupling between components.
The Message Channel plays an important role in that producers and consumers do not have to know about
each other. However, the advantages also have some drawbacks. Some things become more complicated
in a very loosely coupled environment, and one example is error handling.

When sending a Message to a channel, the component that ultimately handles that Message may or may
not be operating within the same thread as the sender. If using a simple default DirectChannel (with the
<channel> element that has no <queue> sub-element and no 'task-executor' attribute), the
Message-handling will occur in the same thread as the Message-sending. In that case, if an Exception is
thrown, it can be caught by the sender (or it may propagate past the sender if it is an uncaught
RuntimeException). So far, everything is fine. This is the same behavior as an Exception-throwing
operation in a normal call stack. However, when adding the asynchronous aspect, things become much
more complicated. For instance, if the 'channel' element does provide a 'queue' sub-element, then the
component that handles the Message will be operating in a different thread than the sender. The sender
may have dropped the Message into the channel and moved on to other things. There is no way for the
Exception to be thrown directly back to that sender using standard Exception throwing techniques.
Instead, to handle errors for asynchronous processes requires an asynchronous error-handling mechanism
as well.

Spring Integration supports error handling for its components by publishing errors to a Message Channel.
Specifically, the Exception will become the payload of a Spring Integration Message. That Message will
then be sent to a Message Channel that is resolved in a way that is similar to the 'replyChannel' resolution.
First, if the request Message being handled at the time the Exception occurred contains an 'errorChannel'
header (the header name is defined in the constant: MessageHeaders.ERROR_CHANNEL), the
ErrorMessage will be sent to that channel. Otherwise, the error handler will send to a "global" channel

Spring Integration

Manual

whose bean name is "errorChannel" (this is also defined as a constant:
IntegrationContextUtils.ERROR_CHANNEL_BEAN_NAME).

Whenever relying on Spring Integration's XML namespace support, a default "errorChannel" bean will be
created behind the scenes. However, you can just as easily define your own if you want to control the
settings.

<channel id="errorChannel">
<queue capacity="500"/>

</channel>

Note
The default "errorChannel" is a PublishSubscribeChannel.

The most important thing to understand here is that the messaging-based error handling will only apply to
Exceptions that are thrown by a Spring Integration task that is executing within a TaskExecutor. This
does not apply to Exceptions thrown by a handler that is operating within the same thread as the sender
(e.g. through a DirectChannel as described above).

Note
When Exceptions occur in a scheduled poller task's execution, those exceptions will be
wrapped in ErrorMessages and sent to the 'errorChannel' as well.

To enable global error handling, simply register a handler on that channel. For example, you can
configure Spring Integration's ErrorMessageExceptionTypeRouter as the handler of an
endpoint that is subscribed to the 'errorChannel'. That router can then spread the error messages across
multiple channels based on Exception type.

B.5 Annotation Support

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to use
annotations. First, Spring Integration provides the class-level @MessageEndpoint as a stereotype
annotation meaning that is itself annotated with Spring's @Component annotation and therefore is
recognized automatically as a bean definition when using Spring component-scanning.

Even more importantly are the various Method-level annotations that indicate the annotated method is
capable of handling a message. The following example demonstrates both:

@MessageEndpoint
public class FooService {

@ServiceActivator
public void processMessage(Message message) {

...
}

}

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 125

Exactly what it means for the method to "handle" the Message depends on the particular annotation. The
following are available with Spring Integration, and the behavior of each is described in its own chapter
or section within this reference: @Transformer, @Router, @Splitter, @Aggregator, @ServiceActivator,
and @ChannelAdapter.

Note
The @MessageEndpoint is not required if using XML configuration in combination with
annotations. If you want to configure a POJO reference from the "ref" attribute of a
<service-activator/> element, it is sufficient to provide the method-level annotations. In that
case, the annotation prevents ambiguity even when no "method" attribute exists on the
<service-activator/> element.

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message's payload type.

public class FooService {

@ServiceActivator
public void bar(Foo foo) {

...
}

}

When the method parameter should be mapped from a value in the MessageHeaders, another option
is to use the parameter-level @Header annotation. In general, methods annotated with the Spring
Integration annotations can either accept the Message itself, the message payload, or a header value
(with @Header) as the parameter. In fact, the method can accept a combination, such as:

public class FooService {

@ServiceActivator
public void bar(String payload, @Header("x") int valueX, @Header("y") int valueY) {

...
}

}

There is also a @Headers annotation that provides all of the Message headers as a Map:

public class FooService {

@ServiceActivator
public void bar(String payload, @Headers Map<String, Object> headerMap) {

...
}

}

A more powerful and flexible way to map Messages to method arguments is to use @MessageMapping
annotation which allows you to define expression via Spring 3.0 Expression Language support to help
parse the message payload and/or header and map the parsed values to method arguments.

Spring Integration

Manual

For example:

public void fromMessageToMethod(@MessageMapping("headers.day") String argA,
@MessageMapping("#this") Message message,
@MessageMapping("payload") Employee payloadArg,
@MessageMapping("payload.fname") String value,
@MessageMapping("headers") Map headers) { ... }

As you can see, the above method takes 5 arguments where:

• First - will be mapped to the value of 'day' header

• Second - will be mapped to the Message itself

• Third - will be mapped to the Payload

• Fourth - will be mapped to the 'fname' property of a Payload object

• Fifth - will be mapped to MessageHeaders

Tip
A Map-typed argument does not strictly require the use of the @Headers annotation. In other
words the following is also valid:

public void bar(String payload, Map<String, Object> headerMap)

However this can lead to unresolvable ambiguities if the payload is itself a Map. For that
reason, we highly recommend using the annotation whenever expecting the headers. For a
much more detailed description, see the javadoc for
MethodParameterMessageMapper.

For several of these annotations, when a Message-handling method returns a non-null value, the endpoint
will attempt to send a reply. This is consistent across both configuration options (namespace and
annotations) in that such an endpoint's output channel will be used if available, and the
REPLY_CHANNEL message header value will be used as a fallback.

Tip
The combination of output channels on endpoints and the reply channel message header
enables a pipeline approach where multiple components have an output channel, and the final
component simply allows the reply message to be forwarded to the reply channel as specified
in the original request message. In other words, the final component depends on the
information provided by the original sender and can dynamically support any number of
clients as a result. This is an example of Return Address.

In addition to the examples shown here, these annotations also support inputChannel and outputChannel
properties.

public class FooService {

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 127

http://eaipatterns.com/ReturnAddress.html

@ServiceActivator(inputChannel="input", outputChannel="output")
public void bar(String payload, @Headers Map<String, Object> headerMap) {

...
}

}

That provides a pure annotation-driven alternative to the XML configuration. However, it is generally
recommended to use XML for the endpoints, since it is easier to keep track of the overall configuration in
a single, external location (and besides the namespace-based XML configuration is not very verbose). If
you do prefer to provide channels with the annotations however, you just need to enable a
BeanPostProcessor. The following element should be added:

<annotation-config/>

Note
When configuring the "inputChannel" and "outputChannel" with annotations, the
"inputChannel" must be a reference to a SubscribableChannel instance. Otherwise, it
would be necessary to also provide the full poller configuration via annotations, and those
settings (e.g. the trigger for scheduling the poller) should be externalized rather than
hard-coded within an annotation. If the input channel that you want to receive Messages from
is indeed a PollableChannel instance, one option to consider is the Messaging Bridge.
Spring Integration's "bridge" element can be used to connect a PollableChannel directly to a
SubscribableChannel. Then, the polling metadata is externally configured, but the annotation
option is still available. For more detail see Chapter 15, Messaging Bridge.

B.6 Message Mapping rules and conventions

Spring Integration implements a flexible facility to map Messages to Methods and their arguments
without providing extra configuration by relying on some default rules as well as defining certain
conventions.

Simple Scenarios

Single un-annotated parameter (object or primitive) which is not a Map/Properties with non-void return
type;

public String foo(Object o);

Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an
attempt will be made to convert it using Conversion Service provided by Spring 3.0. The return value will
be incorporated as a Payload of the returned Message

Spring Integration

Manual

Single un-annotated parameter (object or primitive) which is not a Map/Properties with Message return
type;

public Message foo(Object o);

Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an
attempt will be made to convert it using Conversion Service provided by Spring 3.0. The return value is a
newly constructed Message that will be sent to the next destination.

Single parameter which is a Message or its subclass with arbitrary object/primitive return type;

public int foo(Message msg);

Details:

Input parameter is Message itself. The return value will become a payload of the Message that will be
sent to the next destination.

Single parameter which is a Message or its subclass with Message or its subclass as a return type;

public Message foo(Message msg);

Details:

Input parameter is Message itself. The return value is a newly constructed Message that will be sent to the
next destination.

Single parameter which is of type Map or Properties with Message as a return type;

public Message foo(Map m);

Details:

This one is a bit interesting. Although at first it might seem like an easy mapping straight to Message
Headers, the preference is always given to a Message Payload. This means that if Message Payload is of
type Map, this input argument will represent Message Payload. However if Message Payload is not of
type Map, then no conversion via Conversion Service will be attempted and the input argument will be
mapped to Message Headers.

Two parameters where one of them is arbitrary non-Map/Properties type object/primitive and another is
Map/Properties type object (regardless of the return)

public Message foo(Map h, <T> t);

Details:

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 129

This combination contains two input parameters where one of them is of type Map. Naturally the
non-Map parameters (regardless of the order) will be mapped to a Message Payload and the
Map/Properties (regardless of the order) will be mapped to Message Headers giving you a nice POJO
way of interacting with Message structure.

No parameters (regardless of the return)

public String foo();

Details:

This Message Handler method will be invoked based on the Message sent to the input channel this
handler is hooked up to, however no Message data will be mapped, thus making Message act as
event/trigger to invoke such handlerThe output will be mapped according to the rules above

No parameters, void return

public void foo();

Details:

Same as above, but no output

Annotation based mappings

Annotation based mapping is the safest and least ambiguous approach to map Messages to Methods.
There wil be many pointers to annotation based mapping throughout this manual, however here are
couple of examples:

public String foo(@Payload String s, @Header("foo") String b)

Very simple and explicite way of mapping Messages to method. As you'll see later on without annotation
this signature would result in the ambiguous condition, however by explicitly mapping first argument to a
Message Payload and second argument to a value of the 'foo' Message Header we have avoided
ambiguity.

public String foo(@Payload String s, @RequestParam("foo") String b)

Looks almost identical to the previous example, however @RequestMapping or any other non-SI
mapping annotation is irrelevant and therefore will be ignored leaving the second parameter unmapped.
And although the second parameters could easily be mapped to a Payload, there can only be one Payload,
therefore this method becomes ambiguous.

public String foo(String s, @Header("foo") String b)

The same as above. The only difference is that the first argument will be mapped to Message Payload
implicitly.

Spring Integration

Manual

public String foo(@Headers Map m, @Header("foo")Map f, @Header("bar") String bar)

Yet another signature that would definitely be treated as ambiguous because it has more then 2
arguments, plus two of them are Maps, however with annotation-based mapping ambiguity is easily
avoided. In this example the first argument is mapped to all the Message Headers, while second and third
argument map to the values of Message Headers 'foo' and 'bar'.

Complex Scenarios

Multiple parameters:

Multiple parameters could create a lot of ambiguity with regards to determining the appropriate
mappings. The general advice is to annotate your method parameters with @Payload and/or
@Header/@Headers Below are some of the examples of ambiguous conditions which result in exception
being raised.

public String foo(String s, int i)

- the two parameters are equal in weight, therefore no way to determine which one is a payload and what
to do with another.

public String foo(String s, Map m, String b)

- almost the same as above. Although Map could be easily mapped to Message Headers, there is no way
to determine what to do with two Strings.

public String foo(Map m, Map f)

- although one might argue that one Map could be mapped to Message Payload and another one to
Message Headers, it would be unreasonable to rely on the order (e.g., first is Payload, second Headers)

Tip
Basically any method signature with more then one method argument which is not (Map,
<T>) and those parameters are not annotated will result in the ambiguous condition thus
triggering an exception.

Multiple methods:

Message Handlers with multiple methods are mapped based on the same rules that are described above,
however some scenarios might still look confusing.

Multiple methods (same or different name) with legal (mappable) signatures:

public class Foo{
public String foo(String str, Map m);

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 131

public String foo(Map m)
}

As you can see, the Message could be mapped to either method. The first method would be invoked
where Message Payload could be mapped to 'str' and Message Headers could be mapped to 'm'. The
second method could easily also be a candidate where only Message Headers are mapped to 'm'. To make
meters worse both methods have the same name which at first might look very ambiguous considering the
following configuration:

<si:service-activator input-channel="input" output-channel="output" method="foo">
<bean class="org.bar.Foo"/>

</si:service-activator>

At this point it would be important to understand Spring Integration mapping Conventions where at the
very core, mappings are based on Payload first and everything else next. In other words the method
whose argument could be mapped to a Payload will take precedence over all other methods.

On the other hand let's look at slightly different example:

public class Foo{
public String foo(String str, Map m);

public String foo(String str)
}

If you look at it you can probably see a truly an ambiguous condition. In this example since both methods
have signatures that could be mapped to a Message Payload. They also have the same name. Such handler
will trigger an exception. However if method names were different you could influence the mapping with
'method' attribute (see below):

public class Foo{
public String foo(String str, Map m);

public String bar(String str)
}

<si:service-activator input-channel="input" output-channel="output" method="bar">
<bean class="org.bar.Foo"/>

</si:service-activator>

Now there is no ambiguity since the configuration explicitly maps to 'bar' method which has no name
conflicts.

Spring Integration

Manual

Appendix C. Additional Resources

C.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home at
http://www.springsource.org. That site serves as a hub of information and is the best place to find
up-to-date announcements about the project as well as links to articles, blogs, and new sample
applications.

Spring Integration

2.0.0 Milestone 3 Spring Integration Reference 133

http://www.springsource.org/spring-integration
http://www.springsource.org

	Spring Integration Reference Manual
	Table of Contents
	1. Spring Integration Overview
	1.1 Background
	1.2 Goals and Principles
	1.3 Main Components
	Message
	Message Channel
	Message Endpoint

	1.4 Message Endpoints
	Transformer
	Filter
	Router
	Splitter
	Aggregator
	Service Activator
	Channel Adapter

	2. Message Construction
	2.1 The Message Interface
	2.2 Message Headers
	2.3 Message Implementations
	2.4 The MessageBuilder Helper Class

	3. Message Channels
	3.1 The MessageChannel Interface
	PollableChannel
	SubscribableChannel

	3.2 Message Channel Implementations
	PublishSubscribeChannel
	QueueChannel
	PriorityChannel
	RendezvousChannel
	DirectChannel
	ExecutorChannel
	ThreadLocalChannel

	3.3 Channel Interceptors
	3.4 MessageChannelTemplate
	3.5 Configuring Message Channels
	DirectChannel Configuration
	QueueChannel Configuration
	PublishSubscribeChannel Configuration
	ExecutorChannel
	PriorityChannel Configuration
	RendezvousChannel Configuration
	ThreadLocalChannel Configuration
	Channel Interceptor Configuration
	Wire Tap

	4. Message Endpoints
	4.1 Message Handler
	4.2 Event Driven Consumer
	4.3 Polling Consumer
	4.4 Namespace Support

	5. Service Activator
	5.1 Introduction
	5.2 The <service-activator/> Element

	6. Channel Adapter
	6.1 The <inbound-channel-adapter> element
	6.2 The <outbound-channel-adapter/> element

	7. Router
	7.1 Router Implementations
	PayloadTypeRouter
	HeaderValueRouter
	RecipientListRouter

	7.2 The <router> element
	7.3 The @Router Annotation

	8. Filter
	8.1 Introduction
	8.2 The <filter> Element

	9. Transformer
	9.1 Introduction
	9.2 The <transformer> Element
	9.3 The @Transformer Annotation

	10. Splitter
	10.1 Introduction
	10.2 Programming model
	10.3 Configuring a Splitter using XML
	10.4 Configuring a Splitter with Annotations

	11. Aggregator
	11.1 Introduction
	11.2 Functionality
	11.3 Programming model
	AbstractMessageAggregator
	CompletionStrategy
	CorrelationStrategy

	11.4 Configuring an Aggregator with XML
	11.5 Configuring an Aggregator with Annotations

	12. Resequencer
	12.1 Introduction
	12.2 Functionality
	12.3 Configuring a Resequencer with XML

	13. Delayer
	13.1 Introduction
	13.2 The <delayer> Element

	14. Message Handler Chain
	14.1 Introduction
	14.2 The <chain> Element

	15. Messaging Bridge
	15.1 Introduction
	15.2 The <bridge> Element

	16. Inbound Messaging Gateways
	16.1 SimpleMessagingGateway
	16.2 GatewayProxyFactoryBean

	17. Message Publishing
	17.1 Message Publishing Configuration
	Annotation-based approach via @Publisher annotation
	XML-based approach via <publisher> element

	18. File Support
	18.1 Introduction
	18.2 Reading Files
	18.3 Writing files
	18.4 File Transformers

	19. JMS Support
	19.1 Inbound Channel Adapter
	19.2 Message-Driven Channel Adapter
	19.3 Outbound Channel Adapter
	19.4 Inbound Gateway
	19.5 Outbound Gateway
	19.6 JMS Backed Message Channels
	19.7 JMS Samples

	20. Web Services Support
	20.1 Outbound Web Service Gateways
	20.2 Inbound Web Service Gateways
	20.3 Web Service Namespace Support

	21. RMI Support
	21.1 Introduction
	21.2 Outbound RMI
	21.3 Inbound RMI
	21.4 RMI namespace support

	22. HttpInvoker Support
	22.1 Introduction
	22.2 HttpInvoker Inbound Gateway
	22.3 HttpInvoker Outbound Gateway
	22.4 HttpInvoker Namespace Support

	23. HTTP Support
	23.1 Introduction
	23.2 Http Inbound Gateway
	23.3 Http Outbound Gateway
	23.4 Http Namespace Support

	24. TCP and UDP Support
	24.1 Introduction
	24.2 UDP Adapters
	24.3 TCP Adapters
	24.4 IP Adapter Attributes

	25. Mail Support
	25.1 Mail-Sending Channel Adapter
	25.2 Mail-Receiving Channel Adapter
	25.3 Mail Namespace Support

	26. JMX Support
	26.1 Notification Listening Channel Adapter
	26.2 Notification Publishing Channel Adapter
	26.3 Attribute Polling Channel Adapter
	26.4 Operation Invoking Channel Adapter
	26.5 Control Bus

	27. Stream Support
	27.1 Introduction
	27.2 Reading from streams
	27.3 Writing to streams
	27.4 Stream namespace support

	28. Spring ApplicationEvent Support
	28.1 Receiving Spring ApplicationEvents
	28.2 Sending Spring ApplicationEvents

	29. Dealing with XML Payloads
	29.1 Introduction
	29.2 Transforming xml payloads
	29.3 Namespace support for xml transformers
	29.4 Splitting xml messages
	29.5 Routing xml messages using XPath
	29.6 Selecting xml messages using XPath
	29.7 XPath components namespace support

	30. Security in Spring Integration
	30.1 Introduction
	30.2 Securing channels

	Appendix A. Spring Integration Samples
	A.1 The Cafe Sample
	A.2 The XML Messaging Sample
	A.3 The OSGi Samples

	Appendix B. Configuration
	B.1 Introduction
	B.2 Namespace Support
	B.3 Configuring the Task Scheduler
	B.4 Error Handling
	B.5 Annotation Support
	B.6 Message Mapping rules and conventions
	Simple Scenarios
	Complex Scenarios

	Appendix C. Additional Resources
	C.1 Spring Integration Home

