Spring Integration Reference Guide

Mark Fisher, Marius Bogoevici, Iwein Fuld, Jonas Partner, Oleg Zhurakousky,
Gary Russell, Dave Syer, Josh Long, David Turanski, Gunnar Hillert, Artem Bilan,

Amol Nayak, Jay Bryant

Version 5.2.0.RC1

Table of Contents

Preface
1. Requirements
1.1. Compatible Java Versions
1.2. Compatible Versions of the Spring Framework
2. Code Conventions
3. Conventions in This Guide
What’s New?
4. What’s New in Spring Integration 5.27
4.1. Package and Class Changes
4.2. Behavior Changes
4.3. New Components
4.4. General Changes
Overview of Spring Integration Framework
5. Spring Integration Overview
5.1. Background
5.2. Goals and Principles
5.3. Main Components
5.4. Message Endpoints
5.5. Configuration and @EnableIntegration
5.6. Programming Considerations
5.7. Programming Tips and Tricks
5.8. POJO Method invocation
Core Messaging
6. Messaging Channels
6.1. Message Channels
6.2. Poller
6.3. Channel Adapter
6.4. Messaging Bridge
7. Message
7.1. The Message Interface
7.2. Message Headers
7.3. Message Implementations
7.4. The MessageBuilder Helper Class
8. Message Routing
8.1. Routers
8.2. Filter
8.3. Splitter
8.4. Aggregator

0 NN 0o gk wwN

<N 90 0 o O O O U U1l WwWw W W NN R R R e
G U1 NN N9 WO REWwWWwWN OO W R W N NN

100
104
108

8.5. Resequencer

8.6. Message Handler Chain
8.7. Scatter-Gather
8.8. Thread Barrier

9. Message Transformation

9.1. Transformer

9.2. Content Enricher
9.3. Claim Check
9.4. Codec

10. Messaging Endpoints

10.1. Message Endpoints
10.2. Endpoint Roles
10.3. Leadership Event Handling

10.4. Messaging Gateways

10.5. Service Activator
10.6. Delayer
10.7. Scripting Support

10.8. Groovy support
10.9. Adding Behavior to Endpoints

10.10.
10.11.

Logging Channel Adapter

java.util.function Interfaces Support

11. Java DSL
11.1. DSL Basics
11.2. Message Channels
11.3. Pollers
11.4. DSL and Endpoint Configuration

11.5. Transformers

11.6. Inbound Channel Adapters
11.7. Message Routers

11.8. Splitters

11.9. Aggregators and Resequencers

11.10.

11.11

Service Activators and the .handle() method

. Operator log()
11.12.
11.13.
11.14.
11.15.
11.16.
11.17.
11.18.
11.19.

MessageChannelSpec.wireTap()

Working With Message Flows
FunctionExpression

Sub-flows support

Using Protocol Adapters
IntegrationFlowAdapter

Dynamic and Runtime Integration Flows

IntegrationFlow as Gateway

130
133
137
142
145
145
155
165
169
173
173
187
189
190
211
215
221
225
229
250
252
256
257
259
261
262
263
263
264
266
267
268
269
269
270
272
272
275
277
279
282

12. System Management 285

12.1. Metrics and Management 285
12.2. JMX Support 292
12.3. Message History 302
12.4. Message Store 304
12.5. Metadata Store 308
12.6. Control Bus 310
12.7. Orderly Shutdown 311
12.8. Integration Graph 312
12.9. Integration Graph Controller 318
Integration Endpoints 320
13. Endpoint Quick Reference Table 321
14. AMQP Support 324
14.1. Inbound Channel Adapter 324
14.2. Polled Inbound Channel Adapter 330
14.3. Inbound Gateway 331
14.4. Inbound Endpoint Acknowledge Mode 334
14.5. Outbound Channel Adapter 335
14.6. Outbound Channel Adapter 335
14.7. Outbound Gateway 340
14.8. Asynchronous Outbound Gateway 345
14.9. Inbound Message Conversion 350
14.10. Outbound Message Conversion 351
14.11. Outbound User ID 352
14.12. Delayed Message Exchange 352
14.13. AMQP-backed Message Channels 353
14.14. AMQP Message Headers 356
14.15. Strict Message Ordering 359
14.16. AMQP Samples 360
15. Spring ApplicationEvent Support 362
15.1. Receiving Spring Application Events 362
15.2. Sending Spring Application Events 364
16. Feed Adapter 367
16.1. Feed Inbound Channel Adapter 367
16.2. Duplicate Entries 368
16.3. Other Options 368
16.4. Java DSL Configuration 369
17. File Support 370
17.1. Reading Files 370
17.2. Writing files 383

17.3. File Transformers 391

17.4. File Splitter 392

17.5. Remote Persistent File List Filters 395
18. FTP/FTPS Adapters 397
18.1. FTP Session Factory 397
18.2. Advanced Configuration 399
18.3. Delegating Session Factory 401
18.4. FTP Inbound Channel Adapter 402
18.5. FTP Streaming Inbound Channel Adapter 410
18.6. Inbound Channel Adapters: Polling Multiple Servers and Directories 413
18.7. Inbound Channel Adapters: Controlling Remote File Fetching 414
18.8. FTP Outbound Channel Adapter 415
18.9. FTP Outbound Gateway 421
18.10. FTP Session Caching 429
18.11. Using RemoteFileTemplate 430
18.12. Using MessageSessionCallback 431
18.13. Apache Mina FTP Server Events 432
18.14. Remote File Information 433
19. Pivotal GemFire and Apache Geode Support 434
19.1. Inbound Channel Adapter 435
19.2. Continuous Query Inbound Channel Adapter 436
19.3. Outbound Channel Adapter 437
19.4. Gemfire Message Store 438
19.5. Gemfire Lock Registry 439
19.6. Gemfire Metadata Store 440
20. HTTP Support 442
20.1. Http Inbound Components 442
20.2. HTTP Outbound Components 445
20.3. HTTP Namespace Support 446
20.4. Configuring HTTP Endpoints with Java 457
20.5. Timeout Handling 459
20.6. HTTP Proxy configuration 462
20.7. HTTP Header Mappings 463
20.8. Integration Graph Controller 464
20.9. HTTP Samples 465
21. JDBC Support 467
21.1. Inbound Channel Adapter 467
21.2. Outbound Channel Adapter 471
21.3. Outbound Gateway 474
21.4. J]DBC Message Store 475
21.5. Stored Procedures 480

21.6. JDBC Lock Registry 491

21.7. JDBC Metadata Store 492

22. JPA Support 494
22.1. Functionality 495
22.2. Supported Persistence Providers 495
22.3. Java Implementation 495
22.4. Namespace Support 496
22.5. Inbound Channel Adapter 500
22.6. Outbound Channel Adapter 505
22.7. Outbound Gateways 513

23. JMS Support 524
23.1. Inbound Channel Adapter 525
23.2. Message-driven Channel Adapter 526
23.3. Outbound Channel Adapter 528
23.4. Inbound Gateway 529
23.5. Outbound Gateway 530
23.6. Mapping Message Headers to and from JMS Message 538
23.7. Message Conversion, Marshalling, and Unmarshalling 539
23.8. JMS-backed Message Channels 540
23.9. Using JMS Message Selectors 542
23.10. JMS Samples 542

24. Mail Support 544
24.1. Mail-sending Channel Adapter 544
24.2. Mail-receiving Channel Adapter 545
24.3. Inbound Mail Message Mapping 546
24.4. Mail Namespace Support 548
24.5. Marking IMAP Messages When \Recent Is Not Supported 554
24.6. Email Message Filtering 554
24.7. Transaction Synchronization 555
24.8. Configuring channel adapters with the Java DSL 557

25. MongoDb Support 558
25.1. Connecting to MongoDb 558
25.2. MongoDB Message Store 560
25.3. MongoDB Inbound Channel Adapter 562
25.4. MongoDB Outbound Channel Adapter 564
25.5. MongoDB Outbound Gateway 565

26. MQTT Support 569
26.1. Inbound (Message-driven) Channel Adapter 569
26.2. Outbound Channel Adapter 574

27. Redis Support 579
27.1. Connecting to Redis 579

27.2. Messaging with Redis 581

27.3. Redis Message Store 586

27.4. Redis Metadata Store 587
27.5. Redis Store Inbound Channel Adapter 588
27.6. RedisStore Outbound Channel Adapter 591
27.7. Redis Outbound Command Gateway 592
27.8. Redis Queue Outbound Gateway 594
27.9. Redis Queue Inbound Gateway 595
27.10. Redis Lock Registry 597
28. Resource Support 598
28.1. Resource Inbound Channel Adapter 598
29. RMI Support 600
29.1. Outbound RMI 600
29.2. Inbound RMI 600
29.3. RMI namespace support 601
29.4. Configuring with Java Configuration 602
30. SFTP Adapters 603
30.1. SFTP Session Factory 603
30.2. Proxy Factory Bean 606
30.3. Delegating Session Factory 606
30.4. SFTP Session Caching 607
30.5. Using RemoteFileTemplate 608
30.6. SFTP Inbound Channel Adapter 609
30.7. SFTP Streaming Inbound Channel Adapter 615
30.8. Inbound Channel Adapters: Polling Multiple Servers and Directories 619
30.9. Inbound Channel Adapters: Controlling Remote File Fetching 620
30.10. SFTP Outbound Channel Adapter 621
30.11. SFTP Outbound Gateway 625
30.12. SFTP/JSCH Logging 633
30.13. MessageSessionCallback 634
30.14. Apache Mina SFTP Server Events 634
30.15. Remote File Information 635
31. STOMP Support 637
31.1. Overview 637
31.2. STOMP Inbound Channel Adapter 638
31.3. STOMP Outbound Channel Adapter 638
31.4. STOMP Headers Mapping 638
31.5. STOMP Integration Events 639
31.6. STOMP Adapters Java Configuration 639
31.7. STOMP Namespace Support 641
32. Stream Support 644

32.1. Reading from Streams 644

32.2. Writing to Streams

32.3. Stream Namespace Support
33. Syslog Support

33.1. Syslog Inbound Channel Adapter
34. TCP and UDP Support

34.1. Introduction

34.2. UDP Adapters

34.3. TCP Connection Factories

34.4. TCP Connection Interceptors

34.5. TCP Connection Events

34.6. TCP Adapters

34.7. TCP Gateways

34.8. TCP Message Correlation

34.9. About Non-blocking I/O (NIO)

34.10. SSL/TLS Support

34.11. Advanced Techniques

34.12. IP Configuration Attributes

34.13. IP Message Headers

34.14. Annotation-Based Configuration
35. WebFlux Support

35.1. WebFlux Inbound Components

35.2. WebFlux Outbound Components

35.3. WebFlux Namespace Support

35.4. Configuring WebFlux Endpoints with Java

35.5. WebFlux Header Mappings
36. WebSockets Support
36.1. Overview
36.2. WebSocket Inbound Channel Adapter
36.3. WebSocket Outbound Channel Adapter
36.4. WebSockets Namespace Support
36.5. Using ClientStompEncoder
37. Web Services Support
37.1. Outbound Web Service Gateways
37.2. Inbound Web Service Gateways
37.3. Web Service Namespace Support
37.4. Outbound URI Configuration
37.5. WS Message Headers
37.6. MTOM Support
38. XML Support - Dealing with XML Payloads
38.1. Namespace Support
38.2. Transforming XML Payloads

646
646
648
648
652
652
653
657
664
665
666
668
670
673
676
678
683
690
691
694
694
696
697
700
702
703
704
705
706
706
712
714
714
715
716
717
718
721
723
724
728

38.3. Transforming XML Messages with XPath
38.4. Splitting XML Messages
38.5. Routing XML Messages with XPath
38.6. XPath Header Enricher
38.7. Using the XPath Filter
38.8. #xpath SpEL Function
38.9. XML Validating Filter
39. XMPP Support
39.1. XMPP Connection
39.2. XMPP Messages
39.3. XMPP Presence
39.4. Advanced Configuration
39.5. XMPP Message Headers
39.6. XMPP Extensions
40. Zookeeper Support
40.1. Zookeeper Metadata Store
40.2. Zookeeper Lock Registry
40.3. Zookeeper Leadership Event Handling
Appendices
Appendix A: Error Handling
Appendix B: Spring Expression Language (SpEL)
B.1. SpEL Evaluation Context Customization
B.2. SpEL Functions
B.3. Property Accessors
Appendix C: Message Publishing
C.1. Message Publishing Configuration
Appendix D: Transaction Support
D.1. Understanding Transactions in Message flows
D.2. Transaction Boundaries
D.3. Transaction Synchronization
D.4. Pseudo Transactions
Appendix E: Security in Spring Integration
E.1. Securing channels
E.2. Security Context Propagation
Appendix F: Configuration
F.1. Namespace Support
F.2. Configuring the Task Scheduler
F.3. Global Properties
F.4. Annotation Support
F.5. Messaging Meta-Annotations

F.6. Message Mapping Rules and Conventions

735
737
739
741
744
745
746
748
749
749
752
753
755
755
759
759
760
760
762
763
765
765
767
769
770
770
779
779
782
782
785
786
786
788
791
791
793
794
796
802
807

Appendix G: Testing support
G.1. Testing Utilities
G.2. Spring Integration and the Test Context
G.3. Integration Mocks
G.4. Other Resources
Appendix H: Spring Integration Samples
H.1. Where to Get Samples
H.2. Submitting Samples or Sample Requests
H.3. Samples Structure
H.4. Samples
Appendix I: Additional Resources
Appendix J: Change History
J.1. Changes between 5.1 and 5.1
J.2. Changes between 4.3 and 5.0
]J.3. Changes between 4.2 and 4.3
]J.4. Changes between 4.1 and 4.2
].5. Changes between 4.0 and 4.1
]J.6. Changes between 3.0 and 4.0
]J.7. Changes Between 2.2 and 3.0
].8. Changes between 2.1 and 2.2
]J.9. Changes between 2.0 and 2.1
J.10. Changes between Versions 1.0 and 2.0

813
814
818
820
822
823
823
824
824
826
838
839
839
844
851
857
864
868
873
882
885
890

© 2009 - 2019 Pivotal Software, Inc. All rights reserved.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Preface

This chapter includes:

* Requirements
e Code Conventions

¢ Conventions in This Guide

Chapter 1. Requirements

This section details the compatible Java and Spring Framework versions.

1.1. Compatible Java Versions

For Spring Integration 5.2.%, the minimum compatible Java version is Java SE 8. Older versions of
Java are not supported.

1.2. Compatible Versions of the Spring Framework

Spring Integration 5.2.X requires Spring Framework 5.2 or later.

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://spring.io/projects/spring-framework

Chapter 2. Code Conventions

Spring Framework 2.0 introduced support for namespaces, which simplifies the XML configuration
of the application context and lets Spring Integration provide broad namespace support.

In this reference guide, the int namespace prefix is used for Spring Integration’s core namespace
support. Each Spring Integration adapter type (also called a module) provides its own namespace,
which is configured by using the following convention:

The following example shows the int, int-event, and int-stream namespaces in use:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:int="http://www.springframework.org/schema/integration"
xmlns:int-webflux="http://www.springframework.org/schema/integration/webflux"
xmlns:int-stream="http://www.springframework.org/schema/integration/stream"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
https://www.springframework.org/schema/integration/spring-integration.xsd
http://www.springframework.org/schema/integration/webflux
https://www.springframework.org/schema/integration/webflux/spring-integration-
webflux.xsd
http://www.springframework.org/schema/integration/stream
https://www.springframework.org/schema/integration/stream/spring-integration-
stream.xsd">

</beans>

For a detailed explanation regarding Spring Integration’s namespace support, see Namespace
Support.

The namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, you should apply the convention that best

o suits your application. Be aware, though, that SpringSource Tool Suite™ (STS) uses
the same namespace conventions for Spring Integration as used in this reference
guide.

./configuration.pdf#configuration-namespace
./configuration.pdf#configuration-namespace

Chapter 3. Conventions in This Guide

In some cases, to aid formatting when specifying long fully qualified class names, we shorten
org.springframework to o.s and org.springframework.integration to o0.s.i, such as with
0.s.i.transaction.TransactionSynchronizationFactory.

What’s New?

For those who are already familiar with Spring Integration, this chapter provides a brief overview
of the new features of version 5.2.

If you are interested in the changes and features that were introduced in earlier versions, see the
Change History.

./history.pdf#history

Chapter 4. What’s New in Spring Integration
5.2?

If you are interested in more details, see the Issue Tracker tickets that were resolved as part of the
5.2 development process.

4.1. Package and Class Changes

Pausable has been moved from o.s.i.endpoint to o.s.i.core.

4.2. Behavior Changes

See the Migration Guide about a behavior change when using publishSubscribeChannel within a
dynamically registered DSL integration flow.

4.3. New Components

4.3.1. Rate Limit Advice Support

The RatelimiterRequestHandlerAdvice is now available for limiting requests rate on handlers. See
Rate Limiter Advice for more information.

4.3.2. Caching Advice Support

The CacheRequestHandlerAdvice is now available for caching request results on handlers. See
Caching Advice for more information.

4.3.3. Kotlin Scripts Support

The JSR223 scripting module now includes a support for Kotlin scripts. See Scripting Support for
more information.

4.3.4. Flux Aggregator Support

The FluxAggregatorMessageHandler is now available for grouping and windowing messages logic
based on the Project Reactor Flux operators. See Flux Aggregator for more information.

4.3.5. FTP/SFTP Event Publisher

The FTP and SFTP modules now provide an event listener for certain Apache Mina FTP/SFTP server
events. See Apache Mina FTP Server Events and Apache Mina SFTP Server Events for more
information.

4.3.6. Avro Transformers

Simple Apache Avro transformers are now provided. See Avro Transformers for more information.

https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-5.1-to-5.2-Migration-Guide#dsl-publishsubscribechannel-behavior-change
./handler-advice.pdf#rate-limiter-advice
./handler-advice.pdf#cache-advice
./scripting.pdf#scripting
./aggregator.pdf#flux-aggregator
./ftp.pdf#ftp-server-events
./sftp.pdf#sftp-server-events
./transformers.pdf#avro-transformers

4.3.7. FTP File Permissions

The FTP outbound endpoints now support chmod to change permissions on the uploaded file. (SFTP
already supported it since version 4.3). See FTP Outbound Channel Adapter and FTP Outbound
Gateway for more information.

4.4. General Changes

The JsonToObjectTransformer now supports generics for the target object to deserialize into. See
JSON Transformers for more information.

The splitter now supports a discardChannel configuration option. See Splitter for more
information.

The Control Bus can now handle Pausable (extension of Lifecycle) operations. See Control Bus for
more information.

The Function<MessageGroup, Map<String, Object>> strategy has been introduced for the aggregator
component to merge and compute headers for output messages. See Aggregator Programming
Model for more information.

All the MessageHandlingException s thrown in the framework, includes now a bean resource and
source for back tracking a configuration part in case no end-user code involved. See Error Handling
for more information.

For better end-user experience, Java DSL now provides a configurer variant for starting flow with a
gateway interface. See IntegrationFlows.from(Class<?> servicelnterface,
Consumer<GatewayProxySpec> endpointConfigurer) JavaDocs for more information. Also a
MethodArgsHolder is now a root object for evaluation context for all the expressions in the
GatewayProxyFactoryBean. The #args and #method evaluation context variables are now deprecated.
See Messaging Gateways for more information.

4.4.1. AMQP Changes

The outbound endpoints can now be configured to synthesize a "nack" if no publisher confirm is
received within a timeout. See Outbound Channel Adapter for more information.

The inbound channel adapter can now receive batched messages as a List<?> payload instead of
receiving a discrete message for each batch fragment. See Batched Messages for more information.

The outbound channel adapter can now be configured to block the calling thread until a publisher
confirm (acknowledgment) is received. See Outbound Channel Adapter for more information.

4.4.2. File Changes

Some improvements to filtering remote files have been made. See Remote Persistent File List Filters
for more information.

./ftp.pdf#ftp-outbound
./ftp.pdf#ftp-outbound-gateway
./ftp.pdf#ftp-outbound-gateway
./transformer.pdf#json-transformers
./splitter.pdf#splitter
./control-bus.pdf#control-bus
./aggregator.pdf#aggregator-api
./aggregator.pdf#aggregator-api
./error-handling.pdf#error-handling
./gateway.pdf#gateway
./amqp.pdf#amqp-outbound-endpoints
./amqp.pdf#amqp-debatching
./amqp.pdf#amqp-outbound-channel-adapter
./file.pdf#remote-persistent-flf

4.4.3. TCP Changes

The length header used by the ByteArrayLengthHeaderSerializer can now include the length of the
header in addition to the payload. See Message Demarcation (Serializers and Deserializers) for
more information.

When using a TcpNioServerConnectionFactory, priority is now given to accepting new connections
over reading from existing connections, but it is configurable. See About Non-blocking I/O (NIO) for
more information.

The outbound gateway has a new property closeStreamAfterSend; when used with a new connection
for each request/reply it signals EOF to the server, without closing the connection. This is useful for
servers that use the EOF to signal end of message instead of some delimiter in the data. See TCP
Gateways for more information.

The client connection factories now support connectTimeout which causes an exception to be
thrown if the connection is not established in that time. See TCP Connection Factories for more
information.

SoftEndOfStreamException is now a RuntimeException instead of extending IOException.

4.4.4. Mail Changes

The AbstractMailReceiver has now an autoCloseFolder option (true by default), to disable an
automatic folder close after a fetch, but populate
IntegrationMessageHeaderAccessor.CLOSEABLE_RESOURCE header instead for downstream interaction.
See Mail-receiving Channel Adapter for more information.

4.4.5. HTTP Changes

The HTTP inbound endpoint now support a request payload validation. See HTTP Support for more
information.

4.4.6. WebFlux Changes

The WebFluxRequestExecutingMessageHandler now supports a Publisher, Resource and MultiValueMap as
a request message payload. The WebFluxInboundEndpoint now supports a request payload validation.
See WebFlux Support for more information.

4.4.7. MongoDb Changes

The MongoDbMessageStore can now be configured with custom converters. See MongoDB Support for
more information.

4.4.8. Router Changes

You can now disable falling back to the channel key as the channel bean name. See Dynamic
Routers for more information.

./ip.pdf#tcp-codecs
./ip.pdf#note-nio
./ip.pdf#tcp-gateways
./ip.pdf#tcp-gateways
./ip.pdf#tcp-connection-factory
./mail.pdf#mail-inbound
./http.pdf#http
./webflux.pdf#webflux
./mongodb.pdf#mongodb
./router.pdf#dynamic-routers
./router.pdf#dynamic-routers

4.4.9. FTP/SFTP Changes

The RotatingServerAdvice is decoupled now from the RotationPolicy and its StandardRotationPolicy.

The remote file information, including host/port and directory are included now into message
headers in the AbstractInboundFileSynchronizingMessageSource and
AbstractRemoteFileStreamingMessageSource implementations. Also this information is included into
headers in the read operations results of the AbstractRemoteFileOutboundGateway implementations.

See FTP(S) Support and SFTP Support for more information.

10

./ftp.pdf#ftp
./sftp.pdf#sftp

Overview of Spring Integration
Framework

Spring Integration provides an extension of the Spring programming model to support the well
known Enterprise Integration Patterns. It enables lightweight messaging within Spring-based
applications and supports integration with external systems through declarative adapters. Those
adapters provide a higher level of abstraction over Spring’s support for remoting, messaging, and
scheduling.

Spring Integration’s primary goal is to provide a simple model for building enterprise integration
solutions while maintaining the separation of concerns that is essential for producing
maintainable, testable code.

11

https://www.enterpriseintegrationpatterns.com/

Chapter 5. Spring Integration Overview

This chapter provides a high-level introduction to Spring Integration’s core concepts and
components. It includes some programming tips to help you make the most of Spring Integration.

5.1. Background

One of the key themes of the Spring Framework is Inversion of Control (IoC). In its broadest sense,
this means that the framework handles responsibilities on behalf of the components that are
managed within its context. The components themselves are simplified, because they are relieved
of those responsibilities. For example, dependency injection relieves the components of the
responsibility of locating or creating their dependencies. Likewise, aspect-oriented programming
relieves business components of generic cross-cutting concerns by modularizing them into reusable
aspects. In each case, the end result is a system that is easier to test, understand, maintain, and
extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model
for building enterprise applications. Developers benefit from the consistency of this model and
especially from the fact that it is based upon well established best practices, such as programming
to interfaces and favoring composition over inheritance. Spring’s simplified abstractions and
powerful support libraries boost developer productivity while simultaneously increasing the level
of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring
programming model into the messaging domain and builds upon Spring’s existing enterprise
integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain
business logic should run and where the response should be sent. It supports routing and
transformation of messages so that different transports and different data formats can be
integrated without impacting testability. In other words, the messaging and integration concerns
are handled by the framework. Business components are further isolated from the infrastructure,
and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options, including annotations, XML with namespace support, XML with generic
“bean” elements, and direct usage of the underlying API. That API is based upon well defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration’s design is inspired by
the recognition of a strong affinity between common patterns within Spring and the well known
patterns described in Enterprise Integration Patterns, by Gregor Hohpe and Bobby Woolf (Addison
Wesley, 2004). Developers who have read that book should be immediately comfortable with the
Spring Integration concepts and terminology.

5.2. Goals and Principles

Spring Integration is motivated by the following goals:

* Provide a simple model for implementing complex enterprise integration solutions.

12

https://www.enterpriseintegrationpatterns.com/

* Facilitate asynchronous, message-driven behavior within a Spring-based application.

* Promote intuitive, incremental adoption for existing Spring users.
Spring Integration is guided by the following principles:

* Components should be loosely coupled for modularity and testability.

* The framework should enforce separation of concerns between business logic and integration
logic.

* Extension points should be abstract in nature (but within well-defined boundaries) to promote
reuse and portability.

5.3. Main Components

From a vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for
following this best practice for the full stack of an enterprise application. Message-driven
architectures add a horizontal perspective, yet these same goals are still relevant. Just as “layered
architecture” is an extremely generic and abstract paradigm, messaging systems typically follow
the similarly abstract “pipes-and-filters” model. The “filters” represent any components capable of
producing or consuming messages, and the “pipes” transport the messages between filters so that
the components themselves remain loosely-coupled. It is important to note that these two high-level
paradigms are not mutually exclusive. The underlying messaging infrastructure that supports the
“pipes” should still be encapsulated in a layer whose contracts are defined as interfaces. Likewise,
the “filters” themselves should be managed within a layer that is logically above the application’s
service layer, interacting with those services through interfaces in much the same way that a web
tier would.

5.3.1. Message

In Spring Integration, a message is a generic wrapper for any Java object combined with metadata
used by the framework while handling that object. It consists of a payload and headers. The
payload can be of any type, and the headers hold commonly required information such as ID,
timestamp, correlation ID, and return address. Headers are also used for passing values to and
from connected transports. For example, when creating a message from a received file, the file
name may be stored in a header to be accessed by downstream components. Likewise, if a
message’s content is ultimately going to be sent by an outbound mail adapter, the various
properties (to, from, cc, subject, and others) may be configured as message header values by an
upstream component. Developers can also store any arbitrary key-value pairs in the headers.

13

Message h

Header

', &

Payload

Figure 1. Message

5.3.2. Message Channel

A message channel represents the “pipe” of a pipes-and-filters architecture. Producers send
messages to a channel, and consumers receive messages from a channel. The message channel
therefore decouples the messaging components and also provides a convenient point for
interception and monitoring of messages.

send{Message)

receive()

Producer Consumer

Message Channel
Figure 2. Message Channel

A message channel may follow either point-to-point or publish-subscribe semantics. With a point-
to-point channel, no more than one consumer can receive each message sent to the channel.
Publish-subscribe channels, on the other hand, attempt to broadcast each message to all
subscribers on the channel. Spring Integration supports both of these models.

Whereas “point-to-point” and "publish-subscribe" define the two options for how many consumers
ultimately receive each message, there is another important consideration: Should the channel
buffer messages? In Spring Integration, pollable channels are capable of buffering Messages within
a queue. The advantage of buffering is that it allows for throttling the inbound messages and
thereby prevents overloading a consumer. However, as the name suggests, this also adds some
complexity, since a consumer can only receive the messages from such a channel if a poller is
configured. On the other hand, a consumer connected to a subscribable channel is simply message-
driven. Message Channel Implementations has a detailed discussion of the variety of channel
implementations available in Spring Integration.

5.3.3. Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise
integration solutions through inversion of control. This means that you should not have to
implement consumers and producers directly, and you should not even have to build messages and
invoke send or receive operations on a message channel. Instead, you should be able to focus on
your specific domain model with an implementation based on plain objects. Then, by providing
declarative configuration, you can “connect” your domain-specific code to the messaging
infrastructure provided by Spring Integration. The components responsible for these connections

14

./channel.pdf#channel-implementations

are message endpoints. This does not mean that you should necessarily connect your existing
application code directly. Any real-world enterprise integration solution requires some amount of
code focused upon integration concerns such as routing and transformation. The important thing is
to achieve separation of concerns between the integration logic and the business logic. In other
words, as with the Model-View-Controller (MVC) paradigm for web applications, the goal should be
to provide a thin but dedicated layer that translates inbound requests into service layer invocations
and then translates service layer return values into outbound replies. The next section provides an
overview of the message endpoint types that handle these responsibilities, and, in upcoming
chapters, you can see how Spring Integration’s declarative configuration options provide a non-
invasive way to use each of these.

5.4. Message Endpoints

A Message Endpoint represents the “filter” of a pipes-and-filters architecture. As mentioned earlier,
the endpoint’s primary role is to connect application code to the messaging framework and to do so
in a non-invasive manner. In other words, the application code should ideally have no awareness
of the message objects or the message channels. This is similar to the role of a controller in the MVC
paradigm. Just as a controller handles HTTP requests, the message endpoint handles messages. Just
as controllers are mapped to URL patterns, message endpoints are mapped to message channels.
The goal is the same in both cases: isolate application code from the infrastructure. These concepts
and all of the patterns that follow are discussed at length in the Enterprise Integration Patterns
book. Here, we provide only a high-level description of the main endpoint types supported by
Spring Integration and the roles associated with those types. The chapters that follow elaborate and
provide sample code as well as configuration examples.

5.4.1. Message Transformer

A message transformer is responsible for converting a message’s content or structure and
returning the modified message. Probably the most common type of transformer is one that
converts the payload of the message from one format to another (such as from XML to
java.lang.String). Similarly, a transformer can add, remove, or modify the message’s header
values.

5.4.2. Message Filter

A message filter determines whether a message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a
property value, the presence of a header, or other conditions. If the message is accepted, it is sent to
the output channel. If not, it is dropped (or, for a more severe implementation, an Exception could
be thrown). Message filters are often used in conjunction with a publish-subscribe channel, where
multiple consumers may receive the same message and use the criteria of the filter to narrow down
the set of messages to be processed.

15

https://www.enterpriseintegrationpatterns.com/

Be careful not to confuse the generic use of “filter” within the pipes-and-filters
architectural pattern with this specific endpoint type that selectively narrows

e down the messages flowing between two channels. The pipes-and-filters concept of
a “filter” matches more closely with Spring Integration’s message endpoint: any
component that can be connected to a message channel in order to send or receive
messages.

5.4.3. Message Router

A message router is responsible for deciding what channel or channels (if any) should receive the
message next. Typically, the decision is based upon the message’s content or the metadata available
in the message headers. A message router is often used as a dynamic alternative to a statically
configured output channel on a service activator or other endpoint capable of sending reply
messages. Likewise, a message router provides a proactive alternative to the reactive message
filters used by multiple subscribers, as described earlier.

Channel A

Message

o ge Router

Channel B

Figure 3. Message Router

5.4.4. Splitter

A splitter is another type of message endpoint whose responsibility is to accept a message from its
input channel, split that message into multiple messages, and send each of those to its output
channel. This is typically used for dividing a “composite” payload object into a group of messages
containing the subdivided payloads.

5.4.5. Aggregator

Basically a mirror-image of the splitter, the aggregator is a type of message endpoint that receives
multiple messages and combines them into a single message. In fact, aggregators are often
downstream consumers in a pipeline that includes a splitter. Technically, the aggregator is more
complex than a splitter, because it is required to maintain state (the messages to be aggregated), to
decide when the complete group of messages is available, and to timeout if necessary. Furthermore,
in case of a timeout, the aggregator needs to know whether to send the partial results, discard
them, or send them to a separate channel. Spring Integration provides a CorrelationStrategy, a
ReleaseStrategy, and configurable settings for timeout, whether to send partial results upon
timeout, and a discard channel.

5.4.6. Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input message channel must be configured, and, if the service method to be invoked is capable

16

of returning a value, an output message Channel may also be provided.

o The output channel is optional, since each message may also provide its own
'Return Address' header. This same rule applies for all consumer endpoints.

The service activator invokes an operation on some service object to process the request message,
extracting the request message’s payload and converting (if the method does not expect a message-
typed parameter). Whenever the service object’s method returns a value, that return value is
likewise converted to a reply message if necessary (if it is not already a message type). That reply
message is sent to the output channel. If no output channel has been configured, the reply is sent to
the channel specified in the message’s “return address”, if available.

A request-reply service activator endpoint connects a target object’s method to input and output
Message Channels.

handle(Message) M;"'F’m
- - e - - Message
Input Activator Dutputb" Handler
Message
Channel -

Output
Channel

Figure 4. Service Activator

As discussed earlier, in Message Channel, channels can be pollable or subscribable.
o In the preceding diagram, this is depicted by the “clock” symbol and the solid
arrow (poll) and the dotted arrow (subscribe).

5.4.7. Channel Adapter

A channel adapter is an endpoint that connects a message channel to some other system or
transport. Channel adapters may be either inbound or outbound. Typically, the channel adapter
does some mapping between the message and whatever object or resource is received from or sent
to the other system (file, HTTP Request, JMS message, and others). Depending on the transport, the
channel adapter may also populate or extract message header values. Spring Integration provides a
number of channel adapters, which are described in upcoming chapters.

€

hannel i =
H— Adapter Message 4"-
Message
Channel

Figure 5. An inbound channel adapter endpoint connects a source system to a MessageChannel.

17

Message sources can be pollable (for example, POP3) or message-driven_ (for
o example, IMAP Idle). In the preceding diagram, this is depicted by the “clock”
symbol and the solid arrow (poll) and the dotted arrow (message-driven).

Channel
ezt -
Message

Adapter
Channel

Figure 6. An outbound channel adapter endpoint connects a MessageChannel to a target system.

As discussed earlier in Message Channel, channels can be pollable or subscribable.
o In the preceding diagram, this is depicted by the “clock” symbol and the solid
arrow (poll) and the dotted arrow (subscribe).

5.4.8. Endpoint Bean Names

Consuming endpoints (anything with an inputChannel) consist of two beans, the consumer and the
message handler. The consumer has a reference to the message handler and invokes it as messages
arrive.

Consider the following XML example:
<int:service-activator id = "someService" ... />

Given the preceding example, the bean names are as follows:

e Consumer: someService (the id)

e Handler: someService.handler

When using Enterprise Integration Pattern (EIP) annotations, the names depend on several factors.
Consider the following example of an annotated POJO:

public class SomeComponent {

(inputChannel = ...)
public String someMethod(...) {

}

18

Given the preceding example, the bean names are as follows:

e Consumer: someComponent.someMethod.serviceActivator

* Handler: someComponent.someMethod.serviceActivator.handler

Starting with version 5.0.4, you can modify these names by using the @EndpointId annotation, as the
following example shows:

@Component
public class SomeComponent {

@EndpointId("someService")

@ServiceActivator(inputChannel = ...)
public String someMethod(...) {

}

Given the preceding example, the bean names are as follows:

e Consumer: someService

¢ Handler: someService.handler

The @EndpointId creates names as created by the id attribute with XML configuration. Consider the
following example of an annotated bean:

@Configuratiom
public class SomeConfiguration {

@Bean
@ServiceActivator(inputChannel = ...)
public MessageHandler someHandler() {

}

Given the preceding example, the bean names are as follows:

* Consumer: someConfiguration.someHandler.serviceActivator

e Handler: someHandler (the @Bean name)

Starting with version 5.0.4, you can modify these names by using the @EndpointId annotation, as the

19

following example shows:

@Configuratiom
public class SomeConfiguration {

©Bean("someService.handler") ©)
@EndpointId("someService") @
@ServiceActivator(inputChannel = ...)
public MessageHandler someHandler() {

}

@ Handler: someService.handler (the bean name)

@ Consumer: someService (the endpoint ID)
The @EndpointId annotation creates names as created by the id attribute with XML configuration, as
long as you use the convention of appending .handler to the @Bean name.

There is one special case where a third bean is created: For architectural reasons, if a
MessageHandler @Bean does not define an AbstractReplyProducingMessageHandler, the framework
wraps the provided bean in a ReplyProducingMessageHandlerWrapper. This wrapper supports request
handler advice handling and emits the normal 'produced no reply' debug log messages. Its bean
name is the handler bean name plus .wrapper (when there is an @EndpointId — otherwise, it is the
normal generated handler name).

Similarly Pollable Message Sources create two beans, a SourcePollingChannelAdapter (SPCA) and a
MessageSource.

Consider the following XML configuration:
<int:inbound-channel-adapter id = "someAdapter" ... />
Given the preceding XML configuration, the bean names are as follows:

* SPCA: someAdapter (the id)

* Handler: someAdapter.source

Consider the following Java configuration of a POJO to define an @EndpointId:

20

./polling-consumer.pdf#pollable-message-source

("someAdapter™)
(channel = "channel3", poller = (fixedDelay = "5000"

)
public String pojoSource() {

}

Given the preceding Java configuration example, the bean names are as follows:

» SPCA: someAdapter

* Handler: someAdapter.source

Consider the following Java configuration of a bean to define an @EndpointID:

("someAdapter.source")
("someAdapter™)
(channel = "channel3", poller = (fixedDelay = "5000"
)

public MessageSource<?> source() {
return () -> {

};

Given the preceding example, the bean names are as follows:

* SPCA: someAdapter

* Handler: someAdapter.source (as long as you use the convention of appending .source to the
@Bean name)

5.5. Configuration and @EnableIntegration

Throughout this document, you can see references to XML namespace support for declaring
elements in a Spring Integration flow. This support is provided by a series of namespace parsers
that generate appropriate bean definitions to implement a particular component. For example,
many endpoints consist of a MessageHandler bean and a ConsumerEndpointFactoryBean into which the
handler and an input channel name are injected.

The first time a Spring Integration namespace element is encountered, the framework
automatically declares a number of beans (a task scheduler, an implicit channel creator, and
others) that are used to support the runtime environment.

21

Version 4.0 introduced the @EnableIntegration annotation, to allow the registration
of Spring Integration infrastructure beans (see the Javadoc). This annotation is

o required when only Java configuration is used — for example with Spring Boot or
Spring Integration Messaging Annotation support and Spring Integration Java DSL
with no XML integration configuration.

The @EnableIntegration annotation is also useful when you have a parent context with no Spring
Integration components and two or more child contexts that use Spring Integration. It lets these
common components be declared once only, in the parent context.

The @EnableIntegration annotation registers many infrastructure components with the application
context. In particular, it:

* Registers some built-in beans, such as errorChannel and its LoggingHandler, taskScheduler for
pollers, jsonPath SpEL-function, and others.

» Adds several BeanFactoryPostProcessor instances to enhance the BeanFactory for global and
default integration environment.

» Adds several BeanPostProcessor instances to enhance or convert and wrap particular beans for
integration purposes.

* Adds annotation processors to parse messaging annotations and registers components for them
with the application context.

The @IntegrationComponentScan annotation also permits classpath scanning. This annotation plays a
similar role as the standard Spring Framework @ComponentScan annotation, but it is restricted to
components and annotations that are specific to Spring Integration, which the standard Spring
Framework component scan mechanism cannot reach. For an example, see @MessagingGateway
Annotation.

The @EnablePublisher annotation registers a PublisherAnnotationBeanPostProcessor bean and
configures the default-publisher-channel for those @Publisher annotations that are provided
without a channel attribute. If more than one @EnablePublisher annotation is found, they must all
have the same value for the default channel. See Annotation-driven Configuration with the
@Publisher Annotation for more information.

The @GlobalChannelInterceptor annotation has been introduced to mark ChannelInterceptor beans
for global channel interception. This annotation is an analogue of the <int:channel-interceptor>
XML element (see Global Channel Interceptor Configuration). @GlobalChannellnterceptor
annotations can be placed at the class level (with a @Component stereotype annotation) or on @Bean
methods within @Configuration classes. In either case, the bean must implement ChannelInterceptor.

Starting with version 5.1, global channel interceptors apply to dynamically registered
channels —such as beans that are initialized by using beanFactory.initializeBean() or through the
IntegrationFlowContext when using the Java DSL. Previously, interceptors were not applied when
beans were created after the application context was refreshed.

The @IntegrationConverter annotation marks Converter, GenericConverter, or ConverterFactory beans
as candidate converters for integrationConversionService. This annotation is an analogue of the
<int:converter> XML element (see Payload Type Conversion). You can place @IntegrationConverter

22

https://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/config/EnableIntegration.html
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./message-publishing.pdf#publisher-annotation
./message-publishing.pdf#publisher-annotation
./message-publishing.pdf#publisher-annotation
./channel.pdf#global-channel-configuration-interceptors
./endpoint.pdf#payload-type-conversion

annotations at the class level (with a @Component stereotype annotation) or on @Bean methods within
@Configuration classes.

See Annotation Support for more information about messaging annotations.

5.6. Programming Considerations

You should use plain old java objects (POJOs) whenever possible and only expose the framework in
your code when absolutely necessary. See POJO Method invocation for more information.

If you do expose the framework to your classes, there are some considerations that need to be taken
into account, especially during application startup:

* If your component is ApplicationContextAware, you should generally not wuse the
ApplicationContext in the setApplicationContext() method. Instead, store a reference and defer
such uses until later in the context lifecycle.

* If your component is an InitializingBean or uses @PostConstruct methods, do not send any
messages from these initialization methods. The application context is not yet initialized when
these methods are called, and sending such messages is likely to fail. If you need to send a
messages during startup, implement ApplicationlListener and wait for the
ContextRefreshedEvent. Alternatively, implement SmartLifecycle, put your bean in a late phase,
and send the messages from the start() method.

5.6.1. Considerations When Using Packaged (for example, Shaded) Jars

Spring Integration bootstraps certain features by using Spring Framework’s SpringFactories
mechanism to load several IntegrationConfigurationInitializer classes. This includes the -core jar
as well as certain others, including -http and -jmx. The information for this process is stored in a
META-INF/spring.factories file in each jar.

Some developers prefer to repackage their application and all dependencies into a single jar by
using well known tools, such as the Apache Maven Shade Plugin.

By default, the shade plugin does not merge the spring.factories files when producing the shaded
jar.

In addition to spring.factories, other META-INF files (spring.handlers and spring.schemas) are used
for XML configuration. These files also need to be merged.

Spring Boot’s executable jar mechanism takes a different approach, in that it nests

o the jars, thus retaining each spring.factories file on the class path. So, with a
Spring Boot application, nothing more is needed if you use its default executable
jar format.

Even if you do not use Spring Boot, you can still use the tooling provided by Boot to enhance the
shade plugin by adding transformers for the above mentioned files.

You may wish to consult the current spring-boot-starter-parent pom to see the current settings that
boot uses. The following example shows how to configure the plugin:

23

./configuration.pdf#annotations
https://maven.apache.org/plugins/maven-shade-plugin/
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-starters/spring-boot-starter-parent/pom.xml

Example 1. pom.xml

24

<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<confiquration>
<keepDependenciesWithProvidedScope>
true</keepDependenciesWithProvidedScope>
<createDependencyReducedPom>true</createDependencyReducedPom>
</configuration>
<dependencies>
<dependency> @
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>${spring.boot.version}</version>
</dependency>
</dependencies>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers> @
<transformer
implementation=
"org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>META-INF/spring.handlers</resource>
</transformer>
<transformer
implementation=
"org.springframework.boot.maven.PropertiesMergingResourceTransformer">
<resource>META-INF/spring.factories</resource>
</transformer>
<transformer
implementation=
"org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>META-INF/spring.schemas</resource>
</transformer>
<transformer
implementation=
"org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>

25

Specifically,

@ Add the spring-boot-maven-plugin as a dependency.

@ Configure the transformers.

You can add a property for ${spring.boot.version} or use an explicit version.

5.7. Programming Tips and Tricks

This section documents some of the ways to get the most from Spring Integration.

5.7.1. XML Schemas

When using XML configuration, to avoid getting false schema validation errors, you should use a
“Spring-aware” IDE, such as the Spring Tool Suite (STS), Eclipse with the Spring IDE plugins, or
Intelli] IDEA. These IDEs know how to resolve the correct XML schema from the classpath (by using
the META-INF/spring.schemas file in the jars). When using STS or Eclipse with the plugin, you must
enable Spring Project Nature on the project.

The schemas hosted on the internet for certain legacy modules (those that existed in version 1.0)
are the 1.0 versions for compatibility reasons. If your IDE uses these schemas, you are likely to see
false errors.

Each of these online schemas has a warning similar to the following:

This schema is for the 1.0 version of Spring Integration Core. We cannot update it

to the current schema because that will break any applications using 1.0.3 or

lower. For subsequent versions, the unversioned schema is resolved from the
o classpath and obtained from the jar. Please refer to github:

github.com/spring-projects/spring-integration/tree/master/spring-integration-core/
src/main/resources/org/springframework/integration/config

The affected modules are

» core (spring-integration.xsd)
. file

« http

o jms

e mail

o rmi

o Security

o Stream

o WS

o Xxml

26

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config
https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

5.7.2. Finding Class Names for Java and DSL Configuration

With XML configuration and Spring Integration Namespace support, the XML parsers hide how
target beans are declared and wired together. For Java configuration, it is important to understand
the Framework API for target end-user applications.

The first-class citizens for EIP implementation are Message, Channel, and Endpoint (see Main
Components, earlier in this chapter). Their implementations (contracts) are:

* org.springframework.messaging.Message: See Message;
* org.springframework.messaging.MessageChannel: See Message Channels;

* org.springframework.integration.endpoint.AbstractEndpoint: See Poller.

The first two are simple enough to understand how to implement, configure, and use. The last one
deserves more attention

The AbstractEndpoint is widely used throughout the Spring Framework for different component
implementations. Its main implementations are:

» EventDrivenConsumer, used when we subscribe to a SubscribableChannel to listen for messages.

* PollingConsumer, used when we poll for messages from a PollableChannel.

When you use messaging annotations or the Java DSL, you need to worry about these components,
because the Framework automatically produces them with appropriate annotations and
BeanPostProcessor implementations. When building components manually, you should use the
ConsumerEndpointFactoryBean to help determine the target AbstractEndpoint consumer
implementation to create, based on the provided inputChannel property.

On the other hand, the ConsumerEndpointFactoryBean delegates to an another first class citizen in the
Framework: org.springframework.messaging.MessageHandler. The goal of the implementation of this
interface is to handle the message consumed by the endpoint from the channel. All EIP components
in Spring Integration are MessageHandler implementations (for example, AggregatingMessageHandler,
MessageTransformingHandler, AbstractMessageSplitter, and others). The target protocol outbound
adapters (FileWritingMessageHandler, HttpRequestExecutingMessageHandler,
AbstractMqttMessageHandler, and others) are also MessageHandler implementations. When you
develop Spring Integration applications with Java configuration, you should look into the Spring
Integration module to find an appropriate MessageHandler implementation to use for the
@ServiceActivator configuration. For example, to send an XMPP message (see XMPP Support) you
should configure something like the following:

27

./message.pdf#message
./channel.pdf#channel
./polling-consumer.pdf#polling-consumer
./xmpp.pdf#xmpp

(inputChannel = "input")
public MessageHandler sendChatMessageHandler (XMPPConnection xmppConnection) {
ChatMessageSendingMessageHandler handler = new
ChatMessageSendingMessageHandler (xmppConnection);

DefaultXmppHeaderMapper xmppHeaderMapper = new DefaultXmppHeaderMapper();
xmppHeaderMapper.setRequestHeaderNames("*");
handler.setHeaderMapper (xmppHeaderMapper);

return handler;

The MessageHandler implementations represent the outbound and processing part of the message
flow.

The inbound message flow side has its own components, which are divided into polling and
listening behaviors. The listening (message-driven) components are simple and typically require
only one target class implementation to be ready to produce messages. Listening components can

be one-way MessageProducerSupport implementations, (such as
AbstractMqttMessageDrivenChannelAdapter = and ImapIdleChannelAdapter) or request-reply
MessagingGatewaySupport implementations (such as AmgpInboundGateway and

AbstractWebServiceInboundGateway).

Polling inbound endpoints are for those protocols that do not provide a listener API or are not
intended for such a behavior, including any file based protocol (such as FTP), any data bases
(RDBMS or NoSQL), and others.

These inbound endpoints consist of two components: the poller configuration, to initiate the polling
task periodically, and a message source class to read data from the target protocol and produce a
message for the downstream integration flow. The first class for the poller configuration is a
SourcePollingChannelAdapter. It is one more AbstractEndpoint implementation, but especially for
polling to initiate an integration flow. Typically, with the messaging annotations or Java DSL, you
should not worry about this class. The Framework produces a bean for it, based on the
@InboundChannelAdapter configuration or a Java DSL builder spec.

Message source components are more important for the target application development, and they
all implement the MessageSource interface (for example, MongoDbMessageSource and
AbstractTwitterMessageSource). With that in mind, our config for reading data from an RDBMS table
with JDBC could resemble the following:

28

(value = "fooChannel", poller = (fixedDelay="5000"))
public MessageSource<?> storedProc(DataSource dataSource) {
return new JdbcPollingChannelAdapter(dataSource, "SELECT * FROM foo where
status = 0");

}

You can find all the required inbound and outbound classes for the target protocols in the
particular Spring Integration module (in most cases, in the respective package). For example, the
spring-integration-websocket adapters are:

* 0.s.1.websocket.inbound.WebSocketInboundChannelAdapter: Implements MessageProducerSupport to
listen for frames on the socket and produce message to the channel.

* 0.s.1.websocket.outbound.WebSocketOutboundMessageHandler: The one-way
AbstractMessageHandler implementation to convert incoming messages to the appropriate frame
and send over websocket.

If you are familiar with Spring Integration XML configuration, starting with version 4.3, we provide
information in the XSD element definitions about which target classes are used to declare beans for
the adapter or gateway, as the following example shows:

<xsd:element name="outbound-async-gateway">
<xsd:annotation>
<xsd:documentation>
Configures a Consumer Endpoint for the
'0.s.i.amgp.outbound.AsyncAmgpOutboundGateway'
that will publish an AMQP Message to the provided Exchange and expect a reply
Message.
The sending thread returns immediately; the reply is sent asynchronously; uses
"AsyncRabbitTemplate.sendAndReceive()".
</xsd:documentation>
</xsd:annotation>

5.8. POJO Method invocation

As discussed in Programming Considerations, we recommend using a POJO programming style, as
the following example shows:

public String myService(String payload) { ... }

29

In this case, the framework extracts a String payload, invokes your method, and wraps the result in
a message to send to the next component in the flow (the original headers are copied to the new
message). In fact, if you use XML configuration, you do not even need the @ServiceActivator
annotation, as the following paired examples show:

<int:service-activator ... ref="myPojo" method="myService" />

public String myService(String payload) { ... }

You can omit the method attribute as long as there is no ambiguity in the public methods on the
class.

You can also obtain header information in your POJO methods, as the following example shows:

public String myService(String payload, ("foo") String fooHeader)
{...}

You can also dereference properties on the message, as the following example shows:

public String myService(("payload.foo") String foo, ("bar.baz")
String barbaz) { ... }

Because various POJO method invocations are available, versions prior to 5.0 used SpEL (Spring
Expression Language) to invoke the POJO methods. SpEL (even interpreted) is usually “fast enough”
for these operations, when compared to the actual work usually done in the methods. However,
starting with version 5.0, the
org.springframework.messaging.handler.invocation.InvocableHandlerMethod is used by default
whenever possible. This technique is usually faster to execute than interpreted SpEL and is
consistent with other Spring messaging projects. The InvocableHandlerMethod is similar to the
technique used to invoke controller methods in Spring MVC. There are certain methods that are still
always invoked when using SpEL. Examples include annotated parameters with dereferenced
properties, as discussed earlier. This is because SpEL has the capability to navigate a property path.

There may be some other corner cases that we have not considered that also do not work with
InvocableHandlerMethod instances. For this reason, we automatically fall back to using SpEL in those
cases.

If you wish, you can also set up your POJO method such that it always uses SpEL, with the

30

UseSpellInvoker annotation, as the following example shows:

@UseSpelInvoker(compilerMode = "IMMEDIATE")
public void bar(String bar) { ... }

If the compilerMode property is omitted, the spring.expression.compiler.mode system property
determines the compiler mode. See SpEL compilation for more information about compiled SpEL.

31

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-spel-compilation

Core Messaging

This section covers all aspects of the core messaging API in Spring Integration. It covers messages,
message channels, and message endpoints. It also covers many of the enterprise integration
patterns, such as filter, router, transformer, service activator , splitter, and aggregator.

This section also contains material about system management, including the control bus and
message history support.

32

Chapter 6. Messaging Channels

6.1. Message Channels

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that decouples
message producers from message consumers.

6.1.1. The MessageChannel Interface

Spring Integration’s top-level MessageChannel interface is defined as follows:

public interface MessageChannel {
boolean send(Message message);

boolean send(Message message, long timeout);

When sending a message, the return value is true if the message is sent successfully. If the send call
times out or is interrupted, it returns false.

PollableChannel

Since message channels may or may not buffer messages (as discussed in the Spring Integration
Overview), two sub-interfaces define the buffering (pollable) and non-buffering (subscribable)
channel behavior. The following listing shows the definition of the PollableChannel interface:

public interface PollableChannel extends MessageChannel {
Message<?> receive();

Message<?> receive(long timeout);

As with the send methods, when receiving a message, the return value is null in the case of a
timeout or interrupt.

SubscribableChannel

The SubscribableChannel base interface is implemented by channels that send messages directly to
their subscribed MessageHandler instances. Therefore, they do not provide receive methods for
polling. Instead, they define methods for managing those subscribers. The following listing shows
the definition of the SubscribableChannel interface:

33

./overview.pdf#overview
./overview.pdf#overview

public interface SubscribableChannel extends MessageChannel {
boolean subscribe(MessageHandler handler);

boolean unsubscribe(MessageHandler handler);

6.1.2. Message Channel Implementations

Spring Integration provides several different message channel implementations. The following
sections briefly describe each one.

PublishSubscribeChannel

The PublishSubscribeChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending event messages, whose primary role is
notification (as opposed to document messages, which are generally intended to be processed by a
single handler). Note that the PublishSubscribeChannel is intended for sending only. Since it
broadcasts to its subscribers directly when its send(Message) method is invoked, consumers cannot
poll for messages (it does not implement PollableChannel and therefore has no receive() method).
Instead, any subscriber must itself be a MessageHandler, and the subscriber’s handleMessage(Message)
method is invoked in turn.

Prior to version 3.0, invoking the send method on a PublishSubscribeChannel that had no subscribers
returned false. When used in conjunction with a MessagingTemplate, a MessageDeliveryException was
thrown. Starting with version 3.0, the behavior has changed such that a send is always considered
successful if at least the minimum subscribers are present (and successfully handle the message).
This behavior can be modified by setting the minSubscribers property, which defaults to 0.

If you use a TaskExecutor, only the presence of the correct number of subscribers is
used for this determination, because the actual handling of the message is
performed asynchronously.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the PublishSubscribeChannel, the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default
no-argument constructor (providing an essentially unbounded capacity of Integer.MAX_VALUE) as
well as a constructor that accepts the queue capacity, as the following listing shows:

public QueueChannel(int capacity)

34

A channel that has not reached its capacity limit stores messages in its internal queue, and the
send(Message<?>) method returns immediately, even if no receiver is ready to handle the message. If
the queue has reached capacity, the sender blocks until room is available in the queue.
Alternatively, if you use the send method that has an additional timeout parameter, the queue
blocks until either room is available or the timeout period elapses, whichever occurs first. Similarly,
a receive() call returns immediately if a message is available on the queue, but, if the queue is
empty, then a receive call may block until either a message is available or the timeout, if provided,
elapses. In either case, it is possible to force an immediate return regardless of the queue’s state by
passing a timeout value of 0. Note, however, that calls to the versions of send() and receive() with
no timeout parameter block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in-first-out (FIFO) ordering, the PriorityChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon
a priority. By default, the priority is determined by the priority header within each message.
However, for custom priority determination logic, a comparator of type Comparator<Message<?>> can
be provided to the PriorityChannel constructor.

RendezvousChannel

The RendezvousChannel enables a “direct-handoff” scenario, wherein a sender blocks until another
party invokes the channel’s receive() method. The other party blocks until the sender sends the
message. Internally, this implementation is quite similar to the QueueChannel, except that it uses a
SynchronousQueue (a zero-capacity implementation of BlockingQueue). This works well in situations
where the sender and receiver operate in different threads, but asynchronously dropping the
message in a queue is not appropriate. In other words, with a RendezvousChannel, the sender knows
that some receiver has accepted the message, whereas with a QueueChannel, the message would have
been stored to the internal queue and potentially never received.

Keep in mind that all of these queue-based channels are storing messages in-
memory only by default. When persistence is required, you can either provide a
'message-store' attribute within the 'queue' element to reference a persistent
MessageStore implementation or you can replace the local channel with one that is

O backed by a persistent broker, such as a JMS-backed channel or channel adapter.
The latter option lets you take advantage of any JMS provider’s implementation for
message persistence, as discussed in JMS Support. However, when buffering in a
queue is not necessary, the simplest approach is to rely upon the DirectChannel,
discussed in the next section.

The RendezvousChannel is also useful for implementing request-reply operations. The sender can
create a temporary, anonymous instance of RendezvousChannel, which it then sets as the
replyChannel' header when building a Message. After sending that Message, the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for
a reply Message. This is very similar to the implementation used internally by many of Spring
Integration’s request-reply components.

35

./jms.pdf#jms

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
PublishSubscribeChannel than any of the queue-based channel implementations described earlier. It
implements the SubscribableChannel interface instead of the PollableChannel interface, so it
dispatches messages directly to a subscriber. As a point-to-point channel, however, it differs from
the PublishSubscribeChannel in that it sends each Message to a single subscribed MessageHandler.

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on “both sides” of the channel. For
example, if a handler subscribes to a DirectChannel, then sending a Message to that channel triggers
invocation of that handler’s handleMessage(Message) method directly in the sender’s thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support
transactions that must span across the channel while still benefiting from the abstraction and loose
coupling that the channel provides. If the send call is invoked within the scope of a transaction, the
outcome of the handler’s invocation (for example, updating a database record) plays a role in
determining the ultimate result of that transaction (commit or rollback).

Since the DirectChannel is the simplest option and does not add any additional
overhead that would be required for scheduling and managing the threads of a
poller, it is the default channel type within Spring Integration. The general idea is

o to define the channels for an application, consider which of those need to provide
buffering or to throttle input, and modify those to be queue-based
PollableChannels. Likewise, if a channel needs to broadcast messages, it should not
be a DirectChannel but rather a PublishSubscribeChannel. Later, we show how each
of these channels can be configured.

The DirectChannel internally delegates to a message dispatcher to invoke its subscribed message
handlers, and that dispatcher can have a load-balancing strategy exposed by load-balancer or load-
balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the message
dispatcher to help determine how messages are distributed amongst message handlers when
multiple message handlers subscribe to the same channel. As a convenience, the load-balancer
attribute exposes an enumeration of values pointing to pre-existing implementations of
LoadBalancingStrategy. round-robin (load-balances across the handlers in rotation) and none (for the
cases where one wants to explicitly disable load balancing) are the only available values. Other
strategy implementations may be added in future versions. However, since version 3.0, you can
provide your own implementation of the LoadBalancingStrategy and inject it by using the load-
balancer-ref attribute, which should point to a bean that implements LoadBalancingStrategy, as the
following example shows:

36

<int:channel id="1bRefChannel">
<int:dispatcher load-balancer-ref="1b"/>
</int:channel>

<bean id="1b" class="foo.bar.SampleLoadBalancingStrategy"/>

Note that the load-balancer and load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in conjunction with a boolean failover property. If the failover
value is true (the default), the dispatcher falls back to any subsequent handlers (as necessary) when
preceding handlers throw exceptions. The order is determined by an optional order value defined
on the handlers themselves or, if no such value exists, the order in which the handlers subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler and then fall
back in the same fixed order sequence every time an error occurs, no load-balancing strategy
should be provided. In other words, the dispatcher still supports the failover boolean property
even when no load-balancing is enabled. Without load-balancing, however, the invocation of
handlers always begins with the first, according to their order. For example, this approach works
well when there is a clear definition of primary, secondary, tertiary, and so on. When using the
namespace support, the order attribute on any endpoint determines the order.

Keep in mind that load-balancing and failover apply only when a channel has

e more than one subscribed message handler. When using the namespace support,
this means that more than one endpoint shares the same channel reference
defined in the input-channel attribute.

Starting with version 5.2, when failover is true, a failure of the current handler together with the
failed message is logged under debug or info if configured respectively.

ExecutorChannel

The ExecutorChannel is a point-to-point channel that supports the same dispatcher configuration as
DirectChannel (load-balancing strategy and the failover boolean property). The key difference
between these two dispatching channel types is that the ExecutorChannel delegates to an instance of
TaskExecutor to perform the dispatch. This means that the send method typically does not block, but
it also means that the handler invocation may not occur in the sender’s thread. It therefore does not
support transactions that span the sender and receiving handler.

The sender can sometimes block. For example, when using a TaskExecutor with a
rejection policy that throttles the client (such as the

é ThreadPoolExecutor.CallerRunsPolicy), the sender’s thread can execute the method
any time the thread pool is at its maximum capacity and the executor’s work
queue is full. Since that situation would only occur in a non-predictable way, you
should not rely upon it for transactions.

37

Scoped Channel

Spring Integration 1.0 provided a ThreadLocalChannel implementation, but that has been removed as
of 2.0. Now the more general way to handle the same requirement is to add a scope attribute to a
channel. The value of the attribute can be the name of a scope that is available within the context.
For example, in a web environment, certain scopes are available, and any custom scope
implementations can be registered with the context. The following example shows a thread-local
scope being applied to a channel, including the registration of the scope itself:

<int:channel id="threadScopedChannel" scope="thread">
<int:queue />
</int:channel>

<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes">
<map>
<entry key="thread" value=
"org.springframework.context.support.SimpleThreadScope" />
</map>
</property>
</bean>

The channel defined in the previous example also delegates to a queue internally, but the channel is
bound to the current thread, so the contents of the queue are similarly bound. That way, the thread
that sends to the channel can later receive those same messages, but no other thread would be able
to access them. While thread-scoped channels are rarely needed, they can be useful in situations
where DirectChannel instances are being used to enforce a single thread of operation but any reply
messages should be sent to a “terminal” channel. If that terminal channel is thread-scoped, the
original sending thread can collect its replies from the terminal channel.

Now, since any channel can be scoped, you can define your own scopes in addition to thread-Local.

6.1.3. Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive
way. Since the Message instances are sent to and received from MessageChannel instances, those
channels provide an opportunity for intercepting the send and receive operations. The
Channellnterceptor strategy interface, shown in the following listing, provides methods for each of
those operations:

38

public interface ChannellInterceptor {
Message<?> preSend(Message<?> message, MessageChannel channel);
void postSend(Message<?> message, MessageChannel channel, boolean sent);

void afterSendCompletion(Message<?> message, MessageChannel channel, boolean
sent, Exception ex);

boolean preReceive(MessageChannel channel);
Message<?> postReceive(Message<?> message, MessageChannel channel);

void afterReceiveCompletion(Message<?> message, MessageChannel channel,
Exception ex);

}

After implementing the interface, registering the interceptor with a channel is just a matter of
making the following call:

channel.addInterceptor(someChannellnterceptor);

The methods that return a Message instance can be used for transforming the Message or can return
null' to prevent further processing (of course, any of the methods can throw a RuntimeException).
Also, the preReceive method can return false to prevent the receive operation from proceeding.

Keep in mind that receive() calls are only relevant for PollableChannels. In fact,
the SubscribableChannel interface does not even define a receive() method. The
reason for this is that when a Message is sent to a SubscribableChannel, it is sent
o directly to zero or more subscribers, depending on the type of channel (for
example, a PublishSubscribeChannel sends to all of its subscribers). Therefore, the
preReceive(), postReceive(), and afterReceiveCompletion() interceptor
methods are invoked only when the interceptor is applied to a PollableChannel.

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple
interceptor that sends the Message to another channel without otherwise altering the existing flow.
It can be very useful for debugging and monitoring. An example is shown in Wire Tap.

Because it is rarely necessary to implement all of the interceptor methods, the interface provides
no-op methods (methods returning void method have no code, the Message-returning methods
return the Message as-is, and the boolean method returns true).

39

https://www.enterpriseintegrationpatterns.com/WireTap.html

The order of invocation for the interceptor methods depends on the type of
channel. As described earlier, the queue-based channels are the only ones where
the receive method is intercepted in the first place. Additionally, the relationship
between send and receive interception depends on the timing of the separate
sender and receiver threads. For example, if a receiver is already blocked while
waiting for a message, the order could be as follows: preSend, preReceive,

(r) postReceive, postSend. However, if a receiver polls after the sender has placed a

- message on the channel and has already returned, the order would be as follows:
preSend, postSend (some-time-elapses), preReceive, postReceive. The time that
elapses in such a case depends on a number of factors and is therefore generally
unpredictable (in fact, the receive may never happen). The type of queue also
plays a role (for example, rendezvous versus priority). In short, you cannot rely on
the order beyond the fact that preSend precedes postSend and preReceive precedes
postReceive.

Starting with Spring Framework 4.1 and Spring Integration 4.1, the Channellnterceptor provides
new methods: afterSendCompletion() and afterReceiveCompletion(). They are invoked after send()'
and 'receive() calls, regardless of any exception that is raised, which allow for resource cleanup.
Note that the channel invokes these methods on the ChannelInterceptor list in the reverse order of
the initial preSend() and preReceive() calls.

Starting with version 5.1, global channel interceptors now apply to dynamically registered channels
- such as through beans that are initialized by wusing beanFactory.initializeBean() or
IntegrationFlowContext when using the Java DSL. Previously, interceptors were not applied when
beans were created after the application context was refreshed.

Also, starting with version 5.1, ChannelInterceptor.postReceive() is no longer called when no
message is received; it is no longer necessary to check for a null Message<?>. Previously, the method
was called. If you have an interceptor that relies on the previous behavior, implement
afterReceiveCompleted() instead, since that method is invoked, regardless of whether a message is
received or not.

Starting with version 5.2, the ChannellnterceptorAware is deprecated in favor of
o InterceptableChannel from the Spring Messaging module, which it extends now for
backward compatibility.

6.1.4. MessagingTemplate

When the endpoints and their various configuration options are introduced, Spring Integration
provides a foundation for messaging components that enables non-invasive invocation of your
application code from the messaging system. However, it is sometimes necessary to invoke the
messaging system from your application code. For convenience when implementing such use cases,
Spring Integration provides a MessagingTemplate that supports a variety of operations across the
message channels, including request and reply scenarios. For example, it is possible to send a
request and wait for a reply, as follows:

40

MessagingTemplate template = new MessagingTemplate();

Message reply = template.sendAndReceive(someChannel, new GenericMessage("test"));

In the preceding example, a temporary anonymous channel would be created internally by the
template. The 'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and
other exchange types are also supported. The following listing shows the signatures for such
methods:

public boolean send(final MessageChannel channel, final Message<?> message) { ...

}

public Message<?> sendAndReceive(final MessageChannel channel, final Message<?>
request) { ...
¥

public Message<?> receive(final PollableChannel<?> channel) { ...

}

A less invasive approach that lets you invoke simple interfaces with payload or
header values instead of Message instances is described in Enter the
GatewayProxyFactoryBean.

6.1.5. Configuring Message Channels

To create a message channel instance, you can use the <channel/> element, as follows:

<int:channel id="exampleChannel"/>

The default channel type is point-to-point. To create a publish-subscribe channel, use the <publish-
subscribe-channel/> element, as follows:

<int:publish-subscribe-channel id="exampleChannel"/>

When you use the <channel/> element without any sub-elements, it creates a DirectChannel instance
(a SubscribableChannel).

However, you can alternatively provide a variety of <queue/> sub-elements to create any of the

41

./gateway.pdf#gateway-proxy
./gateway.pdf#gateway-proxy

pollable channel types (as described in Message Channel Implementations). The following sections
shows examples of each channel type.

DirectChannel Configuration

As mentioned earlier, DirectChannel is the default type. The following listing shows who to define
one in XML:

<int:channel id="directChannel"/>

A default channel has a round-robin load-balancer and also has failover enabled (see DirectChannel
for more detail). To disable one or both of these, add a <dispatcher/> sub-element and configure the
attributes as follows:

<int:channel id="failFastChannel">
<int:dispatcher failover="false"/>
</channel>

<int:channel id="channelWithFixedOrderSequenceFailover">
<int:dispatcher load-balancer="none"/>
</int:channel>

Datatype Channel Configuration

Sometimes, a consumer can process only a particular type of payload, forcing you to ensure the
payload type of the input messages. The first thing that comes to mind may be to use a message
filter. However, all that message filter can do is filter out messages that are not compliant with the
requirements of the consumer. Another way would be to use a content-based router and route
messages with non-compliant data-types to specific transformers to enforce transformation and
conversion to the required data type. This would work, but a simpler way to accomplish the same
thing is to apply the Datatype Channel pattern. You can use separate datatype channels for each
specific payload data type.

To create a datatype channel that accepts only messages that contain a certain payload type,
provide the data type’s fully-qualified class name in the channel element’s datatype attribute, as the
following example shows:

<int:channel id="numberChannel" datatype="java.lang.Number"/>

Note that the type check passes for any type that is assignable to the channel’s datatype. In other
words, the numberChannel in the preceding example would accept messages whose payload is
java.lang.Integer or java.lang.Double. Multiple types can be provided as a comma-delimited list, as
the following example shows:

42

https://www.enterpriseintegrationpatterns.com/DatatypeChannel.html

<int:channel id="stringOrNumberChannel" datatype=
"java.lang.String,java.lang.Number"/>

So the mumberChannel' in the preceding example accepts only messages with a data type of
java.lang.Number. But what happens if the payload of the message is not of the required type? It
depends on whether you have defined a bean named integrationConversionService that is an
instance of Spring’s Conversion Service. If not, then an Exception would be thrown immediately.
However, if you have defined an integrationConversionService bean, it is used in an attempt to
convert the message’s payload to the acceptable type.

You can even register custom converters. For example, suppose you send a message with a String
payload to the 'numberChannel' we configured above. You might handle the message as follows:

MessageChannel inChannel = context.getBean("numberChannel”, MessageChannel.class);
inChannel.send(new GenericMessage<String>("5"));

Typically this would be a perfectly legal operation. However, since we use Datatype Channel, the
result of such operation would generate an exception similar to the following:

Exception in thread "main"
org.springframework.integration.MessageDeliveryException:

Channel 'numberChannel’

expected one of the following datataypes [class java.lang.Number],
but received [class java.lang.String]

The exception happens because we require the payload type to be a Number, but we sent a String. So
we need something to convert a String to a Number. For that, we can implement a converter similar

to the following example:

public static class StringToIntegerConverter implements Converter<String, Integer>

{

public Integer convert(String source) {
return Integer.parselnt(source);

}

Then we can register it as a converter with the Integration Conversion Service, as the following
example shows:

43

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

<int:converter ref="strToInt"/>

<bean id="strToInt" class=
"org.springframework.integration.util.Demo.StringToIntegerConverter"/>

When the 'converter' element is parsed, it creates the integrationConversionService bean if one is
not already defined. With that converter in place, the send operation would now be successful,
because the datatype channel uses that converter to convert the String payload to an Integer.

For more information regarding payload type conversion, see Payload Type Conversion.

Beginning with version 4.0, the integrationConversionService is invoked by the
DefaultDatatypeChannelMessageConverter, which looks up the conversion service in the application
context. To use a different conversion technique, you can specify the message-converter attribute on
the channel. This must be a reference to a MessageConverter implementation. Only the fromMessage
method is used. It provides the converter with access to the message headers (in case the
conversion might need information from the headers, such as content-type). The method can
return only the converted payload or a full Message object. If the latter, the converter must be
careful to copy all the headers from the inbound message.

Alternatively, you can declare a <bean/> of type MessageConverter with an ID of
datatypeChannelMessageConverter, and that converter is used by all channels with a datatype.

QueueChannel Configuration

To create a QueueChannel, use the <queue/> sub-element. You may specify the channel’s capacity as
follows:

<int:channel id="queueChannel">
<queue capacity="25"/>
</int:channel>

If you do not provide a value for the 'capacity' attribute on this <queue/> sub-
o element, the resulting queue is unbounded. To avoid issues such as running out of
memory, we highly recommend that you set an explicit value for a bounded queue.

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer messages but does so in-memory only by
default, it also introduces a possibility that messages could be lost in the event of a system failure.
To mitigate this risk, a QueueChannel may be backed by a persistent implementation of the
MessageGroupStore strategy interface. For more details on MessageGroupStore and MessageStore, see
Message Store.

o The capacity attribute is not allowed when the message-store attribute is used.

44

./endpoint.pdf#payload-type-conversion
./message-store.pdf#message-store

When a QueueChannel receives a Message, it adds the message to the message store. When a Message is
polled from a QueueChannel, it is removed from the message store.

By default, a QueueChannel stores its messages in an in-memory queue, which can lead to the lost
message scenario mentioned earlier. However, Spring Integration provides persistent stores, such
as the JdbcChannelMessageStore.

You can configure a message store for any QueueChannel by adding the message-store attribute, as the
following example shows:

<int:channel id="dbBackedChannel">
<int:queue message-store="channelStore"/>
</int:channel>

<bean id="channelStore" class="o0.s.i.jdbc.store.JdbcChannelMessageStore">
<property name="dataSource" ref="dataSource"/>
<property name="channelMessageStoreQueryProvider" ref="queryProvider"/>
</bean>

The Spring Integration JDBC module also provides a schema Data Definition Language (DDL) for a
number of popular databases. These schemas are located in the
org.springframework.integration.jdbc.store.channel package of that module (spring-integration-
jdbc).

One important feature is that, with any transactional persistent store (such as
JdbcChannelMessageStore), as long as the poller has a transaction configured, a

o message removed from the store can be permanently removed only if the
transaction completes successfully. Otherwise the transaction rolls back, and the
Message is not lost.

Many other implementations of the message store are available as the growing number of Spring
projects related to “NoSQL” data stores come to provide underlying support for these stores. You
can also provide your own implementation of the MessageGroupStore interface if you cannot find
one that meets your particular needs.

Since version 4.0, we recommend that QueueChannel instances be configured to use a
ChannelMessageStore, if possible. These are generally optimized for this use, as compared to a
general message store. If the ChannelMessageStore is a ChannelPriorityMessageStore, the messages are
received in FIFO within priority order. The notion of priority is determined by the message store
implementation. For example, the following example shows the Java configuration for the
MongoDB Channel Message Store:

45

./mongodb.pdf#mongodb-priority-channel-message-store

public BasicMessageGroupStore mongoDbChannelMessageStore(MongoDbFactory
mongoDbFactory) {

MongoDbChannelMessageStore store = new MongoDbChannelMessageStore
(mongoDbFactory);

store.setPriorityEnabled(true);

return store;

public PollableChannel priorityQueue(BasicMessageGroupStore
mongoDbChannelMessageStore) {

return new PriorityChannel(new MessageGroupQueue(mongoDbChannelMessageStore,
"priorityQueue"));

}

o Pay attention to the MessageGroupQueue class. That is a BlockingQueue
implementation to use the MessageGroupStore operations.

The same implementation with Java DSL might look like the following example:

public IntegrationFlow priorityFlow(PriorityCapableChannelMessageStore
mongoDbChannelMessageStore) {
return IntegrationFlows.from((Channels c¢) ->
c.priority("priorityChannel”, mongoDbChannelMessageStore, "priorityGroup”

)
.get();
Another option to customize the QueueChannel environment is provided by the ref attribute of the

<int:queue> sub-element or its particular constructor. This attribute supplies the reference to any

java.util.Queue implementation. For example, a Hazelcast distributed IQueue can be configured as
follows:

46

https://hazelcast.com/use-cases/imdg/imdg-messaging/

public HazelcastInstance hazelcastInstance() {
return Hazelcast.newHazelcastInstance(new Config()
.setProperty("hazelcast.logging.type",
"log4j"));
}

public PollableChannel distributedQueue() {
return new QueueChannel(hazelcastInstance()
.getQueue("springIntegrationQueue"));

PublishSubscribeChannel Configuration

To create a PublishSubscribeChannel, use the <publish-subscribe-channel/> element. When using this
element, you can also specify the task-executor used for publishing messages (if none is specified, it
publishes in the sender’s thread), as follows:

<int:publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

If you provide a resequencer or aggregator downstream from a PublishSubscribeChannel, you can
set the 'apply-sequence’ property on the channel to true. Doing so indicates that the channel should
set the sequence-size and sequence-number message headers as well as the correlation ID prior to
passing along the messages. For example, if there are five subscribers, the sequence-size would be
set to 5, and the messages would have sequence-number header values ranging from 1 to 5.

Along with the Executor, you can also configure an ErrorHandler. By default, the
PublishSubscribeChannel uses a MessagePublishingErrorHandler implementation to send an error to
the MessageChannel from the errorChannel header or into the global errorChannel instance. If an
Executor is not configured, the ErrorHandler is ignored and exceptions are thrown directly to the
caller’s thread.

If you provide a Resequencer or Aggregator downstream from a PublishSubscribeChannel, you can set
the 'apply-sequence' property on the channel to true. Doing so indicates that the channel should set
the sequence-size and sequence-number message headers as well as the correlation ID prior to
passing along the messages. For example, if there are five subscribers, the sequence-size would be
set to 5, and the messages would have sequence-number header values ranging from 1 to 5.

The following example shows how to set the apply-sequence header to true:

47

<int:publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

The apply-sequence value is false by default so that a publish-subscribe channel
can send the exact same message instances to multiple outbound channels. Since
Spring Integration enforces immutability of the payload and header references,
when the flag is set to true, the channel creates new Message instances with the
same payload reference but different header values.

ExecutorChannel

To create an ExecutorChannel, add the <dispatcher> sub-element with a task-executor attribute. The

attribute’s value can reference any TaskExecutor within the context. For example, doing so enables
configuration of a thread pool for dispatching messages to subscribed handlers. As mentioned
earlier, doing so breaks the single-threaded execution context between sender and receiver so that

any active transaction context is not shared by the invocation of the handler (that is, the handler

may throw an Exception, but the send invocation has already returned successfully). The following
example shows how to use the dispatcher element and specify an executor in the task-executor

attribute:

<int:channel id="executorChannel">

<int:dispatcher task-executor="someExecutor"/>

</int:channel>

The Tload-balancer and failover options are also both available on the
<dispatcher/> sub-element, as described earlier in DirectChannel Configuration.
The same defaults apply. Consequently, the channel has a round-robin load-
balancing strategy with failover enabled unless explicit configuration is provided
for one or both of those attributes, as the following example shows:

<int:channel id="executorChannelWithoutFailover">
<int:dispatcher task-executor="someExecutor" failover="false"/>
</int:channel>

PriorityChannel Configuration

To create a PriorityChannel, use the <priority-queue/> sub-element, as the following example

shows:

48

<int:channel id="priorityChannel">
<int:priority-queue capacity="20"/>
</int:channel>

By default, the channel consults the priority header of the message. However, you can instead
provide a custom Comparator reference. Also, note that the PriorityChannel (like the other types)
does support the datatype attribute. As with the QueueChannel, it also supports a capacity attribute.
The following example demonstrates all of these:

<int:channel id="priorityChannel" datatype="example.Widget">
<int:priority-queue comparator="widgetComparator"
capacity="10"/>
</int:channel>

Since version 4.0, the priority-channel child element supports the message-store option (comparator
and capacity are not allowed in that case). The message store must be a
PriorityCapableChannelMessageStore. Implementations of the PriorityCapableChannelMessageStore
are currently provided for Redis, JDBC, and MongoDB. See QueueChannel Configuration and Message
Store for more information. You can find sample configuration in Backing Message Channels.

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not
provide any additional configuration options to those described earlier, and its queue does not
accept any capacity value, since it is a zero-capacity direct handoff queue. The following example
shows how to declare a RendezvousChannel:

<int:channel id="rendezvousChannel"/>
<int:rendezvous-queue/>
</int:channel>

Scoped Channel Configuration

Any channel can be configured with a scope attribute, as the following example shows:

<int:channel id="threadlLocalChannel" scope="thread"/>

Channel Interceptor Configuration

Message channels may also have interceptors, as described in Channel Interceptors. The

49

./message-store.pdf#message-store
./message-store.pdf#message-store
./jdbc.pdf#jdbc-message-store-channels

<interceptors/> sub-element can be added to a <channel/> (or the more specific element types). You
can provide the ref attribute to reference any Spring-managed object that implements the
ChannelInterceptor interface, as the following example shows:

<int:channel id="exampleChannel">
<int:interceptors>
<ref bean="trafficMonitoringInterceptor"/>
</int:interceptors>
</int:channel>

In general, we recommend defining the interceptor implementations in a separate location, since
they usually provide common behavior that can be reused across multiple channels.

Global Channel Interceptor Configuration

Channel interceptors provide a clean and concise way of applying cross-cutting behavior per
individual channel. If the same behavior should be applied on multiple channels, configuring the
same set of interceptors for each channel would not be the most efficient way. To avoid repeated
configuration while also enabling interceptors to apply to multiple channels, Spring Integration
provides global interceptors. Consider the following pair of examples:

<int:channel-interceptor pattern="input*, thing2*, thing1, !cat*" order="3">
<bean class="thing1.thing2SampleInterceptor"/>
</int:channel-interceptor>

<int:channel-interceptor ref="myInterceptor" pattern="input*, thing2*, thingT,
Icat*" order="3"/>

<bean id="myInterceptor" class="thing1.thing2Samplelnterceptor"/>

Each <channel-interceptor/> element lets you define a global interceptor, which is applied on all
channels that match any patterns defined by the pattern attribute. In the preceding case, the global
interceptor is applied on the 'thingl' channel and all other channels that begin with 'thing2' or
'input’ but not to channels starting with 'thing3' (since version 5.0).

The addition of this syntax to the pattern causes one possible (though perhaps
unlikely) problem. If you have a bean named !thing1 and you included a pattern of

A I'thing1 in your channel interceptor’s pattern patterns, it no longer matches. The
pattern now matches all beans not named thing1. In this case, you can escape the !
in the pattern with \. The pattern \!thing1 matches a bean named !thingT.

The order attribute lets you manage where this interceptor is injected when there are multiple
interceptors on a given channel. For example, channel 'inputChannel' could have individual

50

interceptors configured locally (see below), as the following example shows:

<int:channel id="inputChannel">
<int:interceptors>
<int:wire-tap channel="logger"/>
</int:interceptors>
</int:channel>

A reasonable question is “how is a global interceptor injected in relation to other interceptors
configured locally or through other global interceptor definitions?” The current implementation
provides a simple mechanism for defining the order of interceptor execution. A positive number in
the order attribute ensures interceptor injection after any existing interceptors, while a negative
number ensures that the interceptor is injected before existing interceptors. This means that, in the
preceding example, the global interceptor is injected after (since its order is greater than 0) the
'wire-tap' interceptor configured locally. If there were another global interceptor with a matching
pattern, its order would be determined by comparing the values of both interceptors' order
attributes. To inject a global interceptor before the existing interceptors, use a negative value for
the order attribute.

o Note that both the order and pattern attributes are optional. The default value for
order will be 0 and for pattern, the default is *' (to match all channels).

Starting with version 4.3.15, you can configure the spring.integration.postProcessDynamicBeans =
true property to apply any global interceptors to dynamically created MessageChannel beans. See
Global Properties for more information.

Wire Tap

As mentioned earlier, Spring Integration provides a simple wire tap interceptor. You can configure
a wire tap on any channel within an <interceptors/> element. Doing so is especially useful for
debugging and can be used in conjunction with Spring Integration’s logging channel adapter as
follows:

<int:channel id="in">
<int:interceptors>
<int:wire-tap channel="logger"/>
</int:interceptors>
</int:channel>

<int:logging-channel-adapter id="logger" level="DEBUG"/>

31

./configuration.pdf#global-properties

The 'logging-channel-adapter' also accepts an 'expression’ attribute so that you can
evaluate a SpEL expression against the 'payload’ and 'headers' variables.
Alternatively, to log the full message toString() result, provide a value of true for

(r) the 'log-full-message' attribute. By default, it is false so that only the payload is
logged. Setting it to true enables logging of all headers in addition to the payload.
The ‘expression’ option provides the most flexibility (for example,
expression="payload.user.name").

One of the common misconceptions about the wire tap and other similar components (Message
Publishing Configuration) is that they are automatically asynchronous in nature. By default, wire
tap as a component is not invoked asynchronously. Instead, Spring Integration focuses on a single
unified approach to configuring asynchronous behavior: the message channel. What makes certain
parts of the message flow synchronous or asynchronous is the type of Message Channel that has
been configured within that flow. That is one of the primary benefits of the message channel
abstraction. From the inception of the framework, we have always emphasized the need and the
value of the message channel as a first-class citizen of the framework. It is not just an internal,
implicit realization of the EIP pattern. It is fully exposed as a configurable component to the end
user. So, the wire tap component is only responsible for performing the following tasks:

* Intercept a message flow by tapping into a channel (for example, channelA)
* Grab each message

» Send the message to another channel (for example, channelB)

It is essentially a variation of the bridge pattern, but it is encapsulated within a channel definition
(and hence easier to enable and disable without disrupting a flow). Also, unlike the bridge, it
basically forks another message flow. Is that flow synchronous or asynchronous? The answer
depends on the type of message channel that 'channelB' is. We have the following options: direct
channel, pollable channel, and executor channel. The last two break the thread boundary, making
communication over such channels asynchronous, because the dispatching of the message from
that channel to its subscribed handlers happens on a different thread than the one used to send the
message to that channel. That is what is going to make your wire-tap flow synchronous or
asynchronous. It is consistent with other components within the framework (such as message
publisher) and adds a level of consistency and simplicity by sparing you from worrying in advance
(other than writing thread-safe code) about whether a particular piece of code should be
implemented as synchronous or asynchronous. The actual wiring of two pieces of code (say,
component A and component B) over a message channel is what makes their collaboration
synchronous or asynchronous. You may even want to change from synchronous to asynchronous in
the future, and message channel lets you to do it swiftly without ever touching the code.

One final point regarding the wire tap is that, despite the rationale provided above for not being
asynchronous by default, you should keep in mind that it is usually desirable to hand off the
message as soon as possible. Therefore, it would be quite common to use an asynchronous channel
option as the wire tap’s outbound channel. However we doe not enforce asynchronous behavior by
default. There are a number of use cases that would break if we did, including that you might not
want to break a transactional boundary. Perhaps you use the wire tap pattern for auditing
purposes, and you do want the audit messages to be sent within the original transaction. As an
example, you might connect the wire tap to a JMS outbound channel adapter. That way, you get the

32

./message-publishing.pdf#message-publishing-config
./message-publishing.pdf#message-publishing-config

best of both worlds: 1) the sending of a JMS Message can occur within the transaction while 2) it is
still a “fire-and-forget” action, thereby preventing any noticeable delay in the main message flow.

Starting with version 4.0, it is important to avoid circular references when an
interceptor (such as the WireTap class) references a channel. You need to exclude
such channels from those being intercepted by the current interceptor. This can be
done with appropriate patterns or programmatically. If you have a custom

o Channellnterceptor that references a channel, consider implementing
VetoCapableInterceptor. That way, the framework asks the interceptor if it is OK to
intercept each channel that is a candidate, based on the supplied pattern. You can
also add runtime protection in the interceptor methods to ensure that the channel
is not one that is referenced by the interceptor. The WireTap uses both of these
techniques.

Starting with version 4.3, the WireTap has additional constructors that take a channelName instead of a
MessageChannel instance. This can be convenient for Java configuration and when channel auto-
creation logic is being used. The target MessageChannel bean is resolved from the provided
channelName later, on the first interaction with the interceptor.

o Channel resolution requires a BeanFactory, so the wire tap instance must be a
Spring-managed bean.

This late-binding approach also allows simplification of typical wire-tapping patterns with Java DSL
configuration, as the following example shows:

public PollableChannel myChannel() {
return MessageChannels.queue()
.wireTap("loggingFlow.input")
.get();

public IntegrationFlow loggingFlow() {
return f -> f.log();

}

Conditional Wire Taps

Wire taps can be made conditional by using the selector or selector-expression attributes. The
selector references a MessageSelector bean, which can determine at runtime whether the message
should go to the tap channel. Similarly, the selector-expression is a boolean SpEL expression that
performs the same purpose: If the expression evaluates to true, the message is sent to the tap
channel.

33

https://docs.spring.io/autorepo/docs/spring-integration/current/api/org/springframework/integration/channel/interceptor/WireTap.html
https://docs.spring.io/autorepo/docs/spring-integration/current/api/org/springframework/integration/channel/interceptor/WireTap.html

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the Global Channel Interceptor
Configuration. To do so, configure a top level wire-tap element. Now, in addition to the normal wire-
tap namespace support, the pattern and order attributes are supported and work in exactly the
same way as they do for the channel-interceptor. The following examlpe shows how to configure a
global wire tap:

<int:wire-tap pattern="input*, thing2*, thing1" order="3" channel="wiretapChannel"/>

A global wire tap provides a convenient way to configure a single-channel wire tap

(r') externally without modifying the existing channel configuration. To do so, set the

- pattern attribute to the target channel name. For example, you can use this
technique to configure a test case to verify messages on a channel.

6.1.6. Special Channels

If namespace support is enabled, two special channels are defined within the application context by
default: errorChannel and nullChannel. The 'nmullChannel' acts like /dev/null, logging any message
sent to it at the DEBUG level and returning immediately. Any time you face channel resolution errors
for a reply that you do not care about, you can set the affected component’s output-channel
attribute to 'nullChannel' (the name, 'nullChannel, is reserved within the application context). The
‘errorChannel’ is used internally for sending error messages and may be overridden with a custom
configuration. This is discussed in greater detail in Error Handling.

See also Message Channels in the Java DSL chapter for more information about message channel
and interceptors.

6.2. Poller

This section describes how polling works in Spring Integration.

6.2.1. Polling Consumer

When Message Endpoints (Channel Adapters) are connected to channels and instantiated, they
produce one of the following instances:

« PollingConsumer

« EventDrivenConsumer

The actual implementation depends on the type of channel to which these endpoints connect. A
channel adapter connected to a channel that implements the
org.springframework.messaging.SubscribableChannel interface produces an instance of
EventDrivenConsumer. On the other hand, a channel adapter connected to a channel that implements
the org.springframework.messaging.PollableChannel interface (such as a QueueChannel) produces an
instance of PollingConsumer.

Polling consumers let Spring Integration components actively poll for Messages rather than process

54

./error-handling.pdf#error-handling
./dsl.pdf#java-dsl-channels
https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/EventDrivenConsumer.html
https://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/SubscribableChannel.html
https://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/PollableChannel.html

messages in an event-driven manner.

They represent a critical cross-cutting concern in many messaging scenarios. In Spring Integration,
polling consumers are based on the pattern with the same name, which is described in the book
Enterprise Integration Patterns, by Gregor Hohpe and Bobby Woolf. You can find a description of
the pattern on the book’s website.

6.2.2. Pollable Message Source

Spring Integration offers a second variation of the polling consumer pattern. When inbound
channel adapters are used, these adapters are often wrapped by a SourcePollingChannelAdapter. For
example, when retrieving messages from a remote FTP Server location, the adapter described in
FTP Inbound Channel Adapter is configured with a poller to periodically retrieve messages. So,
when components are configured with pollers, the resulting instances are of one of the following

types:

« PollingConsumer

« SourcePollingChannelAdapter

This means that pollers are used in both inbound and outbound messaging scenarios. Here are
some use cases in which pollers are used:

 Polling certain external systems, such as FTP Servers, Databases, and Web Services
* Polling internal (pollable) message channels

» Polling internal services (such as repeatedly executing methods on a Java class)

AOP advice classes can be applied to pollers, in an advice-chain, such as a
transaction advice to start a transaction. Starting with version 4.1, a Pol1SkipAdvice
is provided. Pollers use triggers to determine the time of the next poll. The
Pol1SkipAdvice can be used to suppress (skip) a poll, perhaps because there is some
downstream condition that would prevent the message being processed. To use

o this advice, you have to provide it with an implementation of a Pol1SkipStrategy.
Starting with version 4.2.5, a SimplePol1SkipStrategy is provided. To use it, you can
add an instance as a bean to the application context, inject it into a Pol1SkipAdvice,
and add that to the poller’s advice chain. To skip polling, call skipPolls(). To
resume polling, call reset(). Version 4.2 added more flexibility in this area. See
Conditional Pollers for Message Sources.

This chapter is meant to only give a high-level overview of polling consumers and how they fit into
the concept of message channels (see Message Channels) and channel adapters (see Channel
Adapter). For more information regarding messaging endpoints in general and polling consumers
in particular, see Message Endpoints.

6.2.3. Deferred Acknowledgment Pollable Message Source

Starting with version 5.0.1, certain modules provide MessageSource implementations that support
deferring acknowledgment until the downstream flow completes (or hands off the message to
another thread). This is currently limited to the AmgpMessageSource and the KafkaMessageSource

55

https://www.enterpriseintegrationpatterns.com/PollingConsumer.html
./ftp.pdf#ftp-inbound
https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/SourcePollingChannelAdapter.html
./channel.pdf#channel
./channel-adapter.pdf#channel-adapter
./channel-adapter.pdf#channel-adapter
./endpoint.pdf#endpoint

provided by the spring-integration-kafka extension project.

With these message sources, the IntegrationMessageHeaderAccessor.ACKNOWLEDGMENT_CALLBACK header
(see MessageHeaderAccessor API) is added to the message. The value of the header is an instance of
AcknowledgmentCallback, as the following example shows:

@Functionallnterface
public interface AcknowledgmentCallback {

void acknowledge(Status status);
boolean isAcknowledged();

void noAutoAck();

default boolean isAutoAck();

enum Status {

/**

* Mark the message as accepted.
*/

ACCEPT,

/**

* Mark the message as rejected.
*/

REJECT,

/**

* Reject the message and requeue so that it will be redelivered.
*/
REQUEUE

Not all message sources (for example, Kafka) support the REJECT status. It is treated the same as
ACCEPT.

Applications can acknowledge a message at any time, as the following example shows:

36

https://github.com/spring-projects/spring-integration-kafka
./message.pdf#message-header-accessor
./message.pdf#message-header-accessor

Message<?> received = source.receive();

StaticMessageHeaderAccessor.getAcknowledgmentCallback(received)
.acknowledge(Status.ACCEPT);

If the MessageSource is wired into a SourcePollingChannelAdapter, when the poller thread returns to
the adapter after the downstream flow completes, the adapter checks whether the acknowledgment
has already been acknowledged and, if not, sets its status to ACCEPT it (or REJECT if the flow throws
an exception). The status values are defined in the AcknowledgmentCallback.Status enumeration.

Spring Integration provides MessageSourcePollingTemplate to perform ad-hoc polling of a
MessageSource. This, too, takes care of setting ACCEPT or REJECT on the AcknowledgmentCallback when
the MessageHandler callback returns (or throws an exception). The following example shows how to
poll with the MessageSourcePollingTemplate:

MessageSourcePollingTemplate template =
new MessageSourcePollingTemplate(this.source);
template.poll(h -> {

1)

In both cases (SourcePollingChannelAdapter and MessageSourcePollingTemplate), you can disable auto
ack/nack by calling noAutoAck() on the callback. You might do this if you hand off the message to
another thread and wish to acknowledge later. Not all implementations support this (for example,
Apache Kafka does not, because the offset commit has to be performed on the same thread).

6.2.4. Conditional Pollers for Message Sources

This section covers how to use conditional pollers.

Background

Advice objects, in an advice-chain on a poller, advise the whole polling task (both message retrieval
and processing). These “around advice” methods do not have access to any context for the
poll—only the poll itself. This is fine for requirements such as making a task transactional or
skipping a poll due to some external condition, as discussed earlier. What if we wish to take some
action depending on the result of the receive part of the poll or if we want to adjust the poller
depending on conditions? For those instances, Spring Integration offers “Smart” Polling.

“Smart” Polling

Version 4.2 introduced the AbstractMessageSourceAdvice. Any Advice objects in the advice-chain that
subclass this class are applied only to the receive operation. Such classes implement the following
methods:

* beforeReceive(MessageSource<?> source) This method is called before the

57

https://docs.spring.io/spring-integration/api/org/springframework/integration/support/AcknowledgmentCallback.Status.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/support/AcknowledgmentCallback.Status.html

MessageSource.receive() method. It lets you examine and reconfigure the source. Returning
false cancels this poll (similar to the Pol1SkipAdvice mentioned earlier).

* Message<?> afterReceive(Message<?> result, MessageSource<?> source) This method is called
after the receive() method. Again, you can reconfigure the source or take any action (perhaps
depending on the result, which can be null if there was no message created by the source). You
can even return a different message

Thread safety

If an advice mutates the MessageSource, you should not configure the poller with a

o TaskExecutor. If an advice mutates the source, such mutations are not thread safe
and could cause unexpected results, especially with high frequency pollers. If you
need to process poll results concurrently, consider using a downstream
ExecutorChannel instead of adding an executor to the poller.

Advice Chain Ordering

You should understand how the advice chain is processed during initialization.
Advice objects that do not extend AbstractMessageSourceAdvice are applied to the
whole poll process and are all invoked first, in order, before any
AbstractMessageSourceAdvice. Then AbstractMessageSourceAdvice objects are

o invoked in order around the MessageSource receive() method. If you have, for
example, Advice objects a, b, ¢, d, where b and d are AbstractMessageSourceAdvice,
the objects are applied in the following order: a, c, b, d. Also, if a MessageSource is
already a Proxy, the AbstractMessageSourceAdvice is invoked after any existing
Advice objects. If you wish to change the order, you must wire up the proxy
yourself.

SimpleActiveldleMessageSourceAdvice

This advice is a simple implementation of AbstractMessageSourceAdvice. When used in conjunction
with a DynamicPeriodicTrigger, it adjusts the polling frequency, depending on whether or not the
previous poll resulted in a message or not. The poller must also have a reference to the same
DynamicPeriodicTrigger.

Important: Async Handoff

SimpleActiveldleMessageSourceAdvice modifies the trigger based on the receive()

o result. This works only if the advice is called on the poller thread. It does not work
if the poller has a task-executor. To use this advice where you wish to use async
operations after the result of a poll, do the async handoff later, perhaps by using
an ExecutorChannel.

CompoundTriggerAdvice

This advice allows the selection of one of two triggers based on whether a poll returns a message or
not. Consider a poller that uses a CronTrigger. CronTrigger instances are immutable, so they cannot
be altered once constructed. Consider a use case where we want to use a cron expression to trigger
a poll once each hour but, if no message is received, poll once per minute and, when a message is
retrieved, revert to using the cron expression.

38

The advice (and poller) use a CompoundTrigger for this purpose. The trigger’s primary trigger can be a
CronTrigger. When the advice detects that no message is received, it adds the secondary trigger to
the CompoundTrigger. When the CompoundTrigger instance’s nextExecutionTime method is invoked, it
delegates to the secondary trigger, if present. Otherwise, it delegates to the primary trigger.

The poller must also have a reference to the same CompoundTrigger.

The following example shows the configuration for the hourly cron expression with a fallback to
every minute:

<int:inbound-channel-adapter channel="nullChannel" auto-startup="false">
<bean class="org.springframework.integration.endpoint.PollerAdviceTests.Source" />
<int:poller trigger="compoundTrigger">
<int:advice-chain>
<bean class="org.springframework.integration.aop.CompoundTriggerAdvice">
<constructor-arg ref="compoundTrigger"/>
<constructor-arg ref="secondary"/>
</bean>
</int:advice-chain>
</int:poller>
</int:inbound-channel-adapter>

<bean id="compoundTrigger" class="

org.springframework.integration.util.CompoundTrigger">
<constructor-arg ref="primary" />

</bean>

<bean id="primary" class="org.springframework.scheduling.support.CronTrigger">
<constructor-arg value="0 @ * * * *" /> <l-- top of every hour -->
</bean>

<bean id="secondary" class="org.springframework.scheduling.support.PeriodicTrigger">
<constructor-arg value="60000" />
</bean>

Important: Async Handoff

CompoundTriggerAdvice modifies the trigger based on the receive() result. This

o works only if the advice is called on the poller thread. It does not work if the poller
has a task-executor. To use this advice where you wish to use async operations
after the result of a poll, do the async handoff later, perhaps by using an
ExecutorChannel

6.3. Channel Adapter

A channel adapter is a message endpoint that enables connecting a single sender or receiver to a
message channel. Spring Integration provides a number of adapters to support various transports,
such as JMS, file, HTTP, web services, mail, and more. Upcoming chapters of this reference guide
discuss each adapter. However, this chapter focuses on the simple but flexible method-invoking

39

channel adapter support. There are both inbound and outbound adapters, and each may be
configured with XML elements provided in the core namespace. These provide an easy way to
extend Spring Integration, as long as you have a method that can be invoked as either a source or a
destination.

6.3.1. Configuring An Inbound Channel Adapter

An inbound-channel-adapter element can invoke any method on a Spring-managed object and send
a non-null return value to a MessageChannel after converting the method’s output to a Message. When
the adapter’s subscription is activated, a poller tries to receive messages from the source. The poller
is scheduled with the TaskScheduler according to the provided configuration. To configure the
polling interval or cron expression for an individual channel adapter, you can provide a "poller’
element with one of the scheduling attributes, such as 'fixed-rate' or 'cron'. The following example
defines two inbound-channel-adapter instances:

<int:inbound-channel-adapter ref="source1" method="method1" channel="channel1">
<int:poller fixed-rate="5000"/>
</int:inbound-channel-adapter>

<int:inbound-channel-adapter ref="source2" method="method2" channel="channel2">

<int:poller cron="30 * 9-17 * * MON-FRI"/>
</int:channel-adapter>

See also Channel Adapter Expressions and Scripts.

o If no poller is provided, then a single default poller must be registered within the
context. See Endpoint Namespace Support for more detail.

60

./endpoint.pdf#endpoint-namespace

Important: Poller Configuration

Some inbound-channel-adapter types are backed by a SourcePollingChannelAdapter,
which means they contain a poller configuration that polls the MessageSource (to
invoke a custom method that produces the value that becomes a Message payload)
based on the configuration specified in the Poller. The following example shows
the configuration of two pollers:

<int:poller max-messages-per-poll="1" fixed-rate="1000"/>

<int:poller max-messages-per-poll="10" fixed-rate="1000"/>

In the the first configuration, the polling task is invoked once per poll, and, during
each task (poll), the method (which results in the production of the message) is
invoked once, based on the max-messages-per-poll attribute value. In the second
configuration, the polling task is invoked 10 times per poll or until it returns null,
thus possibly producing ten messages per poll while each poll happens at one-
second intervals. However, what happens if the configuration looks like the
following example:

<int:poller fixed-rate="1000"/>

Note that there is no max-messages-per-poll specified. As we cover later, the
identical poller configuration in the PollingConsumer (for example, service-
activator, filter, router, and others) would have a default value of -1 for max-
messages-per-poll, which means “execute the polling task non-stop unless the
polling method returns null (perhaps because there are no more messages in the
QueueChannel)” and then sleep for one second.

However, in the SourcePollingChannelAdapter, it is a bit different. The default value
for max-messages-per-poll is 1, unless you explicitly set it to a negative value (such
as -1). This makes sure that the poller can react to lifecycle events (such as start
and stop) and prevents it from potentially spinning in an infinite loop if the
implementation of the custom method of the MessageSource has a potential to never
return null and happens to be non-interruptible.

However, if you are sure that your method can return null and you need to poll for
as many sources as available per each poll, you should explicitly set max-messages-
per-poll to a negative value, as the following example shows:

<int:poller max-messages-per-poll="-1" fixed-rate="1000"/>

61

6.3.2. Configuring An Outbound Channel Adapter

An outbound-channel-adapter element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of messages sent to that channel. The following
example shows how to define an outbound channel adapter:

<int:outbound-channel-adapter channel="channell1" ref="target" method="handle"/>

<beans:bean id="target" class="org.MyPojo"/>

If the channel being adapted is a PollableChannel, you must provide a poller sub-element, as the
following example shows:

<int:outbound-channel-adapter channel="channel2" ref="target" method="handle">
<int:poller fixed-rate="3000" />
</int:outbound-channel-adapter>

<beans:bean id="target" class="org.MyPojo"/>

You should use a ref attribute if the POJO consumer implementation can be reused in other
<outbound-channel-adapter> definitions. However, if the consumer implementation is referenced by
only a single definition of the <outbound-channel-adapter>, you can define it as an inner bean, as the
following example shows:

<int:outbound-channel-adapter channel="channel" method="handle">
<beans:bean class="org.Foo0"/>
</int:outbound-channel-adapter>

Using both the ref attribute and an inner handler definition in the same
o <outbound-channel-adapter> configuration is not allowed, as it creates an
ambiguous condition. Such a configuration results in an exception being thrown.

Any channel adapter can be created without a channel reference, in which case it implicitly creates
an instance of DirectChannel. The created channel’s name matches the id attribute of the <inbound-

channel-adapter> or <outbound-channel-adapter> element. Therefore, if channel is not provided, id is
required.

6.3.3. Channel Adapter Expressions and Scripts

Like many other Spring Integration components, the <inbound-channel-adapter> and <outbound-
channel-adapter> also provide support for SpEL expression evaluation. To use SpEL, provide the

62

expression string in the 'expression' attribute instead of providing the 'ref' and 'method’ attributes
that are used for method-invocation on a bean. When an expression is evaluated, it follows the
same contract as method-invocation where: the expression for an <inbound-channel-adapter>
generates a message any time the evaluation result is a non-null value, while the expression for an
<outbound-channel-adapter> must be the equivalent of a void-returning method invocation.

Starting with Spring Integration 3.0, an <int:inbound-channel-adapter/> can also be configured with
a SpEL <expression/> (or even with a <script/>) sub-element, for when more sophistication is
required than can be achieved with the simple 'expression' attribute. If you provide a script as a
Resource by using the location attribute, you can also set refresh-check-delay, which allows the
resource to be periodically refreshed. If you want the script to be checked on each poll, you would
need to coordinate this setting with the poller’s trigger, as the following example shows:

<int:inbound-channel-adapter ref="source1" method="method1" channel="channel1">
<int:poller max-messages-per-poll="1" fixed-delay="5000"/>
<script:script lang="ruby" location="Foo.rb" refresh-check-delay="5000"/>
</int:inbound-channel-adapter>

See also the cacheSeconds property on the ReloadableResourceBundleExpressionSource when using the
<expression/> sub-element. For more information regarding expressions, see Spring Expression
Language (SpEL). For scripts, see Groovy support and Scripting Support.

The <int:inbound-channel-adapter/> is endpoint starts a message flow by
periodically triggering to poll some underlying MessageSource. Since, at the time of
polling, there is no message object, expressions and scripts do not have access to a

o root Message, so there are no payload or headers properties that are available in
most other messaging SpEL expressions. The script can generate and return a
complete Message object with headers and payload or only a payload, which is
added to a message with basic headers.

6.4. Messaging Bridge

A messaging bridge is a relatively trivial endpoint that connects two message channels or channel
adapters. For example, you may want to connect a PollableChannel to a SubscribableChannel so that
the subscribing endpoints do not have to worry about any polling configuration. Instead, the
messaging bridge provides the polling configuration.

By providing an intermediary poller between two channels, you can use a messaging bridge to
throttle inbound messages. The poller’s trigger determines the rate at which messages arrive on the
second channel, and the poller’s maxMessagesPerPoll property enforces a limit on the throughput.

Another valid use for a messaging bridge is to connect two different systems. In such a scenario,
Spring Integration’s role is limited to making the connection between these systems and managing
a poller, if necessary. It is probably more common to have at least a transformer between the two
systems, to translate between their formats. In that case, the channels can be provided as the 'input-
channel' and 'output-channel' of a transformer endpoint. If data format translation is not required,

63

./spel.pdf#spel
./spel.pdf#spel
./groovy.pdf#groovy
./scripting.pdf#scripting

the messaging bridge may indeed be sufficient.

6.4.1. Configuring a Bridge with XML

You can use the <bridge> element is used to create a messaging bridge between two message
channels or channel adapters. To do so, provide the input-channel and output-channel attributes, as
the following example shows:

<int:bridge input-channel="1input" output-channel="output"/>

As mentioned above, a common use case for the messaging bridge is to connect a PollableChannel to
a SubscribableChannel. When performing this role, the messaging bridge may also serve as a
throttler:

<int:bridge input-channel="pollable" output-channel="subscribable">
<int:poller max-messages-per-poll="10" fixed-rate="5000"/>
</int:bridge>

You can use a similar mechanism to connecting channel adapters. The following example shows a
simple “echo” between the stdin and stdout adapters from Spring Integration’s stream namespace:

<int-stream:stdin-channel-adapter id="stdin"/>
<int-stream:stdout-channel-adapter id="stdout"/>

<int:bridge id="echo" input-channel="stdin" output-channel="stdout"/>

Similar configurations work for other (potentially more useful) Channel Adapter bridges, such as
file-to-JMS or mail-to-file. Upcoming chapters cover the various channel adapters.

If no 'output-channel' is defined on a bridge, the reply channel provided by the
inbound message is used, if available. If neither an output nor a reply channel is
available, an exception is thrown.

6.4.2. Configuring a Bridge with Java Configuration

The following example shows how to configure a bridge in Java by using the @BridgeFrom
annotation:

64

public PollableChannel polled() {
return new QueueChannel();

}

(value = "polled", poller = (fixedDelay = "5000",
maxMessagesPerPoll = "10"))
public SubscribableChannel direct() {
return new DirectChannel();

}

The following example shows how to configure a bridge in Java by using the @BridgeTo annotation:

(value = "direct", poller = (fixedDelay = "5000", maxMessagesPerPoll =
||10|l))
public PollableChannel polled() {
return new QueueChannel();

}

public SubscribableChannel direct() {
return new DirectChannel();

}

Alternately, you can use a BridgeHandler, as the following example shows:

(inputChannel = "polled",
poller = (fixedRate = "5000", maxMessagesPerPoll = "10"))
public BridgeHandler bridge() {
BridgeHandler bridge = new BridgeHandler();
bridge.setOutputChannelName("direct");
return bridge;

6.4.3. Configuring a Bridge with the Java DSL

You can use the Java Domain Specific Language (DSL) to configure a bridge, as the following
example shows:

65

66

@Bean
public IntegrationFlow bridgeFlow() {
return IntegrationFlows.from("polled")
.bridge(e -> e.poller(Pollers.fixedDelay(5000).maxMessagesPerPol1(10)))
.channel("direct")
.get();

Chapter 7. Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message instance includes headers containing user-extensible properties as key-
value pairs.

7.1. The Message Interface

The following listing shows the definition of the Message interface:

public interface Message<T> {
T getPayload();

MessageHeaders getHeaders();

The Message interface is a core part of the API. By encapsulating the data in a generic wrapper, the
messaging system can pass it around without any knowledge of the data’s type. As an application
evolves to support new types or when the types themselves are modified or extended, the
messaging system is not affected. On the other hand, when some component in the messaging
system does require access to information about the Message, such metadata can typically be stored
to and retrieved from the metadata in the message headers.

7.2. Message Headers

Just as Spring Integration lets any Object be used as the payload of a Message, it also supports any
Object types as header values. In fact, the MessageHeaders class implements the java.util.Map_
interface, as the following class definition shows:

public final class MessageHeaders implements Map<String, Object>, Serializable {

}

Even though the MessageHeaders class implements Map, it is effectively a read-only
implementation. Any attempt to put a value in the Map results in an
UnsupportedOperationException. The same applies for remove and clear. Since

o messages may be passed to multiple consumers, the structure of the Map cannot be
modified. Likewise, the message’s payload Object can not be set after the initial
creation. However, the mutability of the header values themselves (or the payload
Object) is intentionally left as a decision for the framework user.

67

As an implementation of Map, the headers can be retrieved by calling get(..) with the name of the
header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. The following
example shows each of these three options:

Object someValue = message.getHeaders().get("someKey");
CustomerId customerId = message.getHeaders().get("customerId", CustomerId.class);

Long timestamp = message.getHeaders().getTimestamp();

The following table describes the pre-defined message headers:

Table 1. Pre-defined Message Headers

Header Name Header Type Usage
MessageHeaders.ID java.util.UUID An identifier for this message instance. Changes each
time a message is mutated.
MessageHeaders. java.lang.Llong The time the message was created. Changes each time
TIMESTAMP a message is mutated.
MessageHeaders. java.lang.Object A channel to which a reply (if any) is sent when no
REPLY_CHANNEL (String or explicit output channel is configured and there is no

MessageChannel) ROUTING_SLIP or the ROUTING_SLIP is exhausted. If the
value is a String, it must represent a bean name or
have been generated by a ChannelRegistry.

MessageHeaders. java.lang.Object A channel to which errors are sent. If the value is a
ERROR_CHANNEL (String or String, it must represent a bean name or have been
MessageChannel) generated by a ChannelRegistry.

Many inbound and outbound adapter implementations also provide or expect certain headers, and
you can configure additional user-defined headers. Constants for these headers can be found in
those modules where such headers exist — for example. AmqpHeaders, JmsHeaders, and so on.

7.2.1. MessageHeaderAccessor API

Starting with Spring Framework 4.0 and Spring Integration 4.0, the core messaging abstraction has
been moved to the spring-messaging module, and the MessageHeaderAccessor API has been
introduced to provide additional abstraction over messaging implementations. All (core) Spring
Integration-specific = message headers constants are now declared in the
IntegrationMessageHeaderAccessor class. The following table describes the pre-defined message
headers:

Table 2. Pre-defined Message Headers

68

Header Name

IntegrationMessageHeaderAccessor

CORRELATION_ID

IntegrationMessageHeaderAccessor

SEQUENCE _NUMBER

IntegrationMessageHeaderAccessor

SEQUENCE_SIZE

IntegrationMessageHeaderAccessor

EXPIRATION_DATE

IntegrationMessageHeaderAccessor

PRIORITY

IntegrationMessageHeaderAccessor

DUPLICATE_MESSAGE

IntegrationMessageHeaderAccessor

CLOSEABLE_RESOURCE

IntegrationMessageHeaderAccessor

DELIVERY_ATTEMPT

IntegrationMessageHeaderAccessor

ACKNOWLEDGMENT _CALLBACK

Convenient typed getters for

Header Type
java.lang.0Object

java.lang.Integer

java.lang.Integer

java.lang.lLong

java.lang.Integer

java.lang.Boolean

java.io.Closeable

java.lang.
AtomicInteger

0.s.1.support.

Acknowledgment
Callback
some of these

Usage

Used to correlate two or more
messages.

Usually a sequence number with a
group of messages with a

SEQUENCE _SIZE but can also be used in
a <resequencer/> to resequence an
unbounded group of messages.

The number of messages within a
group of correlated messages.

Indicates when a message is expired.
Not used by the framework directly
but can be set with a header enricher
and used in a <filter/> thatis
configured with an
UnexpiredMessageSelector.

Message priority — for example,
within a PriorityChannel.

True if a message was detected as a
duplicate by an idempotent receiver
interceptor. See Idempotent Receiver
Enterprise Integration Pattern.

This header is present if the message
is associated with a Closeable that
should be closed when message
processing is complete. An example
is the Session associated with a
streamed file transfer using FTP,
SFTP, and so on.

If a message-driven channel adapter
supports the configuration of a
RetryTemplate, this header contains
the current delivery attempt.

If a message source supports it, a call
back to accept, reject, or requeue a
message. See Deferred
Acknowledgment Pollable Message
Source.
headers the

are provided on

IntegrationMessageHeaderAccessor class, as the following example shows:

69

./handler-advice.pdf#idempotent-receiver
./handler-advice.pdf#idempotent-receiver
./polling-consumer.pdf#deferred-acks-message-source
./polling-consumer.pdf#deferred-acks-message-source
./polling-consumer.pdf#deferred-acks-message-source

IntegrationMessageHeaderAccessor accessor = new IntegrationMessageHeaderAccessor
(message);

int sequenceNumber = accessor.getSequenceNumber();

Object correlationId = accessor.getCorrelationId();

The following table describes headers that also appear in the IntegrationMessageHeaderAccessor but
are generally not used by user code (that is, they are generally used by internal parts of Spring
Integration — their inclusion here is for completeness):

Table 3. Pre-defined Message Headers

Header Name Header Type Usage
IntegrationMessageHeaderAccessor java.util. A stack of correlation data used
: List<List<Object>> when nested correlation is needed
SEQUENCE_DETAILS (for example, splitter
splitter aggregator
aggregator).
IntegrationMessageHeaderAccessor java.util. See Routing Slip.
. Map<List<Object>,
ROUTING_SLIP Integer>

7.2.2. Message ID Generation

When a message transitions through an application, each time it is mutated (for example, by a
transformer) a new message ID is assigned. The message ID is a UUID. Beginning with Spring
Integration 3.0, the default strategy used for IS generation is more efficient than the previous
java.util.UUID.randomUUID() implementation. It uses simple random numbers based on a secure
random seed instead of creating a secure random number each time.

A different UUID generation strategy can be selected by declaring a bean that implements
org.springframework.util.IdGenerator in the application context.

Only one UUID generation strategy can be used in a classloader. This means that, if
two or more application contexts run in the same classloader, they share the same
strategy. If one of the contexts changes the strategy, it is used by all contexts. If two

o or more contexts in the same classloader declare a bean of type
org.springframework.util.IdGenerator, they must all be an instance of the same
class. Otherwise, the context attempting to replace a custom strategy fails to
initialize. If the strategy is the same, but parameterized, the strategy in the first
context to be initialized is used.

In addition to the default strategy, two additional IdGenerators are provided.
org.springframework.util.JdkIdGenerator uses the previous UUID.randomUUID() mechanism. You can
use o0.s.1.support.IdGenerators.SimplelncrementingldGenerator when a UUID is not really needed
and a simple incrementing value is sufficient.

70

./router.pdf#routing-slip

7.2.3. Read-only Headers

The MessageHeaders.ID and MessageHeaders.TIMESTAMP are read-only headers and cannot be
overridden.

Since version 4.3.2, the MessageBuilder provides the readOnlyHeaders(String readOnlyHeaders)
API to customize a list of headers that should not be copied from an upstream Message. Only the
MessageHeaders.ID and MessageHeaders.TIMESTAMP are read only by default. The global
spring.integration.readOnly.headers property (see Global Properties) is provided to customize
DefaultMessageBuilderFactory for framework components. This can be useful when you would like
do not populate some out-of-the-box headers, such as contentType by the ObjectToJsonTransformer
(see JSON Transformers).

When you try to build a new message using MessageBuilder, this kind of header is ignored and a
particular INFO message is emitted to logs.

Starting with version 5.0, Messaging Gateway, Header Enricher, Content Enricher and Header Filter
do not let you configure the MessageHeaders.ID and MessageHeaders.TIMESTAMP header names when
DefaultMessageBuilderFactory is used, and they throw BeanInitializationException.

7.2.4. Header Propagation

When messages are processed (and modified) by message-producing endpoints (such as a service
activator), in general, inbound headers are propagated to the outbound message. One exception to
this is a transformer, when a complete message is returned to the framework. In that case, the user
code is responsible for the entire outbound message. When a transformer just returns the payload,
the inbound headers are propagated. Also, a header is only propagated if it does not already exist in
the outbound message, letting you change header values as needed.

Starting with version 4.3.10, you can configure message handlers (that modify messages and
produce output) to suppress the propagation of specific headers. To configure the header(s) you do
not want to be copied, call the setNotPropagatedHeaders() or addNotPropagatedHeaders() methods on
the MessageProducingMessageHandler abstract class.

You can also globally suppress propagation of specific message headers by setting the
readOnlyHeaders property in META-INF/spring.integration.properties to a comma-delimited list of
headers.

Starting with version 5.0, the setNotPropagatedHeaders() implementation on the
AbstractMessageProducingHandler applies simple patterns (xxx*, xxx, *xxx, or xxx*yyy) to allow
filtering headers with a common suffix or prefix. See PatternMatchUtils Javadoc for more
information. When one of the patterns is * (asterisk), no headers are propagated. All other patterns
are ignored. In that case, the service activator behaves the same way as a transformer and any
required headers must be supplied in the Message returned from the service method. The
notPropagatedHeaders() option is available in the ConsumerEndpointSpec for the Java DSL It is also
available for XML configuration of the <service-activator> component as a not-propagated-headers
attribute.

71

./configuration.pdf#global-properties
./transformer.pdf#json-transformers
./gateway.pdf#gateway
./content-enrichment.pdf#header-enricher
./content-enrichment.pdf#payload-enricher
./transformer.pdf#header-filter
./service-activator.pdf#service-activator
./service-activator.pdf#service-activator
./transformer.pdf#transformer
https://docs.spring.io/spring-integration/api/org/springframework/integration/util/PatternMatchUtils.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/util/PatternMatchUtils.html

o Header propagation suppression does not apply to those endpoints that do not
modify the message, such as bridges and routers.

7.3. Message Implementations

The base implementation of the Message interface is GenericMessage<T>, and it provides two
constructors, shown in the following listing:

new GenericMessage<T>(T payload);

new GenericMessage<T>(T payload, Map<String, Object> headers)

When a Message is created, a random unique ID is generated. The constructor that accepts a Map of
headers copies the provided headers to the newly created Message.

There is also a convenient implementation of Message designed to communicate error conditions.
This implementation takes a Throwable object as its payload, as the following example shows:

ErrorMessage message = new ErrorMessage(someThrowable);

Throwable t = message.getPayload();

Note that this implementation takes advantage of the fact that the GenericMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

7.4. The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but
provides no setters. The reason for this is that a Message cannot be modified after its initial creation.
Therefore, when a Message instance is sent to multiple consumers (for example, through a publish-
subscribe Channel), if one of those consumers needs to send a reply with a different payload type, it
must create a new Message. As a result, the other consumers are not affected by those changes. Keep
in mind that multiple consumers may access the same payload instance or header value, and
whether such an instance is itself immutable is a decision left to you. In other words, the contract
for Message instances is similar to that of an unmodifiable Collection, and the MessageHeaders map
further exemplifies that. Even though the MessageHeaders class implements java.util.Map, any
attempt to invoke a put operation (or 'remove' or 'clear’) on a MessageHeaders instance results in an
UnsupportedOperationException.

Rather than requiring the creation and population of a Map to pass into the GenericMessage
constructor, Spring Integration does provide a far more convenient way to construct Messages:

72

./bridge.pdf#bridge
./router.pdf#router

MessageBuilder. The MessageBuilder provides two factory methods for creating Message instances
from either an existing Message or with a payload Object. When building from an existing Message,
the headers and payload of that Message are copied to the new Message, as the following example
shows:

Message<String> messagel = MessageBuilder.withPayload("test")
.setHeader ("foo", "bar")
.build();

Message<String> message2 = MessageBuilder.fromMessage(messagel).build();

assertEquals("test", message2.getPayload());
assertEquals("bar", message2.getHeaders().get("foo"));

If you need to create a Message with a new payload but still want to copy the headers from an
existing Message, you can use one of the 'copy' methods, as the following example shows:

Message<String> message3 = MessageBuilder.withPayload("test3")
.copyHeaders(messagel.getHeaders())
.build();

Message<String> message4 = MessageBuilder.withPayload("test4")
.setHeader ("foo", 123)
.copyHeadersIfAbsent(messagel.getHeaders())

.build();

assertEquals("bar", message3.getHeaders().get("foo"));
assertEquals(123, messaged.getHeaders().get("foo"));

Note that the copyHeadersIfAbsent method does not overwrite existing values. Also, in the preceding
example, you can see how to set any user-defined header with setHeader. Finally, there are set
methods available for the predefined headers as well as a non-destructive method for setting any
header (MessageHeaders also defines constants for the pre-defined header names).

You can also use MessageBuilder to set the priority of messages, as the following example shows:

73

The priority header is considered only when using a PriorityChannel (as described in the next

Message<Integer> importantMessage = MessageBuilder.withPayload(99)
.setPriority(5)
.build();

assertEquals(5, importantMessage.getHeaders().getPriority());

Message<Integer> lessImportantMessage = MessageBuilder.fromMessage(importantMessage)
.setHeaderIfAbsent(IntegrationMessageHeaderAccessor.PRIORITY, 2)
.build();

assertEquals(2, lessImportantMessage.getHeaders().getPriority());

chapter). It is defined as a java.lang.Integer.

74

Chapter 8. Message Routing

This chapter covers the details of using Spring Integration to route messages.

8.1. Routers
This section covers how routers work. It includes the following topics:

* Overview

* Common Router Parameters

* Router Implementations

* Configuring a Generic Router

* Routers and the Spring Expression Language (SpEL)

* Dynamic Routers

8.1.1. Overview

Routers are a crucial element in many messaging architectures. They consume messages from a
message channel and forward each consumed message to one or more different message channels
depending on a set of conditions.

Spring Integration provides the following routers:

» Payload Type Router

e Header Value Router

Recipient List Router

XPath Router (part of the XML module)

* Error Message Exception Type Router

(Generic) Router

Router implementations share many configuration parameters. However, certain differences exist
between routers. Furthermore, the availability of configuration parameters depends on whether
routers are used inside or outside of a chain. In order to provide a quick overview, all available
attributes are listed in the two following tables .

The following table shows the configuration parameters available for a router outside of a chain:

Table 4. Routers Outside of a Chain

Attribute router header xpath payload recipient exception
value router type list route type
router router router

apply-sequence _./ _./ 1.,_./ _-/ 1_-/ _-/

75

./xml.pdf#xml-xpath-routing

Attribute router header xpath payload recipient exception
value router type list route type
router router router

default-output-channel _f_{r _f_f/ \r_f/ \r_f/ \f_ff \f_fr
resolution-required \:(’- \(_{/ _«_a’/ _«_«!’f \j_f \f_f
ignore-send-failures \(_/ _(_/ _r_// _r_/ \j_/ ‘\f_/
timeout \:(r \e_f \e_«!‘/ ‘\f_f *_f ‘\r_f
id e e < e v v
auto-startup \f_(f \«_a’/ _«_«!’/ _r_!’f \j_f \f_/-
input-channel \(_/ _r_/ _r_// \r_/ \'_/ ‘\f_/
order \r_(f \:f \e_«!/ *\e_f \ff ‘\f_’/
method _f_{r

ref _f{f

expression "”-’./

header-name < J/
evaluate-as-string \ {/
xpath-expression-ref N 7
converter N 7

The following table shows the configuration parameters available for a router inside of a chain:

Table 5. Routers Inside of a Chain

Attribute router header xpath payload recipient exception
value router type list router type
router router router

apply-sequence V’f Yf _«fl _A’f _»!'f _A’f

76

Attribute router

default-output-channel V,r
resolution-required v’f
ignore-send-failures y/r
timeout y(r
id

auto-startup

input-channel

order

method _f_{r
ref _f_{f
expression \r_/
header-name
evaluate-as-string
xpath-expression-ref

converter

header
value
router

e
e
v

e

v

xpath
router

e
e
e
e

v
v

payload

type
router

e
e
e
e

recipient
list router

e
e
e
e

exception

type
router

e
e
e
e

77

As of Spring Integration 2.1, router parameters have been more standardized
across all router implementations. Consequently, a few minor changes may break
older Spring Integration based applications.

Since Spring Integration 2.1, the ignore-channel-name-resolution-failures attribute
is removed in favor of consolidating its behavior with the resolution-required
attribute. Also, the resolution-required attribute now defaults to true.

o Prior to these changes, the resolution-required attribute defaulted to false,
causing messages to be silently dropped when no channel was resolved and no
default-output-channel was set. The new behavior requires at least one resolved
channel and, by default, throws a MessageDeliveryException if no channel was
determined (or an attempt to send was not successful).

If you do desire to drop messages silently, you can set default-output-
channel="nullChannel".

8.1.2. Common Router Parameters

This section describes the parameters common to all router parameters (the parameters with all
their boxes ticked in the two tables shown earlier in this chapter).

Inside and Outside of a Chain
The following parameters are valid for all routers inside and outside of chains.

apply-sequence
This attribute specifies whether sequence number and size headers should be added to each
message. This optional attribute defaults to false.

default-output-channel
If set, this attribute provides a reference to the channel where messages should be sent if
channel resolution fails to return any channels. If no default output channel is provided, the
router throws an exception. If you would like to silently drop those messages instead, set the
default output channel attribute value to nul1Channel.

o A message is sent only to the default-output-channel if resolution-required is
false and the channel is not resolved.

resolution-required

This attribute specifies whether channel names must always be successfully resolved to channel
instances that exist. If set to true, a MessagingException is raised when the channel cannot be
resolved. Setting this attribute to false causes any unresovable channels to be ignored. This
optional attribute defaults to true.

0 A Message is sent only to the default-output-channel, if specified, when
resolution-requiredis false and the channel is not resolved.

78

ignore-send-failures
If set to true, failures to send to a message channel is ignored. If set to false, a
MessageDeliveryException is thrown instead, and, if the router resolves more than one channel,
any subsequent channels do not receive the message.

The exact behavior of this attribute depends on the type of the Channel to which the messages
are sent. For example, when using direct channels (single threaded), send failures can be caused
by exceptions thrown by components much further downstream. However, when sending
messages to a simple queue channel (asynchronous), the likelihood of an exception to be thrown
is rather remote.

While most routers route to a single channel, they can return more than one
channel name. The recipient-list-router, for instance, does exactly that. If you
set this attribute to true on a router that only routes to a single channel, any
caused exception is swallowed, which usually makes little sense. In that case, it

0 would be better to catch the exception in an error flow at the flow entry point.
Therefore, setting the ignore-send-failures attribute to true usually makes
more sense when the router implementation returns more than one channel
name, because the other channel(s) following the one that fails would still
receive the message.

This attribute defaults to false.

timeout

The timeout attribute specifies the maximum amount of time in milliseconds to wait when
sending messages to the target Message Channels. By default, the send operation blocks
indefinitely.

Top-Level (Outside of a Chain)
The following parameters are valid only across all top-level routers that are outside of chains.

id
Identifies the underlying Spring bean definition, which, in the case of routers, is an instance of
EventDrivenConsumer or PollingConsumer, depending on whether the router’s input-channel is a
SubscribableChannel or a PollableChannel, respectively. This is an optional attribute.

auto-startup
This “lifecycle” attribute signaled whether this component should be started during startup of
the application context. This optional attribute defaults to true.

input-channel
The receiving message channel of this endpoint.

order
This attribute defines the order for invocation when this endpoint is connected as a subscriber
to a channel. This is particularly relevant when that channel uses a failover dispatching strategy.
It has no effect when this endpoint itself is a polling consumer for a channel with a queue.

79

8.1.3. Router Implementations

Since content-based routing often requires some domain-specific logic, most use cases require
Spring Integration’s options for delegating to POJOs by using either the XML namespace support or
annotations. Both of these are discussed later. However, we first present a couple of
implementations that fulfill common requirements.

PayloadTypeRouter

A PayloadTypeRouter sends messages to the channel defined by payload-type mappings, as the
following example shows:

<bean id="payloadTypeRouter"
class="org.springframework.integration.router.PayloadTypeRouter">
<property name="channelMapping">
<map>
<entry key="java.lang.String" value-ref="stringChannel"/>
<entry key="java.lang.Integer" value-ref="integerChannel"/>
</map>
</property>
</bean>

Configuration of the PayloadTypeRouter is also supported by the namespace provided by Spring
Integration (see Namespace Support), which essentially simplifies configuration by combining the
<router/> configuration and its corresponding implementation (defined by using a <bean/> element)
into a single and more concise configuration element. The following example shows a
PayloadTypeRouter configuration that is equivalent to the one above but uses the namespace
support:

<int:payload-type-router input-channel="routingChannel">
<int:mapping type="java.lang.String" channel="stringChannel" />
<int:mapping type="java.lang.Integer" channel="integerChannel" />
</int:payload-type-router>

The following example shows the equivalent router configured in Java:

80

./configuration.pdf#configuration-namespace

(inputChannel = "routingChannel")

public PayloadTypeRouter router() {
PayloadTypeRouter router = new PayloadTypeRouter();
router.setChannelMapping(String.class.getName(), "stringChannel");

router.setChannelMapping(Integer.class.getName(), "integerChannel");
return router;

When using the Java DSL, there are two options.

First, you can define the router object as shown in the preceding example:

public IntegrationFlow routerFlow1() {
return IntegrationFlows.from("routingChannel™)
.route(router())
.get();
}

public PayloadTypeRouter router() {
PayloadTypeRouter router = new PayloadTypeRouter();
router.setChannelMapping(String.class.getName(), "stringChannel");

router.setChannelMapping(Integer.class.getName(), "integerChannel");
return router;

Note that the router can be, but does not have to be, a @Bean. The flow registers it if it is not a @Bean.

Second, you can define the routing function within the DSL flow itself, as the following example
shows:

public IntegrationFlow routerFlow2() {
return IntegrationFlows.from("routingChannel™)

.<0bject, Class<?>>route(Object::getClass, m -> m
.channelMapping(String.class, "stringChannel")
.channelMapping(Integer.class, "integerChannel"))

.get();

HeaderValueRouter

A HeaderValueRouter sends Messages to the channel based on the individual header value mappings.

81

When a HeaderValueRouter is created, it is initialized with the name of the header to be evaluated.
The value of the header could be one of two things:

* An arbitrary value

¢ A channel name

If it is an arbitrary value, additional mappings for these header values to channel names are
required. Otherwise, no additional configuration is needed.

Spring Integration provides a simple namespace-based XML configuration to configure a
HeaderValueRouter. The following example demonstrates configuration for the HeaderValueRouter
when mapping of header values to channels is required:

<int:header-value-router input-channel="routingChannel" header-name="testHeader">
<int:mapping value="someHeaderValue" channel="channelA" />
<int:mapping value="someOtherHeaderValue" channel="channelB" />
</int:header-value-router>

During the resolution process, the router defined in the preceding example may encounter channel
resolution failures, causing an exception. If you want to suppress such exceptions and send
unresolved messages to the default output channel (identified with the default-output-channel
attribute) set resolution-required to false.

Normally, messages for which the header value is not explicitly mapped to a channel are sent to the
default-output-channel. However, when the header value is mapped to a channel name but the
channel cannot be resolved, setting the resolution-required attribute to false results in routing
such messages to the default-output-channel.

As of Spring Integration 2.1, the attribute was changed from ignore-channel-name-
o resolution-failures to resolution-required. Attribute resolution-required defaults
to true.

The following example shows the equivalent router configured in Java:

@ServiceActivator(inputChannel = "routingChannel")

@Bean

public HeaderValueRouter router() {
HeaderValueRouter router = new HeaderValueRouter("testHeader");
router.setChannelMapping("someHeaderValue", "channelA");
router.setChannelMapping("someOtherHeaderValue", "channelB");
return router;

When using the Java DSL, there are two options. First, you can define the router object as shown in

82

the preceding example:

public IntegrationFlow routerFlow1() {
return IntegrationFlows.from("routingChannel™)
.route(router())

.get();
}

public HeaderValueRouter router() {
HeaderValueRouter router = new HeaderValueRouter("testHeader");
router.setChannelMapping("someHeaderValue", "channelA");

router.setChannelMapping("someOtherHeaderValue", "channelB");
return router;

Note that the router can be, but does not have to be, a @Bean. The flow registers it if it is not a @Bean.

Second, you can define the routing function within the DSL flow itself, as the following example
shows:

public IntegrationFlow routerFlow2() {
return IntegrationFlows.from("routingChannel™)

.<Message<?>, String>route(m -> m.getHeaders().get("testHeader",
String.class), m ->m

.channelMapping("someHeaderValue", "channelA")
.channelMapping("someOtherHeaderValue", "channelB"),
e -> e.id("headerValueRouter"))

.get();

Configuration where mapping of header values to channel names is not required, because header
values themselves represent channel names. The following example shows a router that does not
require mapping of header values to channel names:

<int:header-value-router input-channel="routingChannel" header-name="testHeader"/>

83

Since Spring Integration 2.1, the behavior of resolving channels is more explicit.

For example, if you omit the default-output-channel attribute, the router was

unable to resolve at least one valid channel, and any channel name resolution

failures were ignored by setting resolution-required to false, then a
o MessageDeliveryException is thrown.

Basically, by default, the router must be able to route messages successfully to at
least one channel. If you really want to drop messages, you must also have
default-output-channel set to nullChannel.

RecipientListRouter

A RecipientlListRouter sends each received message to a statically defined list of message channels.
The following example creates a RecipientListRouter:

<bean id="recipientListRouter"
class="org.springframework.integration.router.RecipientListRouter">
<property name="channels">
<list>
<ref bean="channell"/>
<ref bean="channel2"/>
<ref bean="channel3"/>
</list>
</property>
</bean>

Spring Integration also provides namespace support for the RecipientlListRouter configuration (see
Namespace Support) as the following example shows:

<int:recipient-list-router id="customRouter" input-channel="routingChannel"
timeout="1234"
ignore-send-failures="true"
apply-sequence="true">
<int:recipient channel="channel1"/>
<int:recipient channel="channel2"/>
</int:recipient-list-router>

The following example shows the equivalent router configured in Java:

84

./configuration.pdf#configuration-namespace

(inputChannel = "routingChannel")

public RecipientlListRouter router() {
RecipientListRouter router = new RecipientListRouter();
router.setSendTimeout(1_234L);
router.setIgnoreSendFailures(true);
router.setApplySequence(true);
router.addRecipient("channell");
router.addRecipient("channel2");
router.addRecipient("channel3");
return router;

The following example shows the equivalent router configured by using the Java DSL:

public IntegrationFlow routerFlow() {
return IntegrationFlows.from("routingChannel™)

.routeToRecipients(r -> r
.applySequence(true)
.ignoreSendFailures(true)
.recipient("channel1")
.recipient("channel2")
.recipient("channel3")
.sendTimeout(1_234L))

.get();

The 'apply-sequence' flag here has the same effect as it does for a publish-

o subscribe-channel, and, as with a publish-subscribe-channel, it is disabled by
default on the recipient-list-router. See PublishSubscribeChannel Configuration
for more information.

Another convenient option when configuring a RecipientListRouter is to use Spring Expression
Language (SpEL) support as selectors for individual recipient channels. Doing so is similar to using
a filter at the beginning of a 'chain’' to act as a “selective consumer”. However, in this case, it is all
combined rather concisely into the router’s configuration, as the following example shows:

<int:recipient-list-router id="customRouter" input-channel="routingChannel">
<int:recipient channel="channell1" selector-expression="payload.equals('foo"')"/>
<int:recipient channel="channel2" selector-expression="headers.containsKey('bar")

"s

</int:recipient-list-router>

85

./channel.pdf#channel-configuration-pubsubchannel
./channel.pdf#channel-configuration-pubsubchannel

In the preceding configuration, a SpEL expression identified by the selector-expression attribute is
evaluated to determine whether this recipient should be included in the recipient list for a given
input message. The evaluation result of the expression must be a boolean. If this attribute is not
defined, the channel is always among the list of recipients.

RecipientListRouterManagement

Starting with version 4.1, the RecipientlListRouter provides several operations to manipulate
recipients dynamically at runtime. These management operations are presented by
RecipientListRouterManagement through the @ManagedResource annotation. They are available by
using Control Bus as well as by using JMX, as the following example shows:

<control-bus input-channel="controlBus"/>

<recipient-list-router id="simpleRouter" input-channel="routingChannelA">
<recipient channel="channel1"/>
</recipient-list-router>

<channel id="channel2"/>

messagingTemplate.convertAndSend(controlBus,
"0'simpleRouter.handler'.addRecipient('channel2')");

From the application start up the simpleRouter, has only one channell recipient. But after the
addRecipient command, channel? recipient is added. It is a “registering an interest in something that
is part of the message” use case, when we may be interested in messages from the router at some
time period, so we are subscribing to the the recipient-list-router and, at some point, decide to
unsubscribe.

Because of the runtime management operation for the <recipient-list-router>, it can be
configured without any <recipient> from the start. In this case, the behavior of RecipientListRouter
is the same when there is no one matching recipient for the message. If defaultOutputChannel is
configured, the message is sent there. Otherwise the MessageDeliveryException is thrown.

XPath Router

The XPath Router is part of the XML Module. See Routing XML Messages with XPath.

Routing and Error Handling

Spring Integration also provides a special type-based router called ErrorMessageExceptionTypeRouter
for routing error messages (defined as messages whose payload is a Throwable instance).
ErrorMessageExceptionTypeRouter is similar to the PayloadTypeRouter. In fact, they are almost
identical. The only difference is that, while PayloadTypeRouter navigates the instance hierarchy of a
payload instance (for example, payload.getClass().getSuperclass()) to find the most specific type
and channel mappings, the ErrorMessageExceptionTypeRouter navigates the hierarchy of 'exception

86

./control-bus.pdf#control-bus
./xml.pdf#xml-xpath-routing

causes' (for example, payload.getCause()) to find the most specific Throwable type or channel
mappings and uses mappingClass.isInstance(cause) to match the cause to the class or any super
class.

The channel mapping order in this case matters. So, if there is a requirement to get
o mapping for an IllegalArgumentException, but not a RuntimeException, the last one
must be configured on router first.

o Since version 4.3 the ErrorMessageExceptionTypeRouter loads all mapping classes
during the initialization phase to fail-fast for a ClassNotFoundException.

The following example shows a sample configuration for ErrorMessageExceptionTypeRouter:

<int:exception-type-router input-channel="inputChannel"
default-output-channel="defaultChannel">
<int:mapping exception-type="java.lang.I1legalArgumentException”
channel="i1legalChannel"/>
<int:mapping exception-type="java.lang.NullPointerException"
channel="npeChannel"/>
</int:exception-type-router>

<int:channel id="illegalChannel" />
<int:channel id="npeChannel" />

8.1.4. Configuring a Generic Router

Spring Integration provides a generic router. You can use it for general-purpose routing (as opposed
to the other routers provided by Spring Integration, each of which has some form of specialization).

Configuring a Content-based Router with XML

The router element provides a way to connect a router to an input channel and also accepts the
optional default-output-channel attribute. The ref attribute references the bean name of a custom
router implementation (which must extend AbstractMessageRouter). The following example shows
three generic routers:

87

<int:router ref="payloadTypeRouter" input-channel="input1"
default-output-channel="defaultOutput1"/>

<int:router ref="recipientListRouter" input-channel="input2"
default-output-channel="defaultOutput2"/>

<int:router ref="customRouter" input-channel="1input3"
default-output-channel="defaultOutput3"/>

<beans:bean id="customRouterBean" class="org.foo.MyCustomRouter"/>

Alternatively, ref may point to a POJO that contains the @Router annotation (shown later), or you
can combine the ref with an explicit method name. Specifying a method applies the same behavior
described in the @Router annotation section, later in this document. The following example defines a
router that points to a POJO in its ref attribute:

<int:router input-channel="input" ref="somePojo" method="someMethod"/>

We generally recommend using a ref attribute if the custom router implementation is referenced in
other <router> definitions. However if the custom router implementation should be scoped to a
single definition of the <router>, you can provide an inner bean definition, as the following
example shows:

<int:router method="someMethod" input-channel="1input3"
default-output-channel="defaultOutput3">
<beans:bean class="org.foo.MyCustomRouter"/>
</int:router>

Using both the ref attribute and an inner handler definition in the same <router>
o configuration is not allowed. Doing so creates an ambiguous condition and throws
an exception.

If the ref attribute references a bean that extends AbstractMessageProducingHandler
(such as routers provided by the framework itself), the configuration is optimized
to reference the router directly. In this case, each ref attribute must refer to a

o separate bean instance (or a prototype-scoped bean) or use the inner <bean/>
configuration type. However, this optimization applies only if you do not provide
any router-specific attributes in the router XML definition. If you inadvertently
reference the same message handler from multiple beans, you get a configuration
exception.

88

The following example shows the equivalent router configured in Java:

(inputChannel = "routingChannel")
public AbstractMessageRouter myCustomRouter() {
return new AbstractMessageRouter() {

protected Collection<MessageChannel> determineTargetChannels(Message<?>
message) {
return // determine channel(s) for message

}

The following example shows the equivalent router configured by using the Java DSL:

public IntegrationFlow routerFlow() {
return IntegrationFlows.from("routingChannel™)
.route(myCustomRouter())
.get();
}

public AbstractMessageRouter myCustomRouter() {
return new AbstractMessageRouter() {

protected Collection<MessageChannel> determineTargetChannels(Message<?>
message) {
return // determine channel(s) for message

}

Alternately, you can route on data from the message payload, as the following example shows:

89

@Bean
public IntegrationFlow routerFlow() {
return IntegrationFlows.from("routingChannel")
.route(String.class, p -> p.contains("foo") ? "fooChannel" :
"barChannel")
.get();
}

8.1.5. Routers and the Spring Expression Language (SpEL)

Sometimes, the routing logic may be simple, and writing a separate class for it and configuring it as
a bean may seem like overkill. As of Spring Integration 2.0, we offer an alternative that lets you use
SpEL to implement simple computations that previously required a custom POJO router.

e For more information about the Spring Expression Language, see the relevant
chapter in the Spring Framework Reference Guide:

Generally, a SpEL expression is evaluated and its result is mapped to a channel, as the following
example shows:

<int:router input-channel="inChannel" expression="payload.paymentType">
<int:mapping value="CASH" channel="cashPaymentChannel"/>
<int:mapping value="CREDIT" channel="authorizePaymentChannel"/>
<int:mapping value="DEBIT" channel="authorizePaymentChannel"/>
</int:router>

The following example shows the equivalent router configured in Java:

@Router (inputChannel = "routingChannel")

@Bean

public ExpressionEvaluatingRouter router() {
ExpressionEvaluatingRouter router = new ExpressionEvaluatingRouter(

"payload.paymentType");
router.setChannelMapping("CASH", "cashPaymentChannel");
router.setChannelMapping("CREDIT", "authorizePaymentChannel");
router.setChannelMapping("DEBIT", "authorizePaymentChannel");
return router;

The following example shows the equivalent router configured in the Java DSL:

90

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

public IntegrationFlow routerFlow() {
return IntegrationFlows.from("routingChannel")
.route("payload.paymentType", r -> r
.channelMapping("CASH", "cashPaymentChannel")
.channelMapping("CREDIT", "authorizePaymentChannel")
.channelMapping("DEBIT", "authorizePaymentChannel"))
.get();

To simplify things even more, the SpEL expression may evaluate to a channel name, as the
following expression shows:

<int:router input-channel="inChannel" expression="payload + 'Channel'"/>

In the preceding configuration, the result channel is computed by the SpEL expression, which
concatenates the value of the payload with the literal String, 'Channel'.

Another virtue of SpEL for configuring routers is that an expression can return a Collection,
effectively making every <router> a recipient list router. Whenever the expression returns multiple
channel values, the message is forwarded to each channel. The following example shows such an
expression:

<int:router input-channel="inChannel" expression="headers.channels"/>

In the above configuration, if the message includes a header with a name of 'channels’ and the
value of that header is a List of channel names, the message is sent to each channel in the list. You
may also find collection projection and collection selection expressions useful when you need to
select multiple channels. For further information, see:

* Collection Projection

¢ Collection Selection

Configuring a Router with Annotations

When using @Router to annotate a method, the method may return either a MessageChannel or a
String type. In the latter case, the endpoint resolves the channel name as it does for the default
output channel. Additionally, the method may return either a single value or a collection. If a
collection is returned, the reply message is sent to multiple channels. To summarize, the following
method signatures are all valid:

91

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-collection-projection
https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-collection-selection

public MessageChannel route(Message message) {...}

public List<MessageChannel> route(Message message) {...}

public String route(Foo payload) {...}

public List<String> route(Foo payload) {...}

In addition to payload-based routing, a message may be routed based on metadata available within
the message header as either a property or an attribute. In this case, a method annotated with
@Router may include a parameter annotated with @Header, which is mapped to a header value as the
following example shows and documented in Annotation Support:

public List<String> route(("orderStatus") OrderStatus status)
o For routing of XML-based Messages, including XPath support, see XML Support -
Dealing with XML Payloads.

See also Message Routers in the Java DSL chapter for more information about router configuration.

8.1.6. Dynamic Routers

Spring Integration provides quite a few different router configurations for common content-based
routing use cases as well as the option of implementing custom routers as POJOs. For example,
PayloadTypeRouter provides a simple way to configure a router that computes channels based on the
payload type of the incoming message while HeaderValueRouter provides the same convenience in
configuring a router that computes channels by evaluating the value of a particular message
Header. There are also expression-based (SpEL) routers, in which the channel is determined based
on evaluating an expression. All of these type of routers exhibit some dynamic characteristics.

However, these routers all require static configuration. Even in the case of expression-based
routers, the expression itself is defined as part of the router configuration, which means that the
same expression operating on the same value always results in the computation of the same
channel. This is acceptable in most cases, since such routes are well defined and therefore
predictable. But there are times when we need to change router configurations dynamically so that
message flows may be routed to a different channel.

For example, you might want to bring down some part of your system for maintenance and
temporarily re-reroute messages to a different message flow. As another example, you may want to

92

./configuration.pdf#annotations
./xml.pdf#xml
./xml.pdf#xml
./dsl.pdf#java-dsl-routers

introduce more granularity to your message flow by adding another route to handle a more
concrete type of java.lang.Number (in the case of PayloadTypeRouter).

Unfortunately, with static router configuration to accomplish either of those goals, you would have
to bring down your entire application, change the configuration of the router (change routes), and
bring the application back up. This is obviously not a solution anyone wants.

The dynamic router pattern describes the mechanisms by which you can change or configure
routers dynamically without bringing down the system or individual routers.

Before we get into the specifics of how Spring Integration supports dynamic routing, we need to
consider the typical flow of a router:

1. Compute a channel identifier, which is a value calculated by the router once it receives the
message. Typically, it is a String or an instance of the actual MessageChannel.

2. Resolve the channel identifier to a channel name. We describe specifics of this process later in
this section.

3. Resolve the channel name to the actual MessageChannel

There is not much that can be done with regard to dynamic routing if Step 1 results in the actual
instance of the MessageChannel, because the MessageChannel is the final product of any router’s job.
However, if the first step results in a channel identifier that is not an instance of MessageChannel,
you have quite a few possible ways to influence the process of deriving the MessageChannel.
Consider the following example of a payload type router:

<int:payload-type-router input-channel="routingChannel">
<int:mapping type="java.lang.String" channel="channell" />
<int:mapping type="java.lang.Integer" channel="channel2" />
</int:payload-type-router>

Within the context of a payload type router, the three steps mentioned earlier would be realized as
follows:

1. Compute a channel identifier that is the fully qualified name of the payload type (for example,
java.lang.String).

2. Resolve the channel identifier to a channel name, where the result of the previous step is used
to select the appropriate value from the payload type mapping defined in the mapping element.

3. Resolve the channel name to the actual instance of the MessageChannel as a reference to a bean
within the application context (which is hopefully a MessageChannel) identified by the result of
the previous step.

In other words, each step feeds the next step until the process completes.

Now consider an example of a header value router:

93

https://www.enterpriseintegrationpatterns.com/DynamicRouter.html

<int:header-value-router input-channel="inputChannel" header-name="testHeader">
<int:mapping value="foo" channel="fooChannel" />
<int:mapping value="bar" channel="barChannel" />

</int:header-value-router>

Now we can consider how the three steps work for a header value router:

1. Compute a channel identifier that is the value of the header identified by the header-name
attribute.

2. Resolve the channel identifier a to channel name, where the result of the previous step is used
to select the appropriate value from the general mapping defined in the mapping element.

3. Resolve the channel name to the actual instance of the MessageChannel as a reference to a bean
within the application context (which is hopefully a MessageChannel) identified by the result of
the previous step.

The preceding two configurations of two different router types look almost identical. However, if
you look at the alternate configuration of the HeaderValueRouter we clearly see that there is no
mapping sub element, as the following listing shows:

<int:header-value-router input-channel="inputChannel” header-name="testHeader">

However, the configuration is still perfectly valid. So the natural question is what about the
mapping in the second step?

The second step is now optional. If mapping is not defined, then the channel identifier value
computed in the first step is automatically treated as the channel name, which is now resolved to the
actual MessageChannel, as in the third step. What it also means is that the second step is one of the
key steps to providing dynamic characteristics to the routers, since it introduces a process that lets
you change the way channel identifier resolves to the channel name, thus influencing the process
of determining the final instance of the MessageChannel from the initial channel identifier.

For example, in the preceding configuration, assume that the testHeader value is 'kermit’, which is
now a channel identifier (the first step). Since there is no mapping in this router, resolving this
channel identifier to a channel name (the second step) is impossible and this channel identifier is
now treated as the channel name. However, what if there was a mapping but for a different value?
The end result would still be the same, because, if a new value cannot be determined through the
process of resolving the channel identifier to a channel name, the channel identifier becomes the
channel name.

All that is left is for the third step to resolve the channel name ('kermit') to an actual instance of the
MessageChannel identified by this name. That basically involves a bean lookup for the provided
name. Now all messages that contain the header-value pair as testHeader=kermit are going to be
routed to a MessageChannel whose bean name (its id) is 'kermit'.

94

But what if you want to route these messages to the 'simpson’ channel? Obviously changing a static
configuration works, but doing so also requires bringing your system down. However, if you had
access to the channel identifier map, you could introduce a new mapping where the header-value
pair is now kermit=simpson, thus letting the second step treat 'kermit' as a channel identifier while
resolving it to 'simpson' as the channel name.

The same obviously applies for PayloadTypeRouter, where you can now remap or remove a
particular payload type mapping. In fact, it applies to every other router, including expression-
based routers, since their computed values now have a chance to go through the second step to be
resolved to the actual channel name.

Any router that is a subclass of the AbstractMappingMessageRouter (which includes most framework-
defined routers) is a dynamic router, because the channelMapping is defined at the
AbstractMappingMessageRouter level. That map’s setter method is exposed as a public method along
with the 'setChannelMapping' and removeChannelMapping' methods. These let you change, add,
and remove router mappings at runtime, as long as you have a reference to the router itself. It also
means that you could expose these same configuration options through JMX (see JMX Support) or
the Spring Integration control bus (see Control Bus) functionality.

Falling back to the channel key as the channel name is flexible and convenient.
However, if you don’t trust the message creator, a malicious actor (who has
knowledge of the system) could create a message that is routed to an unexpected
o channel. For example, if the key is set to the channel name of the router’s input
channel, such a message would be routed back to the router, eventually resulting
in a stack overflow error. You may therefore wish to disable this feature (set the
channelKeyFallback property to false), and change the mappings instead if needed.

Manage Router Mappings using the Control Bus

One way to manage the router mappings is through the control bus pattern, which exposes a
control channel to which you can send control messages to manage and monitor Spring Integration
components, including routers.

o For more information about the control bus, see Control Bus.

Typically, you would send a control message asking to invoke a particular operation on a particular
managed component (such as a router). The following managed operations (methods) are specific
to changing the router resolution process:

* public void setChannelMapping(String key, String channelName): Lets you add a new or modify
an existing mapping between channel identifier and channel name

* public void removeChannelMapping(String key): Lets you remove a particular channel mapping,
thus disconnecting the relationship between channel identifier and channel name

Note that these methods can be used for simple changes (such as updating a single route or adding
or removing a route). However, if you want to remove one route and add another, the updates are
not atomic. This means that the routing table may be in an indeterminate state between the
updates. Starting with version 4.0, you can now use the control bus to update the entire routing

95

./jmx.pdf#jmx
./control-bus.pdf#control-bus
https://www.enterpriseintegrationpatterns.com/ControlBus.html
./control-bus.pdf#control-bus

table atomically. The following methods let you do so:

* public Map<String, String>getChannelMappings(): Returns the current mappings.

* public void replaceChannelMappings(Properties channelMappings): Updates the mappings. Note
that the channelMappings parameter is a Properties object. This arrangement lets a control bus
command use the built-in StringToPropertiesConverter, as the following example shows:

"0'router.handler'.replaceChannelMappings('foo=qux \n baz=bar')"

Note that each mapping is separated by a newline character (\n). For programmatic changes to the
map, we recommend that you use the setChannelMappings method, due to type-safety concerns.
replaceChannelMappings ignores keys or values that are not String objects.

Manage Router Mappings by Using JMX

You can also use Spring’s JMX support to expose a router instance and then use your favorite JMX
client (for example, JConsole) to manage those operations (methods) for changing the router’s
configuration.

e For more information about Spring Integration’s JMX support, see JMX Support.

Routing Slip

Starting with version 4.1, Spring Integration provides an implementation of the routing slip
enterprise integration pattern. It is implemented as a routingSlip message header, which is used to
determine the next channel in AbstractMessageProducingHandler instances, when an outputChannel is
not specified for the endpoint. This pattern is useful in complex, dynamic cases, when it can
become difficult to configure multiple routers to determine message flow. When a message arrives
at an endpoint that has no output-channel, the routingSlip is consulted to determine the next
channel to which the message is sent. When the routing slip is exhausted, normal replyChannel
processing resumes.

Configuration for the routing slip is presented as a HeaderEnricher option —a semicolon-separated
routing slip that contains path entries, as the following example shows:

96

./jmx.pdf#jmx
https://www.enterpriseintegrationpatterns.com/RoutingTable.html

<util:properties id="properties">
<beans:prop key="myRoutePath1">channel1</beans:prop>
<beans:prop key="myRoutePath2">
request.headers[myRoutingSlipChannel]</beans:prop>
</util:properties>

<context:property-placeholder properties-ref="properties"/>

<header-enricher input-channel="input" output-channel="process">
<routing-slip
value="${myRoutePath1}; @routingSlipRoutingPojo.get(request, reply);
routingSlipRoutingStrategy; ${myRoutePath2}; finishChannel"/>
</header-enricher>

The preceding example has:

* A <context:property-placeholder> configuration to demonstrate that the entries in the routing
slip path can be specified as resolvable keys.

* The <header-enricher> <routing-slip> sub-element is wused to populate the
RoutingSlipHeaderValueMessageProcessor to the HeaderEnricher handler.

* The RoutingSlipHeaderValueMessageProcessor accepts a String array of resolved routing slip path
entries and returns (from processMessage()) a singletonMap with the path as key and 0 as initial
routingSlipIndex.

Routing Slip path entries can contain MessageChannel bean names, RoutingSlipRouteStrategy bean
names, and Spring expressions (SpEL). The RoutingSlipHeaderValueMessageProcessor checks each
routing slip path entry against the BeanFactory on the first processMessage invocation. It converts
entries (which are not bean names in the application context) to
ExpressionEvaluatingRoutingSlipRouteStrategy instances. RoutingSlipRouteStrategy entries are
invoked multiple times, until they return null or an empty String.

Since the routing slip is involved in the getOutputChannel process, we have a request-reply context.
The RoutingSlipRouteStrategy has been introduced to determine the next outputChannel that uses
the requesthMessage and the reply object. An implementation of this strategy should be registered as
a bean in the application context, and its bean name is used in the routing slip path. The
ExpressionEvaluatingRoutingSlipRouteStrategy implementation is provided. It accepts a SpEL
expression and an internal ExpressionEvaluatingRoutingSlipRouteStrategy.RequestAndReply object is
used as the root object of the evaluation context. This is to avoid the overhead of EvaluationContext
creation for each ExpressionEvaluatingRoutingSlipRouteStrategy.getNextPath() invocation. It is a
simple Java bean with two properties: Message<?> request and Object reply. With this expression
implementation, we can specify routing slip path entries by using SpEL (for example,
@routingSlipRoutingPojo.get(request, reply) and request.headers[myRoutingSlipChannel]) and
avoid defining a bean for the RoutingSlipRouteStrategy.

97

The requestMessage argument is always a Message<?>. Depending on context, the
reply object may be a Message<?>, an AbstractIntegrationMessageBuilder, or an
arbitrary application domain object (When, for example, it is returned by a POJO

o method invoked by a service activator). In the first two cases, the usual Message
properties (payload and headers) are available when using SpEL (or a Java
implementation). For an arbitrary domain object, these properties are not
available. For this reason, be careful when you use routing slips in conjunction
with POJO methods if the result is used to determine the next path.

If a routing slip is involved in a distributed environment, we recommend not using
inline expressions for the Routing Slip path. This recommendation applies to
distributed environments such as cross-JVM applications, using a request-reply
through a message broker (such asAMQP Support or JMS Support), or using a
persistent MessageStore (Message Store) in the integration flow. The framework
uses RoutingSlipHeaderValueMessageProcessor to convert them to

o ExpressionEvaluatingRoutingSlipRouteStrategy objects, and they are used in the
routingSlip message header. Since this class is not Serializable (it cannot be,
because it depends on the BeanFactory), the entire Message becomes non-
serializable and, in any distributed operation, we end up with a
NotSerializableException. ~To overcome this limitation, register an
ExpressionEvaluatingRoutingSlipRouteStrategy bean with the desired SpEL and use
its bean name in the routing slip path configuration.

For Java configuration, you can add a RoutingSlipHeaderValueMessageProcessor instance to the
HeaderEnricher bean definition, as the following example shows:

(inputChannel = "routingSlipHeaderChannel")
public HeaderEnricher headerEnricher() {
return new HeaderEnricher(Collections.singletonMap
(IntegrationMessageHeaderAccessor.ROUTING_SLIP,
new RoutingSlipHeaderValueMessageProcessor("myRoutePath1",

"eroutingSlipRoutingPojo.get(request, reply)",
routingSlipRoutingStrategy",
"request.headers[myRoutingS1lipChannel]",

"finishChannel")));
}

The routing slip algorithm works as follows when an endpoint produces a reply and no
outputChannel has been defined:

» The routingSlipIndex is used to get a value from the routing slip path list.

98

./amqp.pdf#amqp
./jms.pdf#jms
./message-store.pdf#message-store

o If the value from routingSlipIndex is String, it is used to get a bean from BeanFactory.

 If a returned bean is an instance of MessageChannel, it is used as the next outputChannel and the
routingSlipIndex is incremented in the reply message header (the routing slip path entries
remain unchanged).

 If areturned bean is an instance of RoutingSlipRouteStrategy and its getNextPath does not return
an empty String, that result is used as a bean name for the next outputChannel. The
routingSlipIndex remains unchanged.

 If RoutingSlipRouteStrategy.getNextPath returns an empty String or null, the routingSlipIndex is
incremented and the getOutputChannelFromRoutingSlip is invoked recursively for the next
Routing Slip path item.

« If the next routing slip path entry is not a String, it must be an instance of
RoutingSlipRouteStrategy.

* When the routingSlipIndex exceeds the size of the routing slip path list, the algorithm moves to
the default behavior for the standard replyChannel header.

8.1.7. Process Manager Enterprise Integration Pattern

Enterprise integration patterns include the process manager pattern. You can now easily
implement this pattern by wusing custom process manager logic encapsulated in a
RoutingSlipRouteStrategy within the routing slip. In addition to a bean name, the
RoutingSlipRouteStrategy can return any MessageChannel object, and there is no requirement that
this MessageChannel instance be a bean in the application context. This way, we can provide
powerful dynamic routing logic when there is no way to predict which channel should be used. A
MessageChannel can be created within the RoutingSlipRouteStrategqy and returned. A
FixedSubscriberChannel with an associated MessageHandler implementation is a good combination
for such cases. For example, you can route to a Reactive Streams, as the following example shows:

99

https://www.enterpriseintegrationpatterns.com/ProcessManager.html
https://projectreactor.io/docs/core/release/reference/#getting-started

public PollableChannel resultsChannel() {
return new QueueChannel();

}

public RoutingSlipRouteStrategy routeStrategy() {
return (requestMessage, reply) -> requestMessage.getPayload() instanceof
String
? new FixedSubscriberChannel(m ->
Mono.just((String) m.getPayload())
.map(String::toUpper(ase)
.subscribe(v -> messagingTemplate().convertAndSend
(resultsChannel(), v)))
: new FixedSubscriberChannel(m ->
Mono.just((Integer) m.getPayload())
.map(v -> v * 2)
.subscribe(v -> messagingTemplate().convertAndSend
(resultsChannel(), v)));

}

8.2. Filter

Message filters are used to decide whether a Message should be passed along or dropped based on
some criteria, such as a message header value or message content itself. Therefore, a message filter
is similar to a router, except that, for each message received from the filter’s input channel, that
same message may or may not be sent to the filter’s output channel. Unlike the router, it makes no
decision regarding which message channel to send the message to but decides only whether to send
the message at all.

As we describe later in this section, the filter also supports a discard channel. In
o certain cases, it can play the role of a very simple router (or “switch”), based on a
boolean condition.
In Spring Integration, you can configure a message filter as a message endpoint that delegates to an

implementation of the MessageSelector interface. That interface is itself quite simple, as the
following listing shows:

public interface MessageSelector {

boolean accept(Message<?> message);

100

The MessageFilter constructor accepts a selector instance, as the following example shows:

MessageFilter filter = new MessageFilter(someSelector);

In combination with the namespace and SpEL, you can configure powerful filters with very little
Java code.

8.2.1. Configuring a Filter with XML

You can use the <filter> element is used to create a message-selecting endpoint. In addition to
input-channel and output-channel attributes, it requires a ref attribute. The ref can point to a
MessageSelector implementation, as the following example shows:

<int:filter input-channel="input" ref="selector" output-channel="output"/>

<bean id="selector" class="example.MessageSelectorImpl"/>

Alternatively, you can add the method attribute. In that case, the ref attribute may refer to any
object. The referenced method may expect either the Message type or the payload type of inbound
messages. The method must return a boolean value. If the method returns 'true’, the message is sent
to the output channel. The following example shows how to configure a filter that uses the method
attribute:

<int:filter input-channel="input" output-channel="output"
ref="exampleObject" method="someBooleanReturningMethod"/>

<bean id="exampleObject" class="example.SomeObject"/>

If the selector or adapted POJO method returns false, a few settings control the handling of the
rejected message. By default (if configured as in the preceding example), rejected messages are
silently dropped. If rejection should instead result in an error condition, set the throw-exception-on-
rejection attribute to true, as the following example shows:

<int:filter input-channel="input" ref="selector"
output-channel="output" throw-exception-on-rejection="true"/>

If you want rejected messages to be routed to a specific channel, provide that reference as the
discard-channel, as the following example shows:

101

<int:filter input-channel="input" ref="selector"
output-channel="output" discard-channel="rejectedMessages"/>

See also Advising Filters.

Message filters are commonly used in conjunction with a publish-subscribe
channel. Many filter endpoints may be subscribed to the same channel, and they

o decide whether or not to pass the message to the next endpoint, which could be
any of the supported types (such as a service activator). This provides a reactive
alternative to the more proactive approach of using a message router with a single
point-to-point input channel and multiple output channels.

We recommend using a ref attribute if the custom filter implementation is referenced in other
<filter> definitions. However, if the custom filter implementation is scoped to a single <filter>
element, you should provide an inner bean definition, as the following example shows:

<int:filter method="someMethod" input-channel="inChannel" output-channel=
"outChannel">

<beans:bean class="org.foo.MyCustomFilter"/>
</filter>

Using both the ref attribute and an inner handler definition in the same <filter>
o configuration is not allowed, as it creates an ambiguous condition and throws an
exception.

If the ref attribute references a bean that extends MessageFilter (such as filters
provided by the framework itself), the configuration is optimized by injecting the
output channel into the filter bean directly. In this case, each ref must be to a

o separate bean instance (or a prototype-scoped bean) or use the inner <bean/>
configuration type. However, this optimization applies only if you do not provide
any filter-specific attributes in the filter XML definition. If you inadvertently
reference the same message handler from multiple beans, you get a configuration
exception.

With the introduction of SpEL support, Spring Integration added the expression attribute to the
filter element. It can be used to avoid Java entirely for simple filters, as the following example
shows:

<int:filter input-channel="input" expression="payload.equals('nonsense')"/>

102

./handler-advice.pdf#advising-filters

The string passed as the value of the expression attribute is evaluated as a SpEL expression with the
message available in the evaluation context. If you must include the result of an expression in the
scope of the application context, you can use the #{} notation, as defined in the SpEL reference
documentation, as the following example shows:

<int:filter input-channel="input"
expression="payload.matches(#{filterPatterns.nonsensePattern})"/>

If the expression itself needs to be dynamic, you can use an 'expression’ sub-element. That provides
a level of indirection for resolving the expression by its key from an ExpressionSource. That is a
strategy interface that you can implement directly, or you can rely upon a version available in
Spring Integration that loads expressions from a “resource bundle” and can check for modifications
after a given number of seconds. All of this is demonstrated in the following configuration example,
where the expression could be reloaded within one minute if the underlying file had been
modified:

<int:filter input-channel="input" output-channel="output">
<int:expression key="filterPatterns.example" source="myExpressions"/>
</int:filter>

<beans:bean id="myExpressions" id="myExpressions"
class="0.s.i.expression.ReloadableResourceBundleExpressionSource">
<beans:property name="basename" value="config/integration/expressions"/>
<beans:property name="cacheSeconds" value="60"/>

</beans:bean>

If the ExpressionSource bean is named expressionSource, you need not provide the ™ source’
attribute on the <expression> element. However, in the preceding example, we show it for
completeness.

The 'config/integration/expressions.properties' file (or any more-specific version with a locale
extension to be resolved in the typical way that resource-bundles are loaded) can contain a
key/value pair, as the following example shows:

filterPatterns.example=payload > 100

103

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions-beandef
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions-beandef

All of these examples that use expression as an attribute or sub-element can also
be applied within transformer, router, splitter, service-activator, and header-
enricher elements. The semantics and role of the given component type would
affect the interpretation of the evaluation result, in the same way that the return
o value of a method-invocation would be interpreted. For example, an expression
can return strings that are to be treated as message channel names by a router
component. However, the underlying functionality of evaluating the expression
against the message as the root object and resolving bean names if prefixed with
'@' is consistent across all of the core EIP components within Spring Integration.

8.2.2. Configuring a Filter with Annotations

The following example shows how to configure a filter by using annotations:

public class PetFilter {

@
public boolean dogsOnly(String input) {

}

@ An annotation indicating that this method is to be used as a filter. It must be specified if this
class is to be used as a filter.

All of the configuration options provided by the XML element are also available for the @Filter
annotation.

The filter can be either referenced explicitly from XML or, if the @MessageEndpoint annotation is
defined on the class, detected automatically through classpath scanning.

See also Advising Endpoints Using Annotations.

8.3. Splitter

The splitter is a component whose role is to partition a message into several parts and send the
resulting messages to be processed independently. Very often, they are upstream producers in a
pipeline that includes an aggregator.

8.3.1. Programming Model

The API for performing splitting consists of one base class, AbstractMessageSplitter. It is a
MessageHandler implementation that encapsulates features common to splitters, such as filling in the
appropriate message headers (CORRELATION_ID, SEQUENCE_SIZE, and SEQUENCE_NUMBER) on the messages
that are produced. This filling enables tracking down the messages and the results of their
processing (in a typical scenario, these headers get copied to the messages that are produced by the
various transforming endpoints). The values can then be used, for example, by a composed
message processor.

104

./handler-advice.pdf#advising-with-annotations
https://www.enterpriseintegrationpatterns.com/DistributionAggregate.html
https://www.enterpriseintegrationpatterns.com/DistributionAggregate.html

The following example shows an excerpt from AbstractMessageSplitter:

public abstract class AbstractMessageSplitter
extends AbstractReplyProducingMessageConsumer {

protected abstract Object splitMessage(Message<?> message);

To implement a specific splitter in an application, you can extend AbstractMessageSplitter and
implement the splitMessage method, which contains logic for splitting the messages. The return
value can be one of the following:

* ACollection or an array of messages or an Iterable (or Iterator) that iterates over messages. In
this case, the messages are sent as messages (after the CORRELATION_ID, SEQUENCE_SIZE and
SEQUENCE_NUMBER are populated). Using this approach gives you more control — for example, to
populate custom message headers as part of the splitting process.

* A Collection or an array of non-message objects or an Iterable (or Iterator) that iterates over
non-message objects. It works like the prior case, except that each collection element is used as
a message payload. Using this approach lets you focus on the domain objects without having to
consider the messaging system and produces code that is easier to test.

* a Message or non-message object (but not a collection or an array). It works like the previous
cases, except that a single message is sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a
method that accepts a single argument and has a return value. In this case, the return value of the
method is interpreted as described earlier. The input argument might either be a Message or a
simple POJO. In the latter case, the splitter receives the payload of the incoming message. We
recommend this approach, because it decouples the code from the Spring Integration API and is
typically easier to test.

Iterators

Starting with version 4.1, the AbstractMessageSplitter supports the Iterator type for the value to
split. Note, in the case of an Iterator (or Iterable), we don’t have access to the number of
underlying items and the SEQUENCE_SIZE header is set to 0. This means that the default
SequenceSizeReleaseStrategy of an <aggregator> won’t work and the group for the CORRELATION_ID
from the splitter won’t be released; it will remain as incomplete. In this case you should use an
appropriate custom ReleaseStrategy or rely on send-partial-result-on-expiry together with group-
timeout or a MessageGroupStoreReaper.

Starting with version 5.0, the AbstractMessageSplitter provides protected obtainSizeIfPossible()
methods to allow the determination of the size of the Iterable and Iterator objects if that is
possible. For example XPathMessageSplitter can determine the size of the underlying Nodelist
object. And starting with version 5.0.9, this method also properly returns a size of the
com. fasterxml.jackson.core.TreeNode.

An Tterator object is useful to avoid the need for building an entire collection in the memory before

105

splitting. For example, when underlying items are populated from some external system (e.g.
DataBase or FTP MGET) using iterations or streams.

Stream and Flux

Starting with version 5.0, the AbstractMessageSplitter supports the Java Stream and Reactive
Streams Publisher types for the value to split. In this case, the target Iterator is built on their
iteration functionality.

In addition, if the splitter’s output channel is an instance of a ReactiveStreamsSubscribableChannel,
the AbstractMessageSplitter produces a Flux result instead of an Iterator, and the output channel is
subscribed to this Flux for back-pressure-based splitting on downstream flow demand.

Starting with version 5.2, the splitter supports a discardChannel option for sending those request
messages for which a split function has returned an empty container (collection, array, stream, Flux
etc.). In this case there is just no item to iterate for sending to the outputChannel. The null splitting
result remains as an end of flow indicator.

8.3.2. Configuring a Splitter with XML

A splitter can be configured through XML as follows:

106

<int:channel id="inputChannel"/>

<int:splitter id="splitter" ©)
ref="splitterBean" @
method="split" ®
input-channel="inputChannel” @
output-channel="outputChannel” ®
discard-channel="discardChannel" /> ®

<int:channel id="outputChannel"/>

<beans:bean id="splitterBean" class="sample.PojoSplitter"/>

@ The ID of the splitter is optional.

@ A reference to a bean defined in the application context. The bean must implement the
splitting logic, as described in the earlier section. Optional. If a reference to a bean is not
provided, it is assumed that the payload of the message that arrived on the input-channel is
an implementation of java.util.Collection and the default splitting logic is applied to the
collection, incorporating each individual element into a message and sending it to the
output-channel.

® The method (defined on the bean) that implements the splitting logic. Optional.
@ The input channel of the splitter. Required.

® The channel to which the splitter sends the results of splitting the incoming message.
Optional (because incoming messages can specify a reply channel themselves).

® The channel to which the request message is sent in case of empty splitting result. Optional
(the will stop as in case of null result).

We recommend using a ref attribute if the custom splitter implementation can be referenced in
other <splitter> definitions. However if the custom splitter handler implementation should be
scoped to a single definition of the <splitter>, you can configure an inner bean definition, as the
following example follows:

<int:splitter id="testSplitter" input-channel="inChannel" method="split"
output-channel="outChannel">
<beans:bean class="org.foo.TestSplitter"/>
</int:splitter>

Using both a ref attribute and an inner handler definition in the same
o <int:splitter> configuration is not allowed, as it creates an ambiguous condition
and results in an exception being thrown.

107

If the ref attribute references a bean that extends AbstractMessageProducingHandler
(such as splitters provided by the framework itself), the configuration is optimized
by injecting the output channel into the handler directly. In this case, each ref

o must be a separate bean instance (or a prototype-scoped bean) or use the inner
<bean/> configuration type. However, this optimization applies only if you do not
provide any splitter-specific attributes in the splitter XML definition. If you
inadvertently reference the same message handler from multiple beans, you get a
configuration exception.

8.3.3. Configuring a Splitter with Annotations

The @Splitter annotation is applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a Collection of any type. If
the returned values are not actual Message objects, each item is wrapped in a Message as the payload
of the Message. Each resulting Message is sent to the designated output channel for the endpoint on
which the @Splitter is defined.

The following example shows how to configure a splitter by using the @Splitter annotation:

List<LineItem> extractItems(Order order) {
return order.getItems()

See also Advising Endpoints Using Annotations.

See also Splitters in the Java DSL chapter.

8.4. Aggregator

Basically a mirror-image of the splitter, the aggregator is a type of message handler that receives
multiple messages and combines them into a single message. In fact, an aggregator is often a
downstream consumer in a pipeline that includes a splitter.

Technically, the aggregator is more complex than a splitter, because it is stateful. It must hold the
messages to be aggregated and determine when the complete group of messages is ready to be
aggregated. In order to do so, it requires a MessageStore.

8.4.1. Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the
group is deemed to be complete. At that point, the aggregator creates a single message by
processing the whole group and sends the aggregated message as output.

Implementing an aggregator requires providing the logic to perform the aggregation (that is, the
creation of a single message from many). Two related concepts are correlation and release.

108

./handler-advice.pdf#advising-with-annotations
./dsl.pdf#java-dsl-splitters

Correlation determines how messages are grouped for aggregation. In Spring Integration,
correlation is done by default, based on the IntegrationMessageHeaderAccessor.CORRELATION_ID
message header. Messages with the same IntegrationMessageHeaderAccessor.CORRELATION_ID are
grouped together. However, you can customize the correlation strategy to allow other ways of
specifying how the messages should be grouped together. To do so, you can implement a
CorrelationStrategy (covered later in this chapter).

To determine the point at which a group of messages is ready to be processed, a ReleaseStrategy is
consulted. The default release strategy for the aggregator releases a group when all messages
included in a sequence are present, based on the IntegrationMessageHeaderAccessor.SEQUENCE_SIZE
header. You can override this default strategy by providing a reference to a custom ReleaseStrategy
implementation.

8.4.2. Programming Model
The Aggregation API consists of a number of classes:

e The interface MessageGroupProcessor, and its subclasses:
MethodInvokingAggregatingMessageGroupProcessor and
ExpressionEvaluatingMessageGroupProcessor

* The ReleaseStrategy interface and its default implementation:
SimpleSequenceSizeReleaseStrategy

* The CorrelationStrategy interface and its default implementation:
HeaderAttributeCorrelationStrategy

AggregatingMessageHandler

The AggregatingMessageHandler (a subclass of AbstractCorrelatingMessageHandler) is a MessageHandler
implementation, encapsulating the common functionality of an aggregator (and other correlating
use cases), which are as follows:

Correlating messages into a group to be aggregated
* Maintaining those messages in a MessageStore until the group can be released
* Deciding when the group can be released
» Aggregating the released group into a single message
* Recognizing and responding to an expired group
The responsibility for deciding how the messages should be grouped together is delegated to a

CorrelationStrategy instance. The responsibility for deciding whether the message group can be
released is delegated to a ReleaseStrategy instance.

The following listing shows a brief highlight of the base AbstractAggregatingMessageGroupProcessor
(the responsibility for implementing the aggregatePayloads method is left to the developer):

109

public abstract class AbstractAggregatingMessageGroupProcessor
implements MessageGroupProcessor {

protected Map<String, Object> aggregateHeaders(MessageGroup group) {
// default implementation exists

}

protected abstract Object aggregatePayloads(MessageGroup group, Map<String,
Object> defaultHeaders);

}

See DefaultAggregatingMessageGroupProcessor, ExpressionEvaluatingMessageGroupProcessor and
MethodInvokingMessageGroupProcessor as out-of-the-box implementations of the
AbstractAggregatingMessageGroupProcessor.

Starting with version 5.2, a Function<MessageGroup, Map<String, Object>> strategy is available for
the AbstractAggregatingMessageGroupProcessor to merge and compute (aggregate) headers for an
output message. The DefaultAggregateHeadersFunction implementation is available with logic that
returns all headers that have no conflicts among the group; an absent header on one or more
messages within the group is not considered a conflict. Conflicting headers are omitted. Along with
the newly introduced DelegatingMessageGroupProcessor, this function is used for any arbitrary (non-
AbstractAggregatingMessageGroupProcessor) MessageGroupProcessor implementation. Essentially, the
framework injects a provided function into an AbstractAggregatingMessageGroupProcessor instance
and wraps all other implementations into a DelegatingMessageGroupProcessor. The difference in
logic between the AbstractAggregatingMessageGroupProcessor and the
DelegatingMessageGroupProcessor that the latter doesn’t compute headers in advance, before calling
the delegate strategy, and doesn’t invoke the function if the delegate returns a Message or
AbstractIntegrationMessageBuilder. In that case, the framework assumes that the target
implementation has taken care of producing a proper set of headers populated into the returned
result. The Function<MessageGroup, Map<String, Object>> strategy is available as the headers-
function reference attribute for XML configuration, as the AggregatorSpec.headersFunction() option
for the Java DSL and as AggregatorFactoryBean.setHeadersFunction() for plain Java configuration.

The CorrelationStrategy is owned by the AbstractCorrelatingMessageHandler and has a default value
based on the IntegrationMessageHeaderAccessor.CORRELATION_ID message header, as the following
example shows:

110

public AbstractCorrelatingMessageHandler(MessageGroupProcessor processor,
MessageGroupStore store,
CorrelationStrategy correlationStrategy, ReleaseStrategy releaseStrategy)

{

this.correlationStrategy = correlationStrategy == null ?
new HeaderAttributeCorrelationStrategy(IntegrationMessageHeaderAccessor
.CORRELATION_ID) : correlationStrategy;
this.releaseStrategy = releaseStrategy == null ? new
SimpleSequenceSizeReleaseStrategy() : releaseStrategy;

}

As for the actual processing of the message group, the default implementation is the
DefaultAggregatingMessageGroupProcessor. It creates a single Message whose payload is a List of the
payloads received for a given group. This works well for simple scatter-gather implementations
with a splitter, a publish-subscribe channel, or a recipient list router upstream.

When using a publish-subscribe channel or a recipient list router in this type of
scenario, be sure to enable the apply-sequence flag. Doing so adds the necessary

o headers: CORRELATION ID, SEQUENCE NUMBER, and SEQUENCE SIZE. That behavior is
enabled by default for splitters in Spring Integration, but it is not enabled for
publish-subscribe channels or for recipient list routers because those components
may be used in a variety of contexts in which these headers are not necessary.

When implementing a specific aggregator strategy for an application, you can extend
AbstractAggregatingMessageGroupProcessor and implement the aggregatePayloads method. However,
there are better solutions, less coupled to the API, for implementing the aggregation logic, which
can be configured either through XML or through annotations.

In general, any POJO can implement the aggregation algorithm if it provides a method that accepts
a single java.util.List as an argument (parameterized lists are supported as well). This method is
invoked for aggregating messages as follows:

* If the argument is a java.util.Collection<T> and the parameter type T is assignable to Message,
the whole list of messages accumulated for aggregation is sent to the aggregator.

» If the argument is a non-parameterized java.util.Collection or the parameter type is not
assignable to Message, the method receives the payloads of the accumulated messages.

* If the return type is not assignable to Message, it is treated as the payload for a Message that is
automatically created by the framework.

In the interest of code simplicity and promoting best practices such as low

o coupling, testability, and others, the preferred way of implementing the
aggregation logic is through a POJO and using the XML or annotation support for
configuring it in the application.

111

Starting with version 5.1, after processing message group, an AbstractCorrelatingMessageHandler
performs a MessageBuilder.popSequenceDetails() message headers modification for the proper
splitter-aggregator scenario with several nested levels. It is done only if the message group release
result is not a message or collection of messages. In that case a target MessageGroupProcessor is
responsible for the MessageBuilder.popSequenceDetails() call while building those messages. This
functionality can be controlled by a new popSequence boolean property, so the
MessageBuilder.popSequenceDetails() can be disabled in some scenarios when correlation details
have not been populated by the standard splitter. This property, essentially, undoes what has been
done by the nearest upstream applySequence = true in the AbstractMessageSplitter. See Splitter for
more information.

The SimpleMessageGroup.getMessages() method returns an unmodifiableCollection.
Therefore, if your aggregating POJO method has a Collection<Message> parameter,
the argument passed in is exactly that Collection instance and, when you use a
SimpleMessageStore for the aggregator, that original Collection<Message> is cleared

o after releasing the group. Consequently, the Collection<Message> variable in the
POJO is cleared too, if it is passed out of the aggregator. If you wish to simply
release that collection as-is for further processing, you must build a new
Collection (for example, new ArraylList<Message>(messages)). Starting with version
4.3, the framework no longer copies the messages to a new collection, to avoid
undesired extra object creation.

If the processMessageGroup method of the MessageGroupProcessor returns a collection, it must be a
collection of Message<?> objects. In this case, the messages are individually released. Prior to version
4.2, it was not possible to provide a MessageGroupProcessor by using XML configuration. Only POJO
methods could be used for aggregation. Now, if the framework detects that the referenced (or
inner) bean implements MessageProcessor, it is used as the aggregator’s output processor.

If you wish to release a collection of objects from a custom MessageGroupProcessor as the payload of
a message, your class should extend AbstractAggregatingMessageGroupProcessor and implement
aggregatePayloads().

Also, since version 4.2, a SimpleMessageGroupProcessor is provided. It returns the collection of
messages from the group, which, as indicated earlier, causes the released messages to be sent
individually.

This lets the aggregator work as a message barrier, where arriving messages are held until the
release strategy fires and the group is released as a sequence of individual messages.

ReleaseStrategy

The ReleaseStrategy interface is defined as follows:

112

./splitter.pdf#splitter

public interface ReleaseStrategy {

boolean canRelease(MessageGroup group);

In general, any POJO can implement the completion decision logic if it provides a method that
accepts a single java.util.List as an argument (parameterized lists are supported as well) and
returns a boolean value. This method is invoked after the arrival of each new message, to decide
whether the group is complete or not, as follows:

 If the argument is a java.util.List<T> and the parameter type T is assignable to Message, the
whole list of messages accumulated in the group is sent to the method.

o If the argument is a non-parametrized java.util.List or the parameter type is not assignable to
Message, the method receives the payloads of the accumulated messages.

* The method must return true if the message group is ready for aggregation or false otherwise.

The following example shows how to use the @ReleaseStrategy annotation for a List of type Message:

public class MyReleaseStrategy {

public boolean canMessagesBeReleased(List<Message<?>>) {...}

The following example shows how to use the @ReleaseStrategy annotation for a List of type String:

public class MyReleaseStrategy {

public boolean canMessagesBeReleased(List<String>) {...}

Based on the signatures in the preceding two examples, the POJO-based release strategy is passed a
Collection of not-yet-released messages (if you need access to the whole Message) or a Collection of
payload objects (if the type parameter is anything other than Message). This satisfies the majority of
use cases. However if, for some reason, you need to access the full MessageGroup, you should provide
an implementation of the ReleaseStrategy interface.

113

When handling potentially large groups, you should understand how these
methods are invoked, because the release strategy may be invoked multiple times
before the group is released. The most efficient is an implementation of
ReleaseStrategy, because the aggregator can invoke it directly. The second most
efficient is a POJO method with a Collection<Message<?>> parameter type. The least
efficient is a POJO method with a Collection<Something> type. The framework has

A to copy the payloads from the messages in the group into a new collection (and
possibly attempt conversion on the payloads to Something) every time the release
strategy is called. Using Collection<?> avoids the conversion but still requires
creating the new Collection.

For these reasons, for large groups, we recommended that you implement
ReleaseStrategy.

When the group is released for aggregation, all its not-yet-released messages are processed and
removed from the group. If the group is also complete (that is, if all messages from a sequence have
arrived or if there is no sequence defined), then the group is marked as complete. Any new
messages for this group are sent to the discard channel (if defined). Setting expire-groups-upon-
completion to true (the default is false) removes the entire group, and any new messages (with the
same correlation ID as the removed group) form a new group. You can release partial sequences by
using a MessageGroupStoreReaper together with send-partial-result-on-expiry being set to true.

To facilitate discarding of late-arriving messages, the aggregator must maintain
state about the group after it has been released. This can eventually cause out-of-
memory conditions. To avoid such situations, you should consider configuring a

o MessageGroupStoreReaper to remove the group metadata. The expiry parameters
should be set to expire groups once a point has been reach after after which late
messages are not expected to arrive. For information about configuring a reaper,
see Managing State in an Aggregator: MessageGroupStore.

Spring Integration provides an implementation for ReleaseStrategy:
SimpleSequenceSizeReleaseStrategy. This implementation consults the SEQUENCE_NUMBER and
SEQUENCE_SIZE headers of each arriving message to decide when a message group is complete and
ready to be aggregated. As shown earlier, it is also the default strategy.

Before version 5.0, the default release strategy was SequenceSizeReleaseStrategy,
o which does not perform well with large groups. With that strategy, duplicate
sequence numbers are detected and rejected. This operation can be expensive.

If you are aggregating large groups, you don’t need to release partial groups, and you don’t need to
detect/reject duplicate sequences, consider using the SimpleSequenceSizeReleaseStrategy instead - it
is much more efficient for these use cases, and is the default since version 5.0 when partial group
release is not specified.

Aggregating Large Groups

The 4.3 release changed the default Collection for messages in a SimpleMessageGroup to HashSet (it
was previously a BlockingQueue). This was expensive when removing individual messages from

114

large groups (an O(n) linear scan was required). Although the hash set is generally much faster to
remove, it can be expensive for large messages, because the hash has to be calculated on both
inserts and removes. If you have messages that are expensive to hash, consider using some other
collection type. As discussed in Using MessageGroupFactory, a SimpleMessageGroupFactory is provided
so that you can select the Collection that best suits your needs. You can also provide your own
factory implementation to create some other Collection<Message<?>>.

The following example shows how to configure an aggregator with the previous implementation
and a SimpleSequenceSizeReleaseStrateqy:

<int:aggregator input-channel="aggregate"
output-channel="out" message-store="store" release-strategy="releaser" />

<bean id="store" class="org.springframework.integration.store.SimpleMessageStore">
<property name="messageGroupFactory">
<bean class=
"org.springframework.integration.store.SimpleMessageGroupFactory">
<constructor-arg value="BLOCKING_QUEUE"/>
</bean>
</property>
</bean>

<bean id="releaser" class="SimpleSequenceSizeReleaseStrategy" />

Correlation Strategy

The CorrelationStrategy interface is defined as follows:

public interface CorrelationStrategy {

Object getCorrelationKey(Message<?> message);

The method returns an Object that represents the correlation key used for associating the message
with a message group. The key must satisfy the criteria used for a key in a Map with respect to the
implementation of equals() and hashCode().

In general, any POJO can implement the correlation logic, and the rules for mapping a message to a
method’s argument (or arguments) are the same as for a ServiceActivator (including support for
@Header annotations). The method must return a value, and the value must not be null.

Spring Integration provides an implementation for CorrelationStrategy:
HeaderAttributeCorrelationStrategy. This implementation returns the value of one of the message
headers (whose name is specified by a constructor argument) as the correlation key. By default, the

115

./message-store.pdf#message-group-factory
./message-store.pdf#message-group-factory

correlation strategy is a HeaderAttributeCorrelationStrategy that returns the value of the
CORRELATION_ID header attribute. If you have a custom header name you would like to use for
correlation, you can configure it on an instance of HeaderAttributeCorrelationStrategy and provide
that as a reference for the aggregator’s correlation strategy.

Lock Registry

Changes to groups are thread safe. So, when you send messages for the same correlation ID
concurrently, only one of them will be processed in the aggregator, making it effectively as a single-
threaded per message group. A LockRegistry is used to obtain a lock for the resolved correlation
ID. A DefaultLockRegistry is used by default (in-memory). For synchronizing updates across servers
where a shared MessageGroupStore is being used, you must configure a shared lock registry.

Avoiding Deadlocks

As discussed above, when message groups are mutated (messages added or released) a lock is held.

Consider the following flow:

...->aggregator1-> ... ->aggregator2-> ...

If there are multiple threads, and the aggregators share a common lock registry, it is possible to
get a deadlock. This will cause hung threads and jstack <pid> might present a result such as:

Found one Java-level deadlock:

"t2":
waiting for ownable synchronizer 0x000000076c1cbfad, (a
java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by "t1"
"t
waiting for ownable synchronizer 0x000000076c1ccc0@, (a
java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by "t2"

There are several ways to avoid this problem:

* ensure each aggregator has its own lock registry (this can be a shared registry across
application instances but two or more aggregators in the flow must each have a distinct

registry)

* use an ExecutorChannel or QueueChannel as the output channel of the aggregator so that the
downstream flow runs on a new thread

* starting with version 5.1.1, set the releaselLockBeforeSend aggregator property to true

116

This problem can also be caused if, for some reason, the output of a single
aggregator is eventually routed back to the same aggregator. Of course, the first
solution above does not apply in this case.

8.4.3. Configuring an Aggregator in Java DSL

See Aggregators and Resequencers for how to configure an aggregator in Java DSL.

Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator with XML through the <aggregator/>
element. The following example shows an example of an aggregator:

<channel id="inputChannel"/>

<int:aggregator id="myAggregator" ©)
auto-startup="true" @
input-channel="inputChannel" ®
output-channel="outputChannel" @
discard-channel="throwAwayChannel" ®
message-store="persistentMessageStore" ®
order="1" @
send-partial-result-on-expiry="false"
send-timeout="1000" ©)
correlation-strategy="correlationStrategyBean" Q)
correlation-strategy-method="correlate" (@)
correlation-strategy-expression="headers['foo']" @®
ref="aggregatorBean" ®
method="aggregate"
release-strategy="releaseStrategyBean" ®
release-strategy-method="release" @®
release-strategy-expression="size() == 5" @
expire-groups-upon-completion="false" @®
empty-group-min-timeout="60000"
lock-registry="1lockRegistry" @

group-timeout="60000"
group-timeout-expression="size() ge 2 7 100 : -1"
expire-groups-upon-timeout="true"

scheduler="taskScheduler" >

<expire-transactional/>

<expire-advice-chain/>
</aggregator>

117

./dsl.pdf#java-dsl-aggregators

<int:channel id="outputChannel"/>
<int:channel id="throwAwayChannel"/>

<bean id="persistentMessageStore" class=

"org.springframework.integration.jdbc.store.JdbcMessageStore">
<constructor-arg ref="dataSource"/>

</bean>

<bean id="aggregatorBean" class="sample.PojoAggregator"/>
<bean id="releaseStrategyBean" class="sample.PojoReleaseStrategy"/>

<bean id="correlationStrategyBean" class="sample.PojoCorrelationStrategy"/>

@ The id of the aggregator is optional.

@ Lifecycle attribute signaling whether the aggregator should be started during application
context startup. Optional (the default is 'true’).

® The channel from which where aggregator receives messages. Required.

@ The channel to which the aggregator sends the aggregation results. Optional (because
incoming messages can themselves specify a reply channel in the 'replyChannel' message
header).

® The channel to which the aggregator sends the messages that timed out (if send-partial-
result-on-expiry is false). Optional.

® A reference to a MessageGroupStore used to store groups of messages under their correlation
key until they are complete. Optional. By default, it is a volatile in-memory store. See
Message Store for more information.

@ The order of this aggregator when more than one handle is subscribed to the same
DirectChannel (use for load-balancing purposes). Optional.

Indicates that expired messages should be aggregated and sent to the 'output-channel' or
'replyChannel’ once their containing MessageGroup is expired (see
MessageGroupStore.expireMessageGroups(long)). One way of expiring a MessageGroup is by
configuring a MessageGroupStoreReaper. However you can alternatively expire MessageGroup
by calling MessageGroupStore.expireMessageGroups(timeout). You can accomplish that
through a Control Bus operation or, if you have a reference to the MessageGroupStore
instance, by invoking expireMessageGroups(timeout). Otherwise, by itself, this attribute does
nothing. It serves only as an indicator of whether to discard or send to the output or reply
channel any messages that are still in the MessageGroup that is about to be expired. Optional
(the default is false). NOTE: This attribute might more properly be called send-partial-
result-on-timeout, because the group may not actually expire if expire-groups-upon-timeout
is set to false.

© The timeout interval to wait when sending a reply Message to the output-channel or discard-
channel. Defaults to -1, which results in blocking indefinitely. It is applied only if the output
channel has some 'sending' limitations, such as a QueueChannel with a fixed 'capacity'. In this
case, a MessageDeliveryException is thrown. For AbstractSubscribableChannel

118

./message-store.pdf#message-store
https://docs.spring.io/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html#expireMessageGroups-long

implementations, the send-timeout is ignored . For group-timeout(-expression), the
MessageDeliveryException from the scheduled expire task leads this task to be rescheduled.
Optional.

A reference to a bean that implements the message correlation (grouping) algorithm. The
bean can be an implementation of the CorrelationStrategy interface or a POJO. In the latter
case, the correlation-strategy-method attribute must be defined as well. Optional (by
default, the aggregator uses the IntegrationMessageHeaderAccessor.CORRELATION_ID header).

@ A method defined on the bean referenced by correlation-strategy. It implements the
correlation decision algorithm. Optional, with restrictions (correlation-strategy must be
present).

@ A SpEL expression representing the correlation strategy. Example: "headers['something']".
Only one of correlation-strategy or correlation-strategy-expression is allowed.

® A reference to a bean defined in the application context. The bean must implement the
aggregation logic, as described earlier. Optional (by default, the list of aggregated messages
becomes a payload of the output message).

A method defined on the bean referenced by the ref attribute. It implements the message
aggregation algorithm. Optional (it depends on ref attribute being defined).

® A reference to a bean that implements the release strategy. The bean can be an
implementation of the ReleaseStrategy interface or a POJO. In the latter case, the release-
strategy-method attribute must be defined as well. Optional (by default, the aggregator uses
the IntegrationMessageHeaderAccessor.SEQUENCE_SIZE header attribute).

A method defined on the bean referenced by the release-strategy attribute. It implements
the completion decision algorithm. Optional, with restrictions (release-strategy must be
present).

@ A SpEL expression representing the release strategy. The root object for the expression is a
MessageGroup. Example: "size() == 5". Only one of release-strategy or release-strategy-
expression is allowed.

When set to true (the default is false), completed groups are removed from the message
store, letting subsequent messages with the same correlation form a new group. The default
behavior is to send messages with the same correlation as a completed group to the
discard-channel.

Applies only if a MessageGroupStoreReaper is configured for the MessageStore of the
<aggregator>. By default, when a MessageGroupStoreReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is normally
released. The empty groups enable the detection and discarding of late-arriving messages.
If you wish to expire empty groups on a longer schedule than expiring partial groups, set
this property. Empty groups are then not removed from the MessageStore until they have
not been modified for at least this number of milliseconds. Note that the actual time to
expire an empty group is also affected by the reaper’s timeout property, and it could be as
much as this value plus the timeout.

@ A reference to a org.springframework.integration.util.LockRegistry bean. It used to obtain
a Lock based on the groupId for concurrent operations on the MessageGroup. By default, an
internal DefaultlLockRegistry is used. Use of a distributed LockRegistry, such as the

119

120

ZookeeperLockRegistry, ensures only one instance of the aggregator can operate on a group
concurrently. See Redis Lock Registry, Gemfire Lock Registry, and Zookeeper Lock Registry
for more information.

A timeout (in milliseconds) to force the MessageGroup complete when the ReleaseStrategy does
not release the group when the current message arrives. This attribute provides a built-in
time-based release strategy for the aggregator when there is a need to emit a partial result (or
discard the group) if a new message does not arrive for the MessageGroup within the timeout
which counts from the time the last message arrived. To set up a timeout which counts from
the time the MessageGroup was created see group-timeout-expression information. When a new
message arrives at the aggregator, any existing ScheduledFuture<?> for its MessageGroup is
canceled. If the ReleaseStrategy returns false (meaning do not release) and groupTimeout > 0,
a new task is scheduled to expire the group. We do not advise setting this attribute to zero (or
a negative value). Doing so effectively disables the aggregator, because every message group
is immediately completed. You can, however, conditionally set it to zero (or a negative value)
by using an expression. See group-timeout-expression for information. The action taken
during the completion depends on the ReleaseStrategy and the send-partial-group-on-expiry
attribute. See Aggregator and Group Timeout for more information. It is mutually exclusive
with 'group-timeout-expression' attribute.

The SpEL expression that evaluates to a groupTimeout with the MessageGroup as the #root
evaluation context object. Used for scheduling the MessageGroup to be forced complete. If the
expression evaluates to null, the completion is not scheduled. If it evaluates to zero, the group
is completed immediately on the current thread. In effect, this provides a dynamic group-
timeout property. As an example, if you wish to forcibly complete a MessageGroup after 10
seconds have elapsed since the time the group was created you might consider using the
following SpEL expression: timestamp + 10000 - T(System).currentTimeMillis() where
timestamp is provided by MessageGroup.getTimestamp() as the MessageGroup here is the #root
evaluation context object. Bear in mind however that the group creation time might differ
from the time of the first arrived message depending on other group expiration properties'
configuration. See group-timeout for more information. Mutually exclusive with 'group-
timeout' attribute.

When a group is completed due to a timeout (or by a MessageGroupStoreReaper), the group is
expired (completely removed) by default. Late arriving messages start a new group. You can
set this to false to complete the group but have its metadata remain so that late arriving
messages are discarded. Empty groups can be expired later using a MessageGroupStoreReaper
together with the empty-group-min-timeout attribute. It defaults to 'true'.

A TaskScheduler bean reference to schedule the MessageGroup to be forced complete if no new
message arrives for the MessageGroup within the groupTimeout. If not provided, the default
scheduler (taskScheduler) registered in the ApplicationContext (ThreadPoolTaskScheduler) is
used. This attribute does not apply if group-timeout or group-timeout-expression is not
specified.

Since version 4.1. It lets a transaction be started for the forceComplete operation. It is initiated
from a group-timeout(-expression) or by a MessageGroupStoreReaper and is not applied to the
normal add, release, and discard operations. Only this sub-element or <expire-advice-chain/>
is allowed.

Since version 4.1. It allows the configuration of any Advice for the forceComplete operation. It

./redis.pdf#redis-lock-registry
./gemfire.pdf#gemfire-lock-registry
./zookeeper.pdf#zk-lock-registry

is initiated from a group-timeout(-expression) or by a MessageGroupStoreReaper and is not
applied to the normal add, release, and discard operations. Only this sub-element or <expire-
transactional/> is allowed. A transaction Advice can also be configured here by using the
Spring tx namespace.

Expiring Groups

There are two attributes related to expiring (completely removing) groups. When a
group is expired, there is no record of it, and, if a new message arrives with the
same correlation, a new group is started. When a group is completed (without
expiry), the empty group remains and late-arriving messages are discarded. Empty
groups can be removed later by using a MessageGroupStoreReaper in combination
with the empty-group-min-timeout attribute.

expire-groups-upon-completion relates to “normal” completion when the
ReleaseStrategy releases the group. This defaults to false.

If a group is not completed normally but is released or discarded because of a
timeout, the group is normally expired. Since version 4.1, you can control this
behavior by using expire-groups-upon-timeout. It defaults to true for backwards

o compatibility.

When a group is timed out, the ReleaseStrategy is given one more
opportunity to release the group. If it does so and expire-groups-
upon-timeout is false, expiration is controlled by expire-groups-

o upon-completion. If the group is not released by the release
strategy during timeout, then the expiration is controlled by the
expire-groups-upon-timeout. Timed-out groups are either
discarded or a partial release occurs (based on send-partial-
result-on-expiry).

Since version 5.0, empty groups are also scheduled for removal after empty-group-
min-timeout. If expireGroupsUponCompletion == false and
minimumTimeoutForEmptyGroups > 0, the task to remove the group is scheduled when
normal or partial sequences release happens.

We generally recommend using a ref attribute if a custom aggregator handler implementation may
be referenced in other <aggregator> definitions. However, if a custom aggregator implementation is
only being used by a single definition of the <aggregator>, you can use an inner bean definition
(starting with version 1.0.3) to configure the aggregation POJO within the <aggregator> element, as
the following example shows:

<aggregator input-channel="input" method="sum" output-channel="output">
<beans:bean class="org.foo.PojoAggregator"/>
</aggregator>

121

Using both a ref attribute and an inner bean definition in the same <aggregator>
o configuration is not allowed, as it creates an ambiguous condition. In such cases,
an Exception is thrown.

The following example shows an implementation of the aggregator bean:

public class PojoAggregator {

public Long add(List<Long> results) {
long total = 01;
for (long partialResult: results) {

total += partialResult;

}
return total;

}

}

An implementation of the completion strategy bean for the preceding example might be as follows:

public class PojoReleaseStrategy {

public boolean canRelease(List<Long> numbers) {
int sum = 0;
for (long number: numbers) {
sum += number;

}
return sum >= maxValue;
}
}
o Wherever it makes sense to do so, the release strategy method and the aggregator
method can be combined into a single bean.

An implementation of the correlation strategy bean for the example above might be as follows:

public class PojoCorrelationStrategy {

public Long groupNumbersBylLastDigit(Long number) {
return number % 10;

}
}

122

The aggregator in the preceding example would group numbers by some criterion (in this case, the
remainder after dividing by ten) and hold the group until the sum of the numbers provided by the
payloads exceeds a certain value.

Wherever it makes sense to do so, the release strategy method, the correlation
strategy method, and the aggregator method can be combined in a single bean.
(Actually, all of them or any two of them can be combined.)

Aggregators and Spring Expression Language (SpEL)

Since Spring Integration 2.0, you can handle the various strategies (correlation, release, and
aggregation) with SpEL, which we recommend if the logic behind such a release strategy is
relatively simple. Suppose you have a legacy component that was designed to receive an array of
objects. We know that the default release strategy assembles all aggregated messages in the List.
Now we have two problems. First, we need to extract individual messages from the list. Second, we
need to extract the payload of each message and assemble the array of objects. The following
example solves both problems:

public String[] processRelease(List<Message<String>> messages){
List<String> stringlist = new ArraylList<String>();
for (Message<String> message : messages) {
stringlist.add(message.getPayload());

}
return stringlist.toArray(new String[]{});

However, with SpEL, such a requirement could actually be handled relatively easily with a one-line
expression, thus sparing you from writing a custom class and configuring it as a bean. The
following example shows how to do so:

<int:aggregator input-channel="aggChannel"
output-channel="replyChannel"
expression="#this.![payload].toArray()"/>

In the preceding configuration, we use a collection projection expression to assemble a new
collection from the payloads of all the messages in the list and then transform it to an array, thus
achieving the same result as the earlier Java code.

You can apply the same expression-based approach when dealing with custom release and
correlation strategies.

Instead of defining a bean for a custom CorrelationStrategy in the correlation-strategy attribute,
you can implement your simple correlation logic as a SpEL expression and configure it in the
correlation-strategy-expression attribute, as the following example shows:

123

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

correlation-strategy-expression="payload.person.id"

In the preceding example, we assume that the payload has a person attribute with an id, which is
going to be used to correlate messages.

Likewise, for the ReleaseStrategy, you can implement your release logic as a SpEL expression and
configure it in the release-strategy-expression attribute. The root object for evaluation context is
the MessageGroup itself. The List of messages can be referenced by using the message property of the
group within the expression.

o In releases prior to version 5.0, the root object was the collection of Message<?>, as
the previous example shows:

release-strategy-expression=""!messages.?[payload==5].empty"

In the preceding example, the root object of the SpEL evaluation context is the MessageGroup itself,
and you are stating that, as soon as there is a message with payload of 5 in this group, the group
should be released.

Aggregator and Group Timeout

Starting with version 4.0, two new mutually exclusive attributes have been introduced: group-
timeout and group-timeout-expression (see the earlier description). See Configuring an Aggregator
with XML. In some cases, you may need to emit the aggregator result (or discard the group) after a
timeout if the ReleaseStrategy does not release when the current message arrives. For this purpose,
the groupTimeout option lets scheduling the MessageGroup be forced to complete, as the following
example shows:

<aggregator input-channel="1input" output-channel="output"
send-partial-result-on-expiry="true"
group-timeout-expression="size() ge 2 ? 10000 : -1"
release-strategy-expression="messages[@].headers.sequenceNumber ==
messages[0@].headers.sequenceSize"/>

With this example, the normal release is possible if the aggregator receives the last message in
sequence as defined by the release-strategy-expression. If that specific message does not arrive,
the groupTimeout forces the group to complete after ten seconds, as long as the group contains at
least two Messages.

The results of forcing the group to complete depends on the ReleaseStrategy and the send-partial-
result-on-expiry. First, the release strategy is again consulted to see if a normal release is to be

124

made. While the group has not changed, the ReleaseStrategy can decide to release the group at this
time. If the release strategy still does not release the group, it is expired. If send-partial-result-on-
expiry is true, existing messages in the (partial) MessageGroup are released as a normal aggregator
reply message to the output-channel. Otherwise, it is discarded.

There is a difference between groupTimeout behavior and MessageGroupStoreReaper (see Configuring
an Aggregator with XML). The reaper initiates forced completion for all MessageGroup s in the
MessageGroupStore periodically. The groupTimeout does it for each MessageGroup individually if a new
message does not arrive during the groupTimeout. Also, the reaper can be used to remove empty
groups (empty groups are retained in order to discard late messages if expire-groups-upon-
completion is false).

Configuring an Aggregator with Annotations

The following example shows an aggregator configured with annotations:

public class Waiter {

@
public Delivery aggregatingMethod(List<OrderItem> items) {

}
@)

public boolean releaseChecker(List<Message<?>> messages) {

}

®
public String correlateBy(OrderItem item) {

}
}

® An annotation indicating that this method should be used as an aggregator. It must be
specified if this class is used as an aggregator.

@ An annotation indicating that this method is used as the release strategy of an aggregator. If
not present on any method, the aggregator uses the SimpleSequenceSizeReleaseStrateqgy.

® An annotation indicating that this method should be used as the correlation strategy of an
aggregator. If no correlation strategy is indicated, the aggregator uses the
HeaderAttributeCorrelationStrategy based on CORRELATION_ID.

All of the configuration options provided by the XML element are also available for the @Aggregator
annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is defined

125

on the class, detected automatically through classpath scanning.

Annotation configuration (@Aggregator and others) for the Aggregator component covers only
simple use cases, where most default options are sufficient. If you need more control over those
options when using annotation configuration, consider using a @Bean definition for the
AggregatingMessageHandler and mark its @Bean method with @ServiceActivator, as the following
example shows:

(inputChannel = "aggregatorChannel™)

public MessageHandler aggregator(MessageGroupStore jdbcMessageGroupStore) {
AggregatingMessageHandler aggregator =
new AggregatingMessageHandler (new
DefaultAggregatingMessageGroupProcessor(),
jdbcMessageGroupStore);
aggregator.setOutputChannel(resultsChannel());
aggregator.setGroupTimeoutExpression(new ValueExpression<>(500L));
aggregator.setTaskScheduler(this.taskScheduler);
return aggregator;

See Programming Model and Annotations on @Bean Methods for more information.

o Starting with version 4.2, the AggregatorFactoryBean is available to simplify Java
configuration for the AggregatingMessageHandler.

8.4.4. Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires
decisions to be made based on a group of messages that have arrived over a period of time, all with
the same correlation key. The design of the interfaces in the stateful patterns (such as
ReleaseStrategy) is driven by the principle that the components (whether defined by the framework
or by a user) should be able to remain stateless. All state is carried by the MessageGroup and its
management is delegated to the MessageGroupStore. The MessageGroupStore interface is defined as
follows:

126

./configuration.pdf#annotations_on_beans
./configuration.pdf#annotations_on_beans
./configuration.pdf#annotations_on_beans

public interface MessageGroupStore {
int getMessageCountForAllMessageGroups();
int getMarkedMessageCountForAllMessageGroups();
int getMessageGroupCount();
MessageGroup getMessageGroup(Object groupld);
MessageGroup addMessageToGroup(Object groupld, Message<?> message);
MessageGroup markMessageGroup(MessageGroup group);
MessageGroup removeMessageFromGroup(Object key, Message<?> messageToRemove);
MessageGroup markMessageFromGroup(Object key, Message<?> messageToMark);
void removeMessageGroup(Object groupld);
void registerMessageGroupExpiryCallback(MessageGroupCallback callback);

int expireMessageGroups(long timeout);

For more information, see the Javadoc.

The MessageGroupStore accumulates state information in MessageGroups while waiting for a release
strategy to be triggered, and that event might not ever happen. So, to prevent stale messages from
lingering, and for volatile stores to provide a hook for cleaning up when the application shuts
down, the MessageGroupStore lets you register callbacks to apply to its MessageGroups when they
expire. The interface is very straightforward, as the following listing shows:

public interface MessageGroupCallback {

void execute(MessageGroupStore messageGroupStore, MessageGroup group);

The callback has direct access to the store and the message group so that it can manage the
persistent state (for example, by entirely removing the group from the store).

The MessageGroupStore maintains a list of these callbacks, which it applies, on demand, to all
messages whose timestamps are earlier than a time supplied as a parameter (see the
registerMessageGroupExpiryCallback(..) and expireMessageGroups(..) methods, described earlier).

127

https://docs.spring.io/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html

For more detail, see Managing State in an Aggregator: MessageGroupStore.

It is important not to use the same MessageGroupStore instance in different
aggregator components, when you intend to rely on the expireMessageGroups
functionality. Every AbstractCorrelatingMessageHandler registers its own
MessageGroupCallback based on the forceComplete() callback. This way each group
for expiration may be completed or discarded by the wrong aggregator. Starting
with version 5.0.10, a UniqueExpiryCallback is used from the

o AbstractCorrelatingMessageHandler for the registration callback in the
MessageGroupStore. The MessageGroupStore, in turn, checks for presence an instance
of this class and logs an error with an appropriate message if one is already
present in the callbacks set. This way the Framework disallows usage of the
MessageGroupStore instance in different aggregators/resequencers to avoid the
mentioned side effect of expiration the groups not created by the particular
correlation handler.

You can call the expireMessageGroups method with a timeout value. Any message older than the
current time minus this value is expired and has the callbacks applied. Thus, it is the user of the
store that defines what is meant by message group “expiry”.

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the
form of a MessageGroupStoreReaper, as the following example shows:

<bean id="reaper" class="org...MessageGroupStoreReaper">
<property name="messageGroupStore" ref="messageStore"/>
<property name="timeout" value="30000"/>

</bean>

<task:scheduled-tasks scheduler="scheduler">
<task:scheduled ref="reaper" method="run" fixed-rate="10000"/>
</task:scheduled-tasks>

The reaper is a Runnable. In the preceding example, the message group store’s expire method is
called every ten seconds. The timeout itself is 30 seconds.

It is important to understand that the ‘'timeout' property of
MessageGroupStoreReaper is an approximate value and is impacted by the the rate of
the task scheduler, since this property is only checked on the next scheduled
execution of the MessageGroupStoreReaper task. For example, if the timeout is set for

o ten minutes but the MessageGroupStoreReaper task is scheduled to run every hour
and the last execution of the MessageGroupStoreReaper task happened one minute
before the timeout, the MessageGroup does not expire for the next 59 minutes.
Consequently, we recommend setting the rate to be at least equal to the value of
the timeout or shorter.

In addition to the reaper, the expiry callbacks are invoked when the application shuts down

128

through a lifecycle callback in the AbstractCorrelatingMessageHandler.

The AbstractCorrelatingMessageHandler registers its own expiry callback, and this is the link with
the boolean flag send-partial-result-on-expiry in the XML configuration of the aggregator. If the
flag is set to true, then, when the expiry callback is invoked, any unmarked messages in groups that
are not yet released can be sent on to the output channel.

When a shared MessageStore is used for different correlation endpoints, you must
configure a proper CorrelationStrategy to ensure uniqueness for group IDs.
Otherwise, unexpected behavior may happen when one correlation endpoint
releases or expire messages from others. Messages with the same correlation key
are stored in the same message group.

o Some MessageStore implementations allow using the same physical resources, by
partitioning the data. For example, the JdbcMessageStore has a region property, and
the MongoDbMessageStore has a collectionName property.

For more information about the MessageStore interface and its implementations,
see Message Store.

8.4.5. Flux Aggregator

In version 5.2, the FluxAggregatorMessageHandler component has been introduced. It is based on the
Project Reactor Flux.groupBy() and Flux.window() operators. The incoming messages are emitted
into the FluxSink initiated by the Flux.create() in the constructor of this component. If the
outputChannel is not provided or it is not an instance of ReactiveStreamsSubscribableChannel, the
subscription to the main Flux is done from the Lifecycle.start() implementation. Otherwise it is
postponed to the subscription done by the ReactiveStreamsSubscribableChannel implementation. The
messages are grouped by the Flux.groupBy() using a CorrelationStrategy for the group key. By
default, the IntegrationMessageHeaderAccessor.CORRELATION_ID header of the message is consulted.

By default every closed window is released as a Flux in payload of a message to produce. This
message contains all the headers from the first message in the window. This Flux in the output
message payload must be subscribed and processed downstream. Such a logic can be customized
(or superseded) by the setCombineFunction(Function<Flux<Message<?>>, Mono<Message<?>>>)
configuration option of the FluxAggregatorMessageHandler. For example, if we would like to have a
List of payloads in the final message, we can configure a Flux.collectList() like this:

fluxAggregatorMessageHandler.setCombineFunction(
(messageFlux) ->
messageFlux
.map(Message: :getPayload)
.collectList()
.map(GenericMessage::new));

There are several options in the FluxAggregatorMessageHandler to select an appropriate window

129

./message-store.pdf#message-store

strategy:

* setBoundaryTrigger(Predicate<Message<?>>) - is propagated to the Flux.windowUntil() operator.
See its JavaDocs for more information. Has a precedence over all other window options.

» setWindowSize(int) and setWindowSizeFunction(Function<Message<?>, Integer>) - is propagated
to the Flux.window(int) or windowTimeout(int, Duration). By default a window size is calculated
from the first message in group and its IntegrationMessageHeaderAccessor.SEQUENCE_SIZE header.

* setWindowTimespan(Duration) - is propagated to the Flux.window(Duration) or windowTimeout(int,
Duration) depending in the window size configuration.

» setWindowConfigurer(Function<Flux<Message<?>>, Flux<Flux<Message<?>>>>) - a function to apply
a transformation into the grouped fluxes for any custom window operation not covered by the
exposed options.

Since this component is a MessageHandler implementation it can simply be used as a @Bean definition
together with a @ServiceActivator messaging annotation. With Java DSL it can be used from the
.handle() EIP-method. The sample below demonstrates how we can register an IntegrationFlow at
runtime and how a FluxAggregatorMessageHandler can be correlated with a splitter upstream:

IntegrationFlow fluxFlow =
(flow) -> flow
.split()
.channel(MessageChannels. flux())
.handle(new FluxAggregatorMessageHandler());

IntegrationFlowContext.IntegrationFlowRegistration registration =
this.integrationFlowContext.registration(fluxFlow)
.register();

("unchecked")
Flux<Message<?>> window =
registration.getMessagingTemplate()
.convertSendAndReceive(new Integer[] { @, 1, 2, 3, 4, 5, 6, 7, 8,
9 }, Flux.class);

8.5. Resequencer

The resequencer is related to the aggregator but serves a different purpose. While the aggregator
combines messages, the resequencer passes messages through without changing them.

8.5.1. Functionality

The resequencer works in a similar way to the aggregator, in the sense that it uses the
CORRELATION_ID to store messages in groups. The difference is that the Resequencer does not process
the messages in any way. Instead, it releases them in the order of their SEQUENCE_NUMBER header
values.

130

With respect to that, you can opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SIZE, and other possibilities) or as soon as a valid sequence is available.
(We cover what we mean by "a valid sequence” later in this chapter.)

The resequencer is intended to resequence relatively short sequences of messages
o with small gaps. If you have a large number of disjoint sequences with many gaps,
you may experience performance issues.

8.5.2. Configuring a Resequencer
See Aggregators and Resequencers for configuring a resequencer in Java DSL.
Configuring a resequencer requires only including the appropriate element in XML.

The following example shows a resequencer configuration:

<int:channel id="inputChannel"/>
<int:channel id="outputChannel"/>

<int:resequencer id="completelyDefinedResequencer" @
input-channel="inputChannel" @
output-channel="outputChannel"” ®
discard-channel="discardChannel" @
release-partial-sequences="true" ®
message-store="messageStore" ®
send-partial-result-on-expiry="true" @
send-timeout="86420000"
correlation-strategy="correlationStrategyBean" @©
correlation-strategy-method="correlate" @
correlation-strategy-expression="headers['something']" @
release-strategy="releaseStrategyBean" ®
release-strategy-method="release" ®
release-strategy-expression="size() == 10"
empty-group-min-timeout="60000" @®

lock-registry="1lockRegistry"

group-timeout="60000" @
group-timeout-expression="size() ge 2 7 100 : -1"
scheduler="taskScheduler" />
expire-group-upon-timeout="false" /> @

@ The id of the resequencer is optional.
@ The input channel of the resequencer. Required.
® The channel to which the resequencer sends the reordered messages. Optional.

@ The channel to which the resequencer sends the messages that timed out (if send-partial-

131

./dsl.pdf#java-dsl-aggregators

result-on-timeout is set to false). Optional.

® Whether to send out ordered sequences as soon as they are available or only after the
whole message group arrives. Optional. (The default is false.)

® A reference to a MessageGroupStore that can be used to store groups of messages under their
correlation key until they are complete. Optional. (The default is a volatile in-memory
store.)

@ Whether, upon the expiration of the group, the ordered group should be sent out (even if
some of the messages are missing). Optional. (The default is false.) See Managing State in an
Aggregator: MessageGroupStore.

The timeout interval to wait when sending a reply Message to the output-channel or discard-
channel. Defaults to -1, which blocks indefinitely. It is applied only if the output channel has
some 'sending' limitations, such as a QueueChannel with a fixed 'capacity'. In this case, a
MessageDeliveryException is thrown. The send-timeout is ignored for
AbstractSubscribableChannel implementations. For group-timeout(-expression), the
MessageDeliveryException from the scheduled expire task leads this task to be rescheduled.
Optional.

© A reference to a bean that implements the message correlation (grouping) algorithm. The
bean can be an implementation of the CorrelationStrategy interface or a POJO. In the latter
case, the correlation-strategy-method attribute must also be defined. Optional. (By default,
the aggregator uses the IntegrationMessageHeaderAccessor.CORRELATION_ID header.)

@ A method that is defined on the bean referenced by correlation-strategy and that
implements the correlation decision algorithm. Optional, with restrictions (requires
correlation-strategy to be present).

@ A SpEL expression representing the correlation strategy. Example: "headers['something']".
Only one of correlation-strategy or correlation-strategy-expression is allowed.

@ A reference to a bean that implements the release strategy. The bean can be an
implementation of the ReleaseStrategy interface or a POJO. In the latter case, the release-
strategy-method attribute must also be defined. Optional (by default, the aggregator will use
the IntegrationMessageHeaderAccessor.SEQUENCE_SIZE header attribute).

® A method that is defined on the bean referenced by release-strategy and that implements
the completion decision algorithm. Optional, with restrictions (requires release-strategy to
be present).

A SpEL expression representing the release strategy. The root object for the expression is a
MessageGroup. Example: "size() == 5". Only one of release-strategy or release-strategy-
expression is allowed.

@® Only applies if a MessageGroupStoreReaper is configured for the <resequencer> MessageStore.
By default, when a MessageGroupStoreReaper is configured to expire partial groups, empty
groups are also removed. Empty groups exist after a group is released normally. This is to
enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups
are then not removed from the MessageStore until they have not been modified for at least
this number of milliseconds. Note that the actual time to expire an empty group is also
affected by the reaper’s timeout property, and it could be as much as this value plus the

132

./aggregator.pdf#reaper
./aggregator.pdf#reaper
./aggregator.pdf#reaper

timeout.
See Configuring an Aggregator with XML.
@ See Configuring an Aggregator with XML.
See Configuring an Aggregator with XML.
See Configuring an Aggregator with XML.

@ By default, when a group is completed due to a timeout (or by a MessageGroupStoreReaper),
the empty group’s metadata is retained. Late arriving messages are immediately discarded.
Set this to true to remove the group completely. Then, late arriving messages start a new
group and are not be discarded until the group again times out. The new group is never
released normally because of the “hole” in the sequence range that caused the timeout.
Empty groups can be expired (completely removed) later by wusing a
MessageGroupStoreReaper together with the empty-group-min-timeout attribute. Starting with
version 5.0, empty groups are also scheduled for removal after the empty-group-min-timeout
elapses. The default is 'false'.

o Since there is no custom behavior to be implemented in Java classes for
resequencers, there is no annotation support for it.

8.6. Message Handler Chain

The MessageHandlerChain is an implementation of MessageHandler that can be configured as a single
message endpoint while actually delegating to a chain of other handlers, such as filters,
transformers, splitters, and so on. When several handlers need to be connected in a fixed, linear
progression, this can lead to a much simpler configuration. For example, it is fairly common to
provide a transformer before other components. Similarly, when you provide a filter before some
other component in a chain, you essentially create a selective consumer. In either case, the chain
requires only a single input-channel and a single output-channel, eliminating the need to define
channels for each individual component.

Spring Integration’s Filter provides a boolean property:
throwExceptionOnRejection. When you provide multiple selective consumers on the
same point-to-point channel with different acceptance criteria, you should set this
value 'true' (the default is false) so that the dispatcher knows that the message was
rejected and, as a result, tries to pass the message on to other subscribers. If the

(;) exception were not thrown, it would appear to the dispatcher that the message
had been passed on successfully even though the filter had dropped the message to
prevent further processing. If you do indeed want to “drop” the messages, the
filter’s 'discard-channel' might be useful, since it does give you a chance to
perform some operation with the dropped message (such as sending it to a JMS
queue or writing it to a log).

The handler chain simplifies configuration while internally maintaining the same degree of loose

coupling between components, and it is trivial to modify the configuration if at some point a non-
linear arrangement is required.

133

./aggregator.pdf#aggregator-xml
./aggregator.pdf#aggregator-xml
./aggregator.pdf#aggregator-xml
./aggregator.pdf#aggregator-xml
https://www.enterpriseintegrationpatterns.com/MessageSelector.html

Internally, the chain is expanded into a linear setup of the listed endpoints, separated by
anonymous channels. The reply channel header is not taken into account within the chain. Only
after the last handler is invoked is the resulting message forwarded to the reply channel or the
chain’s output channel. Because of this setup, all handlers except the last must implement the
MessageProducer interface (which provides a 'setOutputChannel()' method). If the outputChannel on
the MessageHandlerChain is set, the last handler needs only an output channel.

As with other endpoints, the output-channel is optional. If there is a reply message

o at the end of the chain, the output-channel takes precedence. However, if it is not
available, the chain handler checks for a reply channel header on the inbound
message as a fallback.

In most cases, you need not implement MessageHandler yourself. The next section focuses on
namespace support for the chain element. Most Spring Integration endpoints, such as service
activators and transformers, are suitable for use within a MessageHandlerChain.

8.6.1. Configuring a Chain

The <chain> element provides an input-channel attribute. If the last element in the chain is capable
of producing reply messages (optional), it also supports an output-channel attribute. The sub-
elements are then filters, transformers, splitters, and service-activators. The last element may also
be a router or an outbound channel adapter. The following example shows a chain definition:

<int:chain input-channel="input" output-channel="output">
<int:filter ref="someSelector" throw-exception-on-rejection="true"/>
<int:header-enricher>
<int:header name="thing1" value="thing2"/>
</int:header-enricher>
<int:service-activator ref="someService" method="someMethod"/>
</int:chain>

The <header-enricher> element used in the preceding example sets a message header named thing1
with a value of thing2 on the message. A header enricher is a specialization of Transformer that
touches only header values. You could obtain the same result by implementing a MessageHandler
that did the header modifications and wiring that as a bean, but the header-enricher is a simpler
option.

The <chain> can be configured as the last 'black-box' consumer of the message flow. For this
solution, you can to put it at the end of the <chain> some <outbound-channel-adapter>, as the
following example shows:

134

<int:chain input-channel="input">

<int-xml:marshalling-transformer marshaller="marshaller" result-type=
"StringResult" />

<int:service-activator ref="someService" method="someMethod"/>

<int:header-enricher>

<int:header name="thing1" value="thing2"/>

</int:header-enricher>

<int:logging-channel-adapter level="INFO" log-full-message="true"/>
</int:chain>

Disallowed Attributes and Elements

Certain attributes, such as order and input-channel are not allowed to be specified
on components used within a chain. The same is true for the poller sub-element.

For the Spring Integration core components, the XML schema itself enforces some

o of these constraints. However, for non-core components or your own custom
components, these constraints are enforced by the XML namespace parser, not by
the XML schema.

These XML namespace parser constraints were added with Spring Integration 2.2.
If you try to use disallowed attributes and elements, the XML namespace parser
throws a BeanDefinitionParsingException.

8.6.2. Using the 'id' Attribute

Beginning with Spring Integration 3.0, if a chain element is given an id attribute, the bean name for
the element is a combination of the chain’s id and the id of the element itself. Elements without id
attributes are not registered as beans, but each one is given a componentName that includes the chain
id. Consider the following example:

<int:chain id="somethingChain" input-channel="1input">
<int:service-activator id="somethingService" ref="someService" method=
"someMethod" />
<int:object-to-json-transformer/>
</int:chain>

In the preceding example:

* The <chain> root element has an id of 'somethingChain'. Consequently, the AbstractEndpoint
implementation (PollingConsumer or EventDrivenConsumer, depending on the input-channel type)
bean takes this value as its bean name.

* The MessageHandlerChain bean acquires a bean alias ('somethingChain.handler'), which allows
direct access to this bean from the BeanFactory.

135

* The <service-activator> is not a fully fledged messaging endpoint (it is not a PollingConsumer or
EventDrivenConsumer). It is a MessageHandler within the <chain>. In this case, the bean name
registered with the BeanFactory is 'somethingChain$child.somethingService.handler'.

* The componentName of this ServiceActivatingHandler takes the same value but without the
"handler' suffix. It becomes 'somethingChain$child.somethingService'.

* The last <chain> sub-component, <object-to-json-transformer>, does not have an id attribute. Its
componentName is based on its position in the <chain>. In this case, it is 'somethingChain$child#1'.
(The final element of the name is the order within the chain, beginning with '#0'). Note, this
transformer is not registered as a bean within the application context, so it does not get a
beanName. However its componentName has a value that is useful for logging and other purposes.

The id attribute for <chain> elements lets them be eligible for JMX export, and they are trackable in
the message history. You can access them from the BeanFactory by using the appropriate bean
name, as discussed earlier.

It is useful to provide an explicit id attribute on <chain> elements to simplify the
@ identification of sub-components in logs and to provide access to them from the
t BeanFactory etc.

8.6.3. Calling a Chain from within a Chain

Sometimes, you need to make a nested call to another chain from within a chain and then come
back and continue execution within the original chain. To accomplish this, you can use a messaging
gateway by including a <gateway> element, as the following example shows:

136

./jmx.pdf#jmx-mbean-exporter
./message-history.pdf#message-history

<int:chain id="main-chain" input-channel="in" output-channel="out">
<int:header-enricher>
<int:header name="name" value="Many" />
</int:header-enricher>
<int:service-activator>
<bean class="org.foo.SampleService" />
</int:service-activator>
<int:gateway request-channel="inputA"/>
</int:chain>

<int:chain id="nested-chain-a" input-channel="1inputA">
<int:header-enricher>
<int:header name="name" value="Moe" />
</int:header-enricher>
<int:gateway request-channel="1inputB"/>
<int:service-activator>
<bean class="org.foo.SampleService" />
</int:service-activator>
</int:chain>

<int:chain id="nested-chain-b" input-channel="1inputB">
<int:header-enricher>
<int:header name="name" value="Jack" />
</int:header-enricher>
<int:service-activator>
<bean class="org.foo.SampleService" />
</int:service-activator>
</int:chain>

In the preceding example, nested-chain-a is called at the end of main-chain processing by the
'gateway' element configured there. While in nested-chain-a, a call to a nested-chain-b is made after
header enrichment. Then the flow comes back to finish execution in nested-chain-b. Finally, the
flow returns to main-chain. When the nested version of a <gateway> element is defined in the chain,
it does not require the service-interface attribute. Instead, it takes the message in its current state
and places it on the channel defined in the request-channel attribute. When the downstream flow
initiated by that gateway completes, a Message is returned to the gateway and continues its journey
within the current chain.

8.7. Scatter-Gather

Starting with version 4.1, Spring Integration provides an implementation of the scatter-gather
enterprise integration pattern. It is a compound endpoint for which the goal is to send a message to
the recipients and aggregate the results. As noted in Enterprise Integration Patterns, it is a
component for scenarios such as “best quote”, where we need to request information from several
suppliers and decide which one provides us with the best term for the requested item.

Previously, the pattern could be configured by using discrete components. This enhancement brings

137

https://www.enterpriseintegrationpatterns.com/BroadcastAggregate.html
https://www.enterpriseintegrationpatterns.com/

more convenient configuration.

The ScatterGatherHandler is a request-reply endpoint that combines a PublishSubscribeChannel (or a
RecipientListRouter) and an AggregatingMessageHandler. The request message is sent to the scatter
channel, and the ScatterGatherHandler waits for the reply that the aggregator sends to the
outputChannel.

8.7.1. Functionality

The Scatter-Gather pattern suggests two scenarios: “auction” and “distribution”. In both cases, the
aggregation function is the same and provides all the options available for the
AggregatingMessageHandler. (Actually, the ScatterGatherHandler requires only an
AggregatingMessageHandler as a constructor argument.) See Aggregator for more information.

Auction

The auction Scatter-Gather variant uses “publish-subscribe” logic for the request message, where
the “scatter” channel is a PublishSubscribeChannel with apply-sequence="true". However, this
channel can be any MessageChannel implementation (as is the case with the request-channel in the
ContentEnricher —see Content Enricher). However, in this case, you should create your own custom
correlationStrategy for the aggregation function.

Distribution

The distribution Scatter-Gather variant 1is based on the RecipientListRouter (see
RecipientListRouter) with all available options for the RecipientlListRouter. This is the second
ScatterGatherHandler constructor argument. If you want to rely on only the default
correlationStrategy for the recipient-list-router and the aggregator, you should specify apply-
sequence="true". Otherwise, you should supply a custom correlationStrategy for the aggregator.
Unlike the PublishSubscribeChannel variant (the auction variant), having a recipient-list-router
selector option lets filter target suppliers based on the message. With apply-sequence="true", the
default sequenceSize is supplied, and the aggregator can release the group correctly. The
distribution option is mutually exclusive with the auction option.

For both the auction and the distribution variants, the request (scatter) message is enriched with
the gatherResultChannel header to wait for a reply message from the aggregator.

By default, all suppliers should send their result to the replyChannel header (usually by omitting the
output-channel from the ultimate endpoint). However, the gatherChannel option is also provided,
letting suppliers send their reply to that channel for the aggregation.

8.7.2. Configuring a Scatter-Gather Endpoint

The following example shows Java configuration for the bean definition for Scatter-Gather:

138

./aggregator.pdf#aggregator
./content-enrichment.pdf#content-enricher
./router.pdf#router-implementations-recipientlistrouter

public MessageHandler distributor() {
RecipientListRouter router = new RecipientListRouter();
router.setApplySequence(true);
router.setChannels(Arrays.asList(distributionChannel1(), distributionChannel2
OF
distributionChannel3()));
return router;

public MessageHandler gatherer() {
return new AggregatingMessageHandler (
new ExpressionEvaluatingMessageGroupProcessor("~[payload gt 5] ?: -1D

"),
new SimpleMessageStore(),
new HeaderAttributeCorrelationStrategy(
IntegrationMessageHeaderAccessor.CORRELATION_ID),
new ExpressionEvaluatingReleaseStrategy("size() == 2"));
+

(inputChannel = "distributionChannel™)
public MessageHandler scatterGatherDistribution() {
ScatterGatherHandler handler = new ScatterGatherHandler(distributor(),
gatherer());
handler.setOutputChannel(output());
return handler;

In the preceding example, we configure the RecipientListRouter distributor bean with
applySequence="true" and the list of recipient channels. The next bean is for an
AggregatingMessageHandler. Finally, we inject both those beans into the ScatterGatherHandler bean
definition and mark it as a @ServiceActivator to wire the scatter-gather component into the
integration flow.

The following example shows how to configure the <scatter-gather> endpoint by using the XML
namespace:

139

<scatter-gather
i¢="" @
auto-startup="" @
input-channel="" &
output-channel="" @
scatter-channel="" ®
gather-channel="" ®
order="" @
phase=""
send-timeout="" @©
gather-timeout=""
requires-reply="" > @
<scatterer/> @
<gatherer/> ®
</scatter-gather>

@ The id of the endpoint. The ScatterGatherHandler bean is registered with an alias of id +
".handler'. The RecipientListRouter bean is registered with an alias of id + '.scatterer'.
The AggregatingMessageHandler‘bean is registered with an alias of ‘id + '.gatherer'.
Optional. (The BeanFactory generates a default id value.)

@ Lifecycle attribute signaling whether the endpoint should be started during application
context initialization. In addition, the ScatterGatherHandler also implements Lifecycle and
starts and stops gatherEndpoint, which is created internally if a gather-channel is provided.
Optional. (The default is true.)

® The channel on which to receive request messages to handle them in the
ScatterGatherHandler. Required.

@ The channel to which the ScatterGatherHandler sends the aggregation results. Optional.
(Incoming messages can specify a reply channel themselves in the replyChannel message
header).

® The channel to which to send the scatter message for the auction scenario. Optional.
Mutually exclusive with the <scatterer> sub-element.

® The channel on which to receive replies from each supplier for the aggregation. It is used as
the replyChannel header in the scatter message. Optional. By default, the
FixedSubscriberChannel is created.

@ The order of this component when more than one handler is subscribed to the same
DirectChannel (use for load balancing purposes). Optional.

Specifies the phase in which the endpoint should be started and stopped. The startup order
proceeds from lowest to highest, and the shutdown order is from highest to lowest. By
default, this value is Integer.MAX_VALUE, meaning that this container starts as late as possible
and stops as soon as possible. Optional.

© The timeout interval to wait when sending a reply Message to the output-channel. By default,
the send blocks for one second. It applies only if the output channel has some 'sending'
limitations — for example, a QueueChannel with a fixed 'capacity’ that is full. In this case, a
MessageDeliveryException is thrown. The send-timeout is ignored for
AbstractSubscribableChannel implementations. For group-timeout(-expression), the

140

MessageDeliveryException from the scheduled expire task leads this task to be rescheduled.
Optional.

Lets you specify how long the scatter-gather waits for the reply message before returning.
By default, it waits indefinitely. 'null' is returned if the reply times out. Optional. It defaults
to -1, meaning to wait indefinitely.

@ Specifies whether the scatter-gather must return a non-null value. This value is true by
default. Consequently, a ReplyRequiredException is thrown when the underlying aggregator
returns a null value after gather-timeout. Note, if null is a possibility, the gather-timeout
should be specified to avoid an indefinite wait.

@ The <recipient-list-router> options. Optional. Mutually exclusive with scatter-channel
attribute.

@ The <aggregator> options. Required.

8.7.3. Error Handling

Since Scatter-Gather is a multi request-reply component, error handling has some extra complexity.
In some cases, it is better to just catch and ignore downstream exceptions if the ReleaseStrategy
allows the process to finish with fewer replies than requests. In other cases something like a
“compensation message” should be considered for returning from sub-flow, when an error
happens.

Every async sub-flow should be configured with a errorChannel header for the proper error
message sending from the MessagePublishingErrorHandler. Otherwise, an error will be sent to the
global errorChannel with the common error handling logic. See Error Handling for more
information about async error processing.

Synchronous flows may use an ExpressionEvaluatingRequestHandlerAdvice for ignoring the
exception or returning a compensation message. When an exception is thrown from one of the sub-
flows to the ScatterGatherHandler, it is just re-thrown to upstream. This way all other sub-flows will
work for nothing and their replies are going to be ignored in the ScatterGatherHandler. This might
be an expected behavior sometimes, but in most cases it would be better to handle the error in the
particular sub-flow without impacting all others and the expectations in the gatherer.

Starting with version 5.1.3, the ScatterGatherHandler is supplied with the errorChannelName option. It
is populated to the errorChannel header of the scatter message and is used in the when async error
happens or can be used in the regular synchronous sub-flow for directly sending an error message.

The sample configuration below demonstrates async error handling by returning a compensation
message:

141

./error-handling.pdf#error-handling

public IntegrationFlow scatterGatherAndExecutorChannelSubFlow(TaskExecutor
taskExecutor) {
return f -> f

.scatterGather(
scatterer -> scatterer
.applySequence(true)
.recipientFlow(f1 -> f1.transform(p -> "Sub-flow#1"))
.recipientFlow(f2 -> f2
.channel(c -> c.executor(taskExecutor))
.transform(p -> {
throw new RuntimeException("Sub-flow#2");
1),
null,

s -> s.errorChannel("scatterGatherErrorChannel"));

(inputChannel = "scatterGatherErrorChannel")
public Message<?> processAsyncScatterError(MessagingException payload) {
return MessageBuilder.withPayload(payload.getCause().getCause())
.copyHeaders(payload.getFailedMessage().getHeaders())
.build();

To produce a proper reply, we have to copy headers (including replyChannel and errorChannel) from
the failedMessage of the MessagingException that has been sent to the scatterGatherErrorChannel by
the MessagePublishingErrorHandler. This way the target exception is returned to the gatherer of the
ScatterGatherHandler for reply messages group completion. Such an exception payload can be
filtered out in the MessageGroupProcessor of the gatherer or processed other way downstream, after
the scatter-gather endpoint.

Before sending scattering results to the gatherer, ScatterGatherHandler reinstates
the request message headers, including reply and error channels if any. This way
errors from the AggregatingMessageHandler are going to be propagated to the caller,
even if an async hand off is applied in scatter recipient subflows. For successful

o operation, a gatherResultChannel, originalReplyChannel and originalErrorChannel
headers must be transferred back to replies from scatter recipient subflows. In this
case a reasonable, finite gatherTimeout must be configured for the
ScatterGatherHandler. Otherwise it is going to be blocked waiting for a reply from
the gatherer forever, by default.

8.8. Thread Barrier

Sometimes, we need to suspend a message flow thread until some other asynchronous event
occurs. For example, consider an HTTP request that publishes a message to RabbitMQ. We might
wish to not reply to the user until the RabbitMQ broker has issued an acknowledgment that the

142

message was received.

In version 4.2, Spring Integration introduced the <barrier/> component for this purpose. The
underlying MessageHandler is the BarrierMessageHandler. This class also implements
MessageTriggerAction, in which a message passed to the trigger() method releases a corresponding
thread in the handleRequestMessage() method (if present).

The suspended thread and trigger thread are correlated by invoking a CorrelationStrategy on the
messages. When a message is sent to the input-channel, the thread is suspended for up to timeout
milliseconds, waiting for a corresponding trigger message. The default correlation strategy uses the
IntegrationMessageHeaderAccessor.CORRELATION_ID header. When a trigger message arrives with the
same correlation, the thread is released. The message sent to the output-channel after release is
constructed by using a MessageGroupProcessor. By default, the message is a Collection<?> of the two
payloads, and the headers are merged by using a DefaultAggregatingMessageGroupProcessor.

If the trigger() method is invoked first (or after the main thread times out), it is

o suspended for up to timeout waiting for the suspending message to arrive. If you
do not want to suspend the trigger thread, consider handing off to a TaskExecutor
instead so that its thread is suspended instead.

The requires-reply property determines the action to take if the suspended thread times out before
the trigger message arrives. By default, it is false, which means the endpoint returns null, the flow
ends, and the thread returns to the caller. When true, a ReplyRequiredException is thrown.

You can call the trigger() method programmatically (obtain the bean reference by using the name,
barrier.handler —where barrier is the bean name of the barrier endpoint). Alternatively, you can
configure an <outbound-channel-adapter/> to trigger the release.

Only one thread can be suspended with the same correlation. The same
correlation can be used multiple times but only once concurrently. An exception is
thrown if a second thread arrives with the same correlation.

The following example shows how to use a custom header for correlation:

<int:barrier id="barrier1" input-channel="in" output-channel="out"
correlation-strategy-expression="headers['myHeader"']"
output-processor="myOutputProcessor"
discard-channel="1ateTriggerChannel"
timeout="10000">

</int:barrier>

<int:outbound-channel-adapter channel="release" ref="barrier1.handler" method="
trigger" />

Depending on which one has a message arrive first, either the thread sending a message to in or the
thread sending a message to release waits for up to ten seconds until the other message arrives.
When the message is released, the out channel is sent a message that combines the result of
invoking the custom MessageGroupProcessor bean, named myOutputProcessor. If the main thread

143

times out and a trigger arrives later, you can configure a discard channel to which the late trigger is
sent. The following example shows the Java configuration to do so:

public class Config {
(inputChannel="1in")
public BarrierMessageHandler barrier() {
BarrierMessageHandler barrier = new BarrierMessageHandler(10000);
barrier.setOutputChannel(out());
barrier.setDiscardChannel(lateTriggers());
return barrier;
(inputChannel="release")
public MessageHandler releaser() {

return new MessageHandler() {

public void handleMessage(Message<?> message) throws MessagingException {
barrier().trigger(message);

}

For an example of this component, see the barrier sample application.

144

https://github.com/spring-projects/spring-integration-samples/tree/master/basic/barrier

Chapter 9. Message Transformation

9.1. Transformer

Message transformers play a very important role in enabling the loose-coupling of message
producers and message consumers. Rather than requiring every message-producing component to
know what type is expected by the next consumer, you can add transformers between those
components. Generic transformers, such as one that converts a String to an XML Document, are
also highly reusable.

For some systems, it may be best to provide a canonical data model, but Spring Integration’s
general philosophy is not to require any particular format. Rather, for maximum flexibility, Spring
Integration aims to provide the simplest possible model for extension. As with the other endpoint
types, the use of declarative configuration in XML or Java annotations enables simple POJOs to be
adapted for the role of message transformers. The rest of this chapter describes these configuration
options.

For the sake of maximizing flexibility, Spring does not require XML-based message
payloads. Nevertheless, the framework does provide some convenient

o transformers for dealing with XML-based payloads if that is indeed the right
choice for your application. For more information on those transformers, see XML
Support - Dealing with XML Payloads.

9.1.1. Configuring a Transformer with XML

The <transformer> element is used to create a message-transforming endpoint. In addition to input-
channel and output-channel attributes, it requires a ° attribute . The ref may either point to an
object that contains the @Transformer annotation on a single method (see Configuring a Transformer
with Annotations), or it may be combined with an explicit method name value provided in the
method attribute.

<int:transformer id="testTransformer" ref="testTransformerBean" input-channel=
"inChannel"

method="transform" output-channel="outChannel"/>
<beans:bean id="testTransformerBean" class="org.foo.TestTransformer" />

Using a ref attribute is generally recommended if the custom transformer handler implementation
can be reused in other <transformer> definitions. However, if the custom transformer handler
implementation should be scoped to a single definition of the <transformer>, you can define an
inner bean definition, as the following example shows:

145

https://www.enterpriseintegrationpatterns.com/CanonicalDataModel.html
./xml.pdf#xml
./xml.pdf#xml

<int:transformer id="testTransformer" input-channel="inChannel" method="transform"
output-channel="outChannel">
<beans:bean class="org.foo.TestTransformer"/>
</transformer>

Using both the ref attribute and an inner handler definition in the same
o <transformer> configuration is not allowed, as it creates an ambiguous condition
and results in an exception being thrown.

If the ref attribute references a bean that extends AbstractMessageProducingHandler
(such as transformers provided by the framework itself), the configuration is

o optimized by injecting the output channel into the handler directly. In this case,
each ref must be to a separate bean instance (or a prototype-scoped bean) or use
the inner <bean/> configuration type. If you inadvertently reference the same
message handler from multiple beans, you get a configuration exception.

When using a POJO, the method that is used for transformation may expect either the Message type
or the payload type of inbound messages. It may also accept message header values either
individually or as a full map by using the @Header and @Headers parameter annotations, respectively.
The return value of the method can be any type. If the return value is itself a Message, that is passed
along to the transformer’s output channel.

As of Spring Integration 2.0, a message transformer’s transformation method can no longer return
null. Returning null results in an exception, because a message transformer should always be
expected to transform each source message into a valid target message. In other words, a message
transformer should not be used as a message filter, because there is a dedicated <filter> option for
that. However, if you do need this type of behavior (where a component might return null and that
should not be considered an error), you could use a service activator. Its requires-reply value is
false by default, but that can be set to true in order to have exceptions thrown for null return
values, as with the transformer.

9.1.2. Transformers and Spring Expression Language (SpEL)

Like routers, aggregators, and other components, as of Spring Integration 2.0, transformers can also
benefit from SpEL support whenever transformation logic is relatively simple. The following
example shows how to use a SpEL expression:

<int:transformer input-channel="inChannel"
output-channel="outChannel"
expression="payload.toUpperCase() + '- [+

T(java.lang.System).currentTimeMillis() + "]'"/>

The preceding example transforms the payload without writing a custom transformer. Our payload

146

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

(assumed to be a String) is upper-cased, concatenated with the current timestamp, and has some
formatting applied.

9.1.3. Common Transformers

Spring Integration provides a few transformer implementations.

Object-to-String Transformer

Because it is fairly common to use the toString() representation of an Object, Spring Integration
provides an ObjectToStringTransformer whose output is a Message with a String payload. That String
is the result of invoking the toString() operation on the inbound Message’s payload. The following
example shows how to declare an instance of the object-to-string transformer:

<int:object-to-string-transformer input-channel="in" output-channel="out"/>

A potential use for this transformer would be sending some arbitrary object to the 'outbound-
channel-adapter' in the file namespace. Whereas that channel adapter only supports String, byte-
array, or java.io.File payloads by default, adding this transformer immediately before the adapter
handles the necessary conversion. That works fine as long as the result of the toString() call is
what you want to be written to the file. Otherwise, you can provide a custom POJO-based
transformer by using the generic 'transformer' element shown previously.

When debugging, this transformer is not typically necessary, since the 'logging-
@ channel-adapter' is capable of logging the message payload. See Wire Tap for more
w

detail.

The object-to-string transformer is very simple. It invokes toString() on the
inbound payload. Since Spring Integration 3.0, there are two exceptions to this
rule:

* If the payload is a char[], it invokes new String(payload).

» If the payload is a byte[], it invokes new String(payload, charset), where
charset is UTF-8 by default. The charset can be modified by supplying the
o charset attribute on the transformer.

For more sophistication (such as selection of the charset dynamically, at runtime),
you can use a SpEL expression-based transformer instead, as the following
example shows:

<int:transformer input-channel="in" output-channel="out"
expression="new java.lang.String(payload, headers['myCharset']"
/>

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object,

147

./channel.pdf#channel-wiretap

Spring Integration provides symmetrical serialization transformers. These use standard Java
serialization by default, but you can provide an implementation of Spring 3.0’s serializer or
seserializer strategies by using the 'serializer' and 'deserializer' attributes, respectively. The
following example shows to use Spring’s serializer and deserializer:

<int:payload-serializing-transformer input-channel="objectsIn" output-channel=
"bytesOut"/>

<int:payload-deserializing-transformer input-channel="bytesIn" output-channel=
"objectsOut"
white-1ist="com.mycom.*,com.yourcom.*"/>

o When deserializing data from untrusted sources, you should consider adding a
white-1list of package and class patterns. By default, all classes are deserialized.

Object-to-Map and Map-to-Object Transformers

Spring Integration also provides Object-to-Map and Map-to-Object transformers, which use the JSON to
serialize and de-serialize the object graphs. The object hierarchy is introspected to the most
primitive types (String, int, and so on). The path to this type is described with SpEL, which becomes
the key in the transformed Map. The primitive type becomes the value.

Consider the following example:

public class Parent{
private Child child;
private String name;
// setters and getters are omitted

}

public class Child{
private String name;
private List<String> nickNames;
// setters and getters are omitted

The two classes in the preceding example are transformed to the following Map:
{person.name=George, person.child.name=Jenna, person.child.nickNames[@]=Jen ...}

The JSON-based Map lets you describe the object structure without sharing the actual types, which
lets you restore and rebuild the object graph into a differently typed object graph, as long as you

148

maintain the structure.

For example, the preceding structure could be restored back to the following object graph by using
the Map-to-Object transformer:

public class Father {
private Kid child;
private String name;
// setters and getters are omitted

}

public class Kid {
private String name;
private List<String> nickNames;
// setters and getters are omitted

If you need to create a “structured” map, you can provide the 'flatten’ attribute. The default is 'true'.
If you set it to 'false’, the structure is a Map of Map objects.

Consider the following example:

public class Parent {
private Child child;
private String name;
// setters and getters are omitted

}

public class Child {
private String name;
private List<String> nickNames;
// setters and getters are omitted

The two classes in the preceding example are transformed to the following Map:

{name=George, child={name=Jenna, nickNames=[Bimbo, ...]}}

To configure these transformers, Spring Integration provides namespace support for Object-to-Map,
as the following example shows:

149

<int:object-to-map-transformer input-channel="directInput" output-channel="output
||/>

You can also set the flatten attribute to false, as follows:

<int:object-to-map-transformer input-channel="directInput" output-channel="output"
flatten="false"/>

Spring Integration provides namespace support for Map-to-Object, as the following example shows:

<int:map-to-object-transformer input-channel="1input"
output-channel="output"
type="org.something.Person"/>

Alterately, you could use a ref attribute and a prototype-scoped bean, as the following example
shows:

<int:map-to-object-transformer input-channel="1inputA"
output-channel="outputA"
ref="person"/>

<bean id="person" class="org.something.Person" scope="prototype"/>

The 'ref' and 'type' attributes are mutually exclusive. Also, if you use the 'ref’
attribute, you must point to a ‘'prototype’ scoped bean. Otherwise, a
BeanCreationException is thrown.

Starting with version 5.0, you can supply the ObjectToMapTransformer with a customized
JsonObjectMapper — for when you need special formats for dates or nulls for empty collections (and
other uses). See JSON Transformers for more information about JsonObjectMapper implementations.

Stream Transformer

The StreamTransformer transforms InputStream payloads to a byte[](or a String if a charset is
provided).

The following example shows how to use the stream-tansformer element in XML:

150

<int:stream-transformer input-channel="directInput" output-channel="output"/> <!--
byte[] -->

<int:stream-transformer id="withCharset" charset="UTF-8"
input-channel="charsetChannel" output-channel="output"/> <!-- String -->

The following example shows how to use the StreamTransformer class and the @Transformer
annotation to configure a stream transformer in Java:

@Bean
@Transformer(inputChannel = "stream", outputChannel = "data")
public StreamTransformer streamToBytes() {

return new StreamTransformer(); // transforms to byte[]

}

@Bean
@Transformer (inputChannel = "stream", outputChannel = "data")
public StreamTransformer streamToString() {

return new StreamTransformer("UTF-8"); // transforms to String

}

JSON Transformers

Spring Integration provides Object-to-JSON and JSON-to-Object transformers. The following pair of
examples show how to declare them in XML:

<int:object-to-json-transformer input-channel="objectMapperInput"/>

<int:json-to-object-transformer input-channel="objectMapperInput"
type="foo.MyDomainObject"/>

By default, the transformers in the preceding listing use a vanilla JsonObjectMapper. It is based on an
implementation from the classpath. You can provide your own custom JsonObjectMapper
implementation with appropriate options or based on a required library (such as GSON), as the
following example shows:

<int:json-to-object-transformer input-channel="objectMapperInput"
type="something.MyDomainObject" object-mapper="customObjectMapper"/>

151

Beginning with version 3.0, the object-mapper attribute references an instance of a

new strategy interface: JsonObjectMapper. This abstraction lets multiple

implementations of JSON mappers be used. Implementation that wraps Jackson 2

is provided, with the version being detected on the classpath. The class is
o Jackson2JsonObjectMapper, respectively.

o The BoonJsonObjectMapper is deprecated in 5.2 since the library is
out of support.

If you have requirements to use both Jackson and Boon in the same application,
keep in mind that, before version 3.0, the JSON transformers used only Jackson 1.x.
From 4.1 on, the framework selects Jackson 2 by default. Jackson 1.x is no longer
supported by the framework internally. However, you can still use it within your
code by including the necessary library. To avoid unexpected issues with JSON
mapping features when you use annotations, you may need to apply annotations
from both Jackson and Boon on domain classes, as the following example shows:

.codehaus. jackson.annotate.JsonIgnoreProperties(ignoreUnknown=true)
o .fasterxml.jackson.annotation.JsonIgnoreProperties(ignoreUnknown=tr
ue)
.boon.json.annotations.JsonIgnoreProperties("thing1")
public class Thingl {

.codehaus. jackson.annotate.JsonProperty("thing1Thing2")
.fasterxml.jackson.annotation.JsonProperty("thing1Thing2")
.boon.json.annotations.JsonProperty("thing1Thing2")

public Object thing2;

o Boon support has been deprecated since version 5.2.

You may wish to consider using a FactoryBean or a factory method to create the JsonObjectMapper
with the required characteristics. The following example shows how to use such a factory:

public class ObjectMapperFactory {

public static Jackson2JsonObjectMapper getMapper() {
ObjectMapper mapper = new ObjectMapper();
mapper.configure(JsonParser.Feature.ALLOW_COMMENTS, true);
return new Jackson2]sonObjectMapper(mapper);

152

https://github.com/FasterXML

The following example shows how to do the same thing in XML

<bean id="customObjectMapper" class="something.0bjectMapperFactory"
factory-method="getMapper"/>

Beginning with version 2.2, the object-to-json-transformer sets the content-type
header to application/json, by default, if the input message does not already have
that header.

o It you wish to set the content-type header to some other value or explicitly
overwrite any existing header with some value (including application/json), use
the content-type attribute. If you wish to suppress the setting of the header, set the
content-type attribute to an empty string (""). Doing so results in a message with
no content-type header, unless such a header was present on the input message.

Beginning with version 3.0, the ObjectToJsonTransformer adds headers, reflecting the source type, to
the message. Similarly, the JsonToObjectTransformer can use those type headers when converting the
JSON to an object. These headers are mapped in the AMQP adapters so that they are entirely
compatible with the Spring-AMQP JsonMessageConverter.

This enables the following flows to work without any special configuration:

. amgp-outbound-adapter---

« --- amgp-inbound-adapter json-to-object-transformer

Where the outbound adapter is configured with a JsonMessageConverter and the inbound
adapter uses the default SimpleMessageConverter.

. object-to-json-transformer amgp-outbound-adapter---

« --- amgp-inbound-adapter

Where the outbound adapter is configured with a SimpleMessageConverter and the inbound
adapter uses the default JsonMessageConverter.

. object-to-json-transformer amgp-outbound-adapter---

« --- amgp-inbound-adapter json-to-object-transformer

Where both adapters are configured with a SimpleMessageConverter.

o When using the headers to determine the type, you should not provide a class
attribute, because it takes precedence over the headers.

In addition to JSON Transformers, Spring Integration provides a built-in #jsonPath SpEL function
for use in expressions. For more information see Spring Expression Language (SpEL).

Since version 3.0, Spring Integration also provides a built-in #xpath SpEL function for use in
expressions. For more information see #xpath SpEL Function.

153

https://docs.spring.io/spring-amqp/api/
./spel.pdf#spel
./xml.pdf#xpath-spel-function

Beginning with version 4.0, the ObjectToJsonTransformer supports the resultType property, to specify
the node JSON representation. The result node tree representation depends on the implementation
of the provided IJsonObjectMapper. By default, the ObjectToJsonTransformer wuses a
Jackson2JsonObjectMapper and delegates the conversion of the object to the node tree to the
ObjectMapper#valueToTree method. The node JSON representation provides efficiency for using the
JsonPropertyAccessor when the downstream message flow uses SpEL expressions with access to the
properties of the JSON data. See Property Accessors for more information.

Beginning with version 5.1, the resultType can be configured as BYTES to produce a message with
the byte[] payload for convenience when working with downstream handlers which operate with
this data type.

Starting with version 5.2, the JsonToObjectTransformer can be configured with a ResolvableType to
support generics during deserialization with the target JSON processor. Also this component now
consults request message headers first for the presence of the JsonHeaders.RESOLVABLE_TYPE or
JsonHeaders.TYPE_ID and falls back to the configured type otherwise. The ObjectToJsonTransformer
now also populates a JsonHeaders.RESOLVABLE_TYPE header based on the request message payload for
any possible downstream scenarios.

Apache Avro Transformers

Version 5.2 added simple transformers to transform to/from Apache Avro.

They are unsophisticated in that there is no schema registry; the transformers simply use the
schema embedded in the SpecificRecord implementation generated from the Avro schema.

Messages sent to the SimpleToAvroTransformer must have a payload that implements SpecificRecord;
the transformer can handle multiple types. The SimpleFromAvroTransformer must be configured with
a SpecificRecord class which is used as the default type to deserialize. You can also specify a SpEL
expression to determine the type to deserialize using the setTypeExpression method. The default
SpEL expression is headers[avro_type] (AvroHeaders.TYPE) which, by default, is populated by the
SimpleToAvroTransformer with the fully qualified class name of the source class. If the expression
returns null, the defaultType is used.

The SimpleToAvroTransformer also has a setTypeExpression method. This allows decoupling of the
producer and consumer where the sender can set the header to some token representing the type
and the consumer then maps that token to a type.

9.1.4. Configuring a Transformer with Annotations

You can add the @Transformer annotation to methods that expect either the Message type or the
message payload type. The return value is handled in the exact same way as described earlier in
the section describing the <transformer> element. The following example shows how to use the
@Transformer annotation to transform a String into an Order:

154

./spel.pdf#spel-property-accessors

Order generateOrder(String productId) {
return new Order(productId);

}

Transformer methods can also accept the @Header and @Headers annotations, as documented in
Annotation Support. The following examples shows how to use the @Header annotation:

Order generateOrder(String productld, ("customerName") String customer) {
return new Order(productId, customer);

}

See also Advising Endpoints Using Annotations.

9.1.5. Header Filter

Sometimes, your transformation use case might be as simple as removing a few headers. For such a
use case, Spring Integration provides a header filter that lets you specify certain header names that
should be removed from the output message (for example, removing headers for security reasons
or a value that was needed only temporarily). Basically, the header filter is the opposite of the
header enricher. The latter is discussed in Header Enricher. The following example defines a
header filter:

<int:header-filter input-channel="inputChannel"
output-channel="outputChannel" header-names="1astName, state"/>

As you can see, configuration of a header filter is quite simple. It is a typical endpoint with input
and output channels and a header-names attribute. That attribute accepts the names of the headers
(delimited by commas if there are multiple) that need to be removed. So, in the preceding example,
the headers named 'lastName' and 'state' are not present on the outbound message.

9.1.6. Codec-Based Transformers

See Codec.

9.2. Content Enricher

At times, you may have a requirement to enhance a request with more information than was
provided by the target system. The data enricher pattern describes various scenarios as well as the
component (Enricher) that lets you address such requirements.

155

./configuration.pdf#annotations
./handler-advice.pdf#advising-with-annotations
./content-enrichment.pdf#header-enricher
./codec.pdf#codec
https://www.enterpriseintegrationpatterns.com/DataEnricher.html

The Spring Integration Core module includes two enrichers:

* Header Enricher

» Payload Enricher
It also includes three adapter-specific header enrichers:

e XPath Header Enricher (XML Module)
* Mail Header Enricher (Mail Module)

* XMPP Header Enricher (XMPP Module)
See the adapter-specific sections of this reference manual to learn more about those adapters.

For more information regarding expressions support, see Spring Expression Language (SpEL).

9.2.1. Header Enricher

If you need do nothing more than add headers to a message and the headers are not dynamically
determined by the message content, referencing a custom implementation of a transformer may be
overkill. For that reason, Spring Integration provides support for the header enricher pattern. It is
exposed through the <header-enricher> element. The following example shows how to use it:

<int:header-enricher input-channel="in" output-channel="out">
<int:header name="foo" value="123"/>
<int:header name="bar" ref="someBean"/>
</int:header-enricher>

The header enricher also provides helpful sub-elements to set well known header names, as the
following example shows:

<int:header-enricher input-channel="in" output-channel="out">
<int:error-channel ref="applicationErrorChannel"/>
<int:reply-channel ref="quoteReplyChannel"/>
<int:correlation-id value="123"/>
<int:priority value="HIGHEST"/>
<routing-slip value="channell; routingSlipRoutingStrategy;
request.headers[myRoutingSlipChannel]"/>
<int:header name="bar" ref="someBean"/>
</int:header-enricher>

The preceding configuration shows that, for well known headers (such as errorChannel,
correlationld, priority, replyChannel, routing-slip, and others), instead of using generic <header>
sub-elements where you would have to provide both header mame' and 'value’, you can use
convenient sub-elements to set those values directly.

156

./xml.pdf#xml-xpath-header-enricher
./mail.pdf#mail-namespace
./xmpp.pdf#xmpp-message-outbound-channel-adapter
./spel.pdf#spel

Starting with version 4.1, the header enricher provides a routing-slip sub-element. See Routing Slip
for more information.

POJO Support

Often, a header value cannot be defined statically and has to be determined dynamically based on
some content in the message. That is why the header enricher lets you also specify a bean reference
by using the ref and method attributes. The specified method calculates the header value. Consider
the following configuration and a bean with a method that modifies a String:

<int:header-enricher input-channel="in" output-channel="out">
<int:header name="something" method="computeValue" ref="myBean"/>
</int:header-enricher>

<bean id="myBean" class="thing1.thing2.MyBean"/>

public class MyBean {

public String computeValue(String payload){
return payload.toUpperCase() + "_US";

}

You can also configure your POJO as an inner bean, as the following example shows:

<int:header-enricher input-channel="inputChannel" output-channel="outputChannel">
<int:header name="some_header">
<bean class="org.MyEnricher"/>
</int:header>
</int:header-enricher>

You can similarly point to a Groovy script, as the following example shows:

<int:header-enricher input-channel="inputChannel" output-channel="outputChannel">
<int:header name="some_header">
<int-groovy:script location="org/SampleGroovyHeaderEnricher.groovy"/>
</int:header>
</int:header-enricher>

157

./router.pdf#routing-slip

SpEL Support

In Spring Integration 2.0, we introduced the convenience of the Spring Expression Language (SpEL)
to help configure many different components. The header enricher is one of them. Look again at
the POJO example shown earlier. You can see that the computation logic to determine the header
value is pretty simple. A natural question would be: "Is there an even simpler way to accomplish
this?". That is where SpEL shows its true power. Consider the following example:

<int:header-enricher input-channel="in" output-channel="out">
<int:header name="foo" expression="payload.toUpperCase() + '_US'"/>
</int:header-enricher>

By using SpEL for such simple cases, you no longer have to provide a separate class and configure it
in the application context. All you need do is configured the expression attribute with a valid SpEL
expression. The 'payload’ and 'headers' variables are bound to the SpEL evaluation context, giving
you full access to the incoming message.

Configuring a Header Enricher with Java Configuration

The following two examples show how to use Java Configuration for header enrichers:

(inputChannel = "enrichHeadersChannel", outputChannel = "emailChannel
")
public HeaderEnricher enrichHeaders() {
Map<String, ? extends HeaderValueMessageProcessor<?>> headersToAdd =
Collections.singletonMap("emailUrl",
new StaticHeaderValueMessageProcessor<>(this.imapUrl));
HeaderEnricher enricher = new HeaderEnricher(headersToAdd);
return enricher;

(inputChannel="enrichHeadersChannel", outputChannel="emailChannel")
public HeaderEnricher enrichHeaders() {
Map<String, HeaderValueMessageProcessor<?>> headersToAdd = new HashMap<>();
headersToAdd.put("emailUrl", new StaticHeaderValueMessageProcessor<String>
(this.imapUrl));
Expression expression = new SpelExpressionParser().parseExpression(
"payload.from[@].toString()");
headersToAdd.put("from",
new ExpressionEvaluatingHeaderValueMessageProcessor<>(expression,
String.class));
HeaderEnricher enricher = new HeaderEnricher(headersToAdd);
return enricher;

158

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

The first example adds a single literal header. The second example adds two headers, a literal
header and one based on a SpEL expression.

Configuring a Header Enricher with the Java DSL

The following example shows Java DSL Configuration for a header enricher:

public IntegrationFlow enrichHeadersInFlow() {
return f -> f

.enrichHeaders(h -> h.header("emailUrl", this.emailUrl)
.headerExpression("from",
"payload.from[@].toString()"))
.handle(...);
}

Header Channel Registry

Starting with Spring Integration 3.0, a new sub-element <int:header-channels-to-string/> is
available. It has no attributes. This new sub-element converts existing replyChannel and
errorChannel headers (when they are a MessageChannel) to a String and stores the channels in a
registry for later resolution, when it is time to send a reply or handle an error. This is useful for
cases where the headers might be lost—for example, when serializing a message into a message
store or when transporting the message over JMS. If the header does not already exist or it is not a
MessageChannel, no changes are made.

Using this functionality requires the presence of a HeaderChannelRegistry bean. By default, the
framework creates a DefaultHeaderChannelRegistry with the default expiry (60 seconds). Channels
are removed from the registry after this time. To change this behavior, define a bean with an id of
integrationHeaderChannelRegistry and configure the required default delay by using a constructor
argument (in milliseconds).

Since version 4.1, you can set a property called removeOnGet to true on the <bean/> definition, and the
mapping entry is removed immediately on first use. This might be useful in a high-volume
environment and when the channel is only used once, rather than waiting for the reaper to remove
it.

The HeaderChannelRegistry has a size() method to determine the current size of the registry. The
runReaper () method cancels the current scheduled task and runs the reaper immediately. The task
is then scheduled to run again based on the current delay. These methods can be invoked directly
by getting a reference to the registry, or you can send a message with, for example, the following
content to a control bus:

159

"@integrationHeaderChannelRegistry.runReaper()"

This sub-element is a convenience, and is the equivalent of specifying the following configuration:

<int:reply-channel
expression=
"@integrationHeaderChannelRegistry.channelToChannelName(headers.replyChannel)"
overwrite="true" />
<int:error-channel
expression=
"@integrationHeaderChannelRegistry.channelToChannelName(headers.errorChannel)"
overwrite="true" />

Starting with version 4.1, you can now override the registry’s configured reaper delay so that the
the channel mapping is retained for at least the specified time, regardless of the reaper delay. The
following example shows how to do so:

<int:header-enricher input-channel="inputTt1" output-channel="next">
<int:header-channels-to-string time-to-live-expression="120000" />
</int:header-enricher>

<int:header-enricher input-channel="inputCustomTtl" output-channel="next">
<int:header-channels-to-string
time-to-live-expression="headers['channelTTL'] ?: 120000" />
</int:header-enricher>

In the first case, the time to live for every header channel mapping will be two minutes. In the
second case, the time to live is specified in the message header and uses an Elvis operator to use
two minutes if there is no header.

9.2.2. Payload Enricher

In certain situations, the header enricher, as discussed earlier, may not be sufficient and payloads
themselves may have to be enriched with additional information. For example, order messages that
enter the Spring Integration messaging system have to look up the order’s customer based on the
provided customer number and then enrich the original payload with that information.

Spring Integration 2.1 introduced the payload enricher. The payload enricher defines an endpoint
that passes a Message to the exposed request channel and then expects a reply message. The reply
message then becomes the root object for evaluation of expressions to enrich the target payload.

The payload enricher provides full XML namespace support through the enricher element. In order

160

to send request messages, the payload enricher has a request-channel attribute that lets you
dispatch messages to a request channel.

Basically, by defining the request channel, the payload enricher acts as a gateway, waiting for the
message sent to the request channel to return. The enricher then augments the message’s payload
with the data provided by the reply message.

When sending messages to the request channel, you also have the option to send only a subset of
the original payload by using the request-payload-expression attribute.

The enriching of payloads is configured through SpEL expressions, providing a maximum degree of
flexibility. Therefore, you can not only enrich payloads with direct values from the reply channel’s
Message, but you can use SpEL expressions to extract a subset from that message or to apply
additional inline transformations, letting you further manipulate the data.

If you need only to enrich payloads with static values, you need not provide the request-channel
attribute.

Enrichers are a variant of transformers. In many cases, you could use a payload
enricher or a generic transformer implementation to add additional data to your

o message payloads. You should familiarize yourself with all transformation-capable
components that are provided by Spring Integration and carefully select the
implementation that semantically fits your business case best.

Configuration

The following example shows all available configuration options for the payload enricher:

<int:enricher request-channel=""
auto-startup="true"
id=""
order=""

output-channel=
request-payload-expression=
reply-channel=""
error-channel=
send-timeout=""
should-clone-payload="false">
<int:poller></int:poller>
<int:property name="" expression=
the name'"/> ®
<int:property name=
"tett/>
<int:header name=
<int:header name=
</int:enricher>

SESACICORSONCNCRONCACRC,

null-result-expression=""'Could not determine

value="23" type="java.lang.Integer" null-result-expression=

null-result-expression=""/> @
"" type="" null-result-expression=""/>

expression=
value="" overwrite=

@ Channel to which a message is sent to get the data to use for enrichment. Optional.

@ Lifecycle attribute signaling whether this component should be started during the application

161

context startup. Defaults to true. Optional.

®ID of the underlying bean definition, which is either an EventDrivenConsumer or a
PollingConsumer. Optional.

@ Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a “failover” dispatching strategy. It has
no effect when this endpoint is itself a polling consumer for a channel with a queue. Optional.

® Identifies the message channel where a message is sent after it is being processed by this
endpoint. Optional.

® By default, the original message’s payload is used as payload that is sent to the request-channel.
By specifying a SpEL expression as the value for the request-payload-expression attribute, you
can use a subset of the original payload, a header value, or any other resolvable SpEL expression
as the basis for the payload that is sent to the request-channel. For the expression evaluation,
the full message is available as the 'root object'. For instance, the following SpEL expressions
(among others) are possible:

« payload.something

« headers.something

o new java.util.Date()
o 'thing1' + "thing2'

@ Channel where a reply message is expected. This is optional. Typically, the auto-generated
temporary reply channel suffices. Optional.

The channel to which an ErrorMessage is sent if an Exception occurs downstream of the request-
channel. This enables you to return an alternative object to use for enrichment. If it is not set, an
Exception is thrown to the caller. Optional.

© Maximum amount of time in milliseconds to wait when sending a message to the channel, if the
channel might block. For example, a queue channel can block until space is available, if its
maximum capacity has been reached. Internally, the send timeout is set on the
MessagingTemplate and wultimately applied when invoking the send operation on the
MessageChannel. By default, the send timeout is set to '-1', which can cause the send operation on
the MessageChannel, depending on the implementation, to block indefinitely. Optional.

Boolean value indicating whether any payload that implements Cloneable should be cloned prior
to sending the message to the request channel for acquiring the enriching data. The cloned
version would be used as the target payload for the ultimate reply. The default is false. Optional.

@ Lets you configure a message poller if this endpoint is a polling consumer. Optional.

@ Each property sub-element provides the name of a property (through the mandatory name
attribute). That property should be settable on the target payload instance. Exactly one of the
value or expression attributes must be provided as well —the former for a literal value to set
and the latter for a SpEL expression to be evaluated. The root object of the evaluation context is
the message that was returned from the flow initiated by this enricher —the input message if
there is no request channel or the application context (using the
'‘@<beanName>.<beanProperty>' SpEL syntax). Starting with version 4.0, when specifying a
value attribute, you can also specify an optional type attribute. When the destination is a typed
setter method, the framework coerces the value appropriately (as long as a PropertyEditor)
exists to handle the conversion. If, however, the target payload is a Map, the entry is populated

162

with the value without conversion. The type attribute lets you, for example, convert a String
containing a number to an Integer value in the target payload. Starting with version 4.1, you can
also specify an optional null-result-expression attribute. When the enricher returns null, it is
evaluated, and the output of the evaluation is returned instead.

® Each header sub-element provides the name of a message header (through the mandatory name
attribute). Exactly one of the value or expression attributes must also be provided — the former
for a literal value to set and the latter for a SpEL expression to be evaluated. The root object of
the evaluation context is the message that was returned from the flow initiated by this
enricher — the input message if there is no request channel or the application context (using the
'@<beanName>.<beanProperty>' SpEL syntax). Note that, similarly to the <header-enricher>, the
<enricher> element’s header element has type and overwrite attributes. However, a key
difference is that, with the <enricher>, the overwrite attribute is true by default, to be consistent
with the <enricher> element’s <property> sub-element. Starting with version 4.1, you can also
specify an optional null-result-expression attribute. When the enricher returns null, it is
evaluated, and the output of the evaluation is returned instead.

Examples

This section contains several examples of using a payload enricher in various situations.

(r) The code samples shown here are part of the Spring Integration Samples project.
- See Spring Integration Samples.

In the following example, a User object is passed as the payload of the Message:

<int:enricher id="findUserEnricher"
input-channel="findUserEnricherChannel"
request-channel="findUserServiceChannel">
<int:property name="email" expression="payload.email"/>
<int:property name="password" expression="payload.password"/>
</int:enricher>

The User has several properties, but only the username is set initially. The enricher’s request-channel
attribute is configured to pass the User to the findUserServiceChannel.

Through the implicitly set reply-channel, a User object is returned and, by using the property sub-
element, properties from the reply are extracted and used to enrich the original payload.

How Do I Pass Only a Subset of Data to the Request Channel?

When using a request-payload-expression attribute, a single property of the payload instead of the
full message can be passed on to the request channel. In the following example, the username
property is passed on to the request channel:

163

./samples.pdf#samples

<int:enricher id="findUserByUsernameEnricher"
input-channel="findUserByUsernameEnricherChannel"
request-channel="findUserByUsernameServiceChannel"
request-payload-expression="payload.username">
<int:property name="email" expression="payload.email"/>
<int:property name="password" expression="payload.password"/>
</int:enricher>

Keep in mind that, although only the username is passed, the resulting message to the request
channel contains the full set of MessageHeaders.

How Can I Enrich Payloads that Consist of Collection Data?

In the following example, instead of a User object, a Map is passed in:

<int:enricher id="findUserWithMapEnricher"
input-channel="findUserWithMapEnricherChannel"
request-channel="findUserByUsernameServiceChannel"
request-payload-expression="payload.username">
<int:property name="user" expression="payload"/>
</int:enricher>

The Map contains the username under the username map key. Only the username is passed on to the
request channel. The reply contains a full User object, which is ultimately added to the Map under
the user key.

How Can I Enrich Payloads with Static Information without Using a Request Channel?

The following example does not use a request channel at all but solely enriches the message’s
payload with static values:

<int:enricher id="userEnricher"
input-channel="input">
<int:property name="user.updateDate" expression="new java.util.Date()"/>
<int:property name="user.firstName" value="William"/>
<int:property name="user.lastName" value="Shakespeare"/>
<int:property name="user.age" value="42"/>
</int:enricher>

Note that the word, 'static', is used loosely here. You can still use SpEL expressions for setting those
values.

164

9.3. Claim Check

In earlier sections, we covered several content enricher components that can help you deal with
situations where a message is missing a piece of data. We also discussed content filtering, which lets
you remove data items from a message. However, there are times when we want to hide data
temporarily. For example, in a distributed system, we may receive a message with a very large
payload. Some intermittent message processing steps may not need access to this payload and some
may only need to access certain headers, so carrying the large message payload through each
processing step may cause performance degradation, may produce a security risk, and may make
debugging more difficult.

The store in library (or claim check) pattern describes a mechanism that lets you store data in a
well known place while maintaining only a pointer (a claim check) to where that data is located.
You can pass that pointer around as the payload of a new message, thereby letting any component
within the message flow get the actual data as soon as it needs it. This approach is very similar to
the certified mail process, where you get a claim check in your mailbox and then have to go to the
post office to claim your actual package. It is also the same idea as baggage claim after a flight or in
a hotel.

Spring Integration provides two types of claim check transformers:

* Incoming Claim Check Transformer

* Outgoing Claim Check Transformer

Convenient namespace-based mechanisms are available to configure them.

9.3.1. Incoming Claim Check Transformer

An incoming claim check transformer transforms an incoming message by storing it in the message
store identified by its message-store attribute. The following example defines an incoming claim
check transformer:

<int:claim-check-in id="checkin"
input-channel="checkinChannel"
message-store="testMessageStore"
output-channel="output"/>

In the preceding configuration, the message that is received on the input-channel is persisted to the
message store identified with the message-store attribute and indexed with a generated ID. That ID
is the claim check for that message. The claim check also becomes the payload of the new
(transformed) message that is sent to the output-channel.

Now, assume that at some point you do need access to the actual message. You can access the
message store manually and get the contents of the message, or you can use the same approach
(creating a transformer) except that now you transform the Claim Check to the actual message by
using an outgoing claim check transformer.

165

https://www.enterpriseintegrationpatterns.com/StoreInLibrary.html

The following listing provides an overview of all available parameters of an incoming claim check
transformer:

<int:claim-check-in auto-startup="true" @
id=""
input-channels=
message-store="messageStore"
order=""
output-channel=
send-timeout="">

<int:poller></int:poller>
</int:claim-check-in>

@OOO®OE

@ Lifecycle attribute signaling whether this component should be started during application
context startup. It defaults to true. This attribute is not available inside a Chain element.
Optional.

@ ID identifying the underlying bean definition (MessageTransformingHandler). This attribute is
not available inside a Chain element. Optional.

® The receiving message channel of this endpoint. This attribute is not available inside a
Chain element. Optional.

@ Reference to the MessageStore to be used by this claim check transformer. If not specified,
the default reference is to a bean named messageStore. Optional.

® Specifies the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel uses a failover dispatching
strategy. It has no effect when this endpoint is itself a polling consumer for a channel with a
queue. This attribute is not available inside a Chain element. Optional.

® Identifies the message channel where the message is sent after being processed by this
endpoint. This attribute is not available inside a Chain element. Optional.

@ Specifies the maximum amount of time (in milliseconds) to wait when sending a reply
message to the output channel. Defaults to -1—blocking indefinitely. This attribute is not
available inside a Chain element. Optional.

Defines a poller. This element is not available inside a Chain element. Optional.

9.3.2. Outgoing Claim Check Transformer

An outgoing claim check transformer lets you transform a message with a claim check payload into
a message with the original content as its payload.

166

<int:claim-check-out id="checkout"
input-channel="checkoutChannel"
message-store="testMessageStore"
output-channel="output"/>

In the preceding configuration, the message received on the input-channel should have a claim
check as its payload. The outgoing claim check transformer transforms it into a message with the
original payload by querying the message store for a message identified by the provided claim
check. It then sends the newly checked-out message to the output-channel.

The following listing provides an overview of all available parameters of an outgoing claim check
transformer:

167

<int:claim-check-out auto-startup="true" @
id=""
input-channels=
message-store="messageStore'
order=""
output-channel=
remove-message="false"
send-timeout="">

<int:poller></int:poller>
</int:claim-check-out>

©OEQOO®VO

@ Lifecycle attribute signaling whether this component should be started during application
context startup. It defaults to true. This attribute is not available inside a Chain element.
Optional.

@ ID identifying the underlying bean definition (MessageTransformingHandler). This attribute is
not available inside a Chain element. Optional.

® The receiving message channel of this endpoint. This attribute is not available inside a
Chain element. Optional.

@ Reference to the MessageStore to be used by this claim check transformer. If not specified,
the default reference is to a bean named messageStore. Optional.

® Specifies the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel is using a failover dispatching
strategy. It has no effect when this endpoint is itself a polling consumer for a channel with a
queue. This attribute is not available inside a Chain element. Optional.

® Identifies the message channel where the message is sent after being processed by this
endpoint. This attribute is not available inside a Chain element. Optional.

@ If set to true, the message is removed from the MessageStore by this transformer. This
setting is useful when Message can be “claimed” only once. It defaults to false. Optional.

Specifies the maximum amount of time (in milliseconds) to wait when sending a reply
message to the output channel. It defaults to -1— blocking indefinitely. This attribute is not
available inside a Chain element. Optional.

@ Defines a poller. This element is not available inside a Chain element. Optional.

9.3.3. Claim Once

Sometimes, a particular message must be claimed only once. As an analogy, consider process of
handling airplane luggage. You checking in your luggage on departure and claiming it on arrival.
Once the luggage has been claimed, it can not be claimed again without first checking it back in. To
accommodate such cases, we introduced a remove-message boolean attribute on the claim-check-out
transformer. This attribute is set to false by default. However, if set to true, the claimed message is
removed from the MessageStore so that it cannot be claimed again.

This feature has an impact in terms of storage space, especially in the case of the in-memory Map

168

-based SimpleMessageStore, where failing to remove messages could ultimately lead to an
OutOfMemoryException. Therefore, if you do not expect multiple claims to be made, we recommend
that you set the remove-message attribute’s value to true. The following example show how to use the
remove-message attribute:

<int:claim-check-out id="checkout"
input-channel="checkoutChannel"
message-store="testMessageStore"
output-channel="output"
remove-message="true"/>

9.3.4. A Word on Message Store

Although we rarely care about the details of the claim checks (as long as they work), you should
know that the current implementation of the actual claim check (the pointer) in Spring Integration
uses a UUID to ensure uniqueness.

org.springframework.integration.store.MessageStore is a strategy interface for storing and
retrieving messages. Spring Integration provides two convenient implementations of it:

» SimpleMessageStore: An in-memory, Map-based implementation (the default, good for testing)

» JdbcMessageStore: An implementation that uses a relational database over JDBC

9.4. Codec

Version 4.2 of Spring Integration introduced the Codec abstraction. Codecs encode and decode
objects to and from byte[]. They offer an alternative to Java serialization. One advantage is that,
typically, objects need not implement Serializable. We provide one implementation that uses Kryo
for serialization, but you can provide your own implementation for use in any of the following
components:

« EncodingPayloadTransformer
« DecodingTransformer

« CodecMessageConverter

9.4.1. EncodingPayloadTransformer

This transformer encodes the payload to a byte[] by using the codec. It does not affect message
headers.

See the Javadoc for more information.

9.4.2. DecodingTransformer

This transformer decodes a byte[] by using the codec. It needs to be configured with the Class to
which the object should be decoded (or an expression that resolves to a Class). If the resulting

169

https://github.com/EsotericSoftware/kryo
https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/EncodingPayloadTransformer.html

object is a Message<?>, inbound headers are not retained.

See the Javadoc for more information.

9.4.3. CodecMessageConverter

Certain endpoints (such as TCP and Redis) have no concept of message headers. They support the
use of a MessageConverter, and the CodecMessageConverter can be used to convert a message to or
from a byte[] for transmission.

See the Javadoc for more information.

9.4.4. Kryo
Currently, this is the only implementation of Codec, and it provides two kinds of Codec:

* PojoCodec: Used in the transformers

* MessageCodec: Used in the CodecMessageConverter

The framework provides several custom serializers:

« FileSerializer
« MessageHeadersSerializer

« MutableMessageHeadersSerializer

The first can be used with the PojoCodec by initializing it with the FileKryoRegistrar. The second and
third are used with the MessageCodec, which is initialized with the MessageKryoRegistrar.

Customizing Kryo

By default, Kryo delegates unknown Java types to its FieldSerializer. Kryo also registers default
serializers for each primitive type, along with String, Collection, and Map. FieldSerializer uses
reflection to navigate the object graph. A more efficient approach is to implement a custom
serializer that is aware of the object’s structure and can directly serialize selected primitive fields.
The following example shows such a serializer:

170

https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/DecodingTransformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/codec/CodecMessageConverter.html

public class AddressSerializer extends Serializer<Address> {

public void write(Kryo kryo, Output output, Address address) {
output.writeString(address.getStreet());
output.writeString(address.getCity());
output.writeString(address.getCountry());

public Address read(Kryo kryo, Input input, Class<Address> type) {
return new Address(input.readString(), input.readString(), input
.readString());

}
}

The Serializer interface exposes Kryo, Input, and Output, which provide complete control over
which fields are included and other internal settings, as described in the Kryo documentation.

When registering your custom serializer, you need a registration ID. The
registration IDs are arbitrary. However, in our case, the IDs must be explicitly
defined, because each Kryo instance across the distributed application must use

o the same IDs. Kryo recommends small positive integers and reserves a few ids
(value < 10). Spring Integration currently defaults to using 40, 41, and 42 (for the
file and message header serializers mentioned earlier). We recommend you start
at 60, to allow for expansion in the framework. You can override these framework
defaults by configuring the registrars mentioned earlier.

Using a Custom Kryo Serializer

If you need custom serialization, see the Kryo documentation, because you need to use the native
API to do the customization. For an example, see the MessageCodec implementation.

Implementing KryoSerializable

If you have write access to the domain object source code, you can implement KryoSerializable as
described here. In this case, the class provides the serialization methods itself and no further
configuration is required. However benchmarks have shown this is not quite as efficient as
registering a custom serializer explicitly. The following example shows a custom Kryo serializer:

171

https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
https://github.com/spring-projects/spring-integration/blob/master/spring-integration-core/src/main/java/org/springframework/integration/codec/kryo/MessageCodec.java
https://github.com/EsotericSoftware/kryo#kryoserializable

public class Address implements KryoSerializable {

public void write(Kryo kryo, Output output) {
output.writeString(this.street);
output.writeString(this.city);
output.writeString(this.country);

public void read(Kryo kryo, Input input) {
this.street = input.readString();
this.city = input.readString();
this.country = input.readString();

You can also use this technique to wrap a serialization library other than Kryo.

Using the @DefaultSerializer Annotation

Kryo also provides a @DefaultSerializer annotation, as described here.

(SomeClassSerializer.class)
public class Some(Class {
/] ...
}

If you have write access to the domain object, this may be a simpler way to specify a custom
serializer. Note that this does not register the class with an ID, which may make the technique
unhelpful for certain situations.

172

https://github.com/EsotericSoftware/kryo#default-serializers

Chapter 10. Messaging Endpoints

10.1. Message Endpoints

The first part of this chapter covers some background theory and reveals quite a bit about the
underlying API that drives Spring Integration’s various messaging components. This information
can be helpful if you want to really understand what goes on behind the scenes. However, if you
want to get up and running with the simplified namespace-based configuration of the various
elements, feel free to skip ahead to Endpoint Namespace Support for now.

As mentioned in the overview, message endpoints are responsible for connecting the various
messaging components to channels. Over the next several chapters, we cover a number of different
components that consume messages. Some of these are also capable of sending reply messages.
Sending messages is quite straightforward. As shown earlier in Message Channels, you can send a
message to a message channel. However, receiving is a bit more complicated. The main reason is
that there are two types of consumers: polling consumers and event-driven consumers.

Of the two, event-driven consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially listeners with a callback method. When connecting to
one of Spring Integration’s subscribable message channels, this simple option works great.
However, when connecting to a buffering, pollable message channel, some component has to
schedule and manage the polling threads. Spring Integration provides two different endpoint
implementations to accommodate these two types of consumers. Therefore, the consumers
themselves need only implement the callback interface. When polling is required, the endpoint acts
as a container for the consumer instance. The benefit is similar to that of using a container for
hosting message-driven beans, but, since these consumers are Spring-managed objects running
within an ApplicationContext, it more closely resembles Spring’s own MessagelListener containers.

10.1.1. Message Handler

Spring Integration’s MessageHandler interface is implemented by many of the components within the
framework. In other words, this is not part of the public API, and you would not typically
implement MessageHandler directly. Nevertheless, it is used by a message consumer for actually
handling the consumed messages, so being aware of this strategy interface does help in terms of
understanding the overall role of a consumer. The interface is defined as follows:

public interface MessageHandler {

void handleMessage(Message<?> message);

Despite its simplicity, this interface provides the foundation for most of the components (routers,
transformers, splitters, aggregators, service activators, and others) covered in the following
chapters. Those components each perform very different functionality with the messages they

173

./channel.pdf#channel
https://www.enterpriseintegrationpatterns.com/PollingConsumer.html
https://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html

handle, but the requirements for actually receiving a message are the same, and the choice
between polling and event-driven behavior is also the same. Spring Integration provides two
endpoint implementations that host these callback-based handlers and let them be connected to
message channels.

10.1.2. Event-driven Consumer

Because it is the simpler of the two, we cover the event-driven consumer endpoint first. You may
recall that the SubscribableChannel interface provides a subscribe() method and that the method
accepts a MessageHandler parameter (as shown in SubscribableChannel). The following listing shows
the definition of the subscribe method:

subscribableChannel.subscribe(messageHandler);

Since a handler that is subscribed to a channel does not have to actively poll that channel, this is an
event-driven consumer, and the implementation provided by Spring Integration accepts a
SubscribableChannel and a MessageHandler, as the following example shows:

SubscribableChannel channel = context.getBean("subscribableChannel"”,
SubscribableChannel.class);

EventDrivenConsumer consumer = new EventDrivenConsumer(channel, exampleHandler);

10.1.3. Polling Consumer

Spring Integration also provides a PollingConsumer, and it can be instantiated in the same way
except that the channel must implement PollableChannel, as the following example shows:

PollableChannel channel = context.getBean("pollableChannel", PollableChannel.
class);

PollingConsumer consumer = new PollingConsumer(channel, exampleHandler);

o For more information regarding polling consumers, see Poller and Channel
Adapter.

There are many other configuration options for the polling consumer. For example, the trigger is a
required property. The following example shows how to set the trigger:

174

./channel.pdf#channel-interfaces-subscribablechannel
./polling-consumer.pdf#polling-consumer
./channel-adapter.pdf#channel-adapter
./channel-adapter.pdf#channel-adapter

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setTrigger(new IntervalTrigger (30, TimeUnit.SECONDS));

Spring Integration currently provides two implementations of the Trigger interface:
IntervalTrigger and CronTrigger. The IntervalTrigger is typically defined with a simple interval (in
milliseconds) but also supports an initialDelay property and a boolean fixedRate property (the
default is false —that is, no fixed delay). The following example sets both properties:

IntervalTrigger trigger = new IntervalTrigger(1000);
trigger.setInitialDelay(5000);
trigger.setFixedRate(true);

The result of the three settings in the preceding example is a trigger that waits five seconds and
then triggers every second.

The CronTrigger requires a valid cron expression. See the Javadoc for details. The following
example sets a new CronTrigger:

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

The result of the trigger defined in the previous example is a trigger that triggers every ten seconds,
Monday through Friday.

In addition to the trigger, you can specify two other polling-related configuration properties:
maxMessagesPerPoll and receiveTimeout. The following example shows how to set these two
properties:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer .setMaxMessagesPerPol1(10);
consumer.setReceiveTimeout(5000);

The maxMessagesPerPoll property specifies the maximum number of messages to receive within a
given poll operation. This means that the poller continues calling receive() without waiting, until
either null is returned or the maximum value is reached. For example, if a poller has a ten-second
interval trigger and a maxMessagesPerPoll setting of 25, and it is polling a channel that has 100
messages in its queue, all 100 messages can be retrieved within 40 seconds. It grabs 25, waits ten
seconds, grabs the next 25, and so on.

175

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/support/CronTrigger.html

The receiveTimeout property specifies the amount of time the poller should wait if no messages are
available when it invokes the receive operation. For example, consider two options that seem
similar on the surface but are actually quite different: The first has an interval trigger of 5 seconds
and a receive timeout of 50 milliseconds, while the second has an interval trigger of 50 milliseconds
and a receive timeout of 5 seconds. The first one may receive a message up to 4950 milliseconds
later than it arrived on the channel (if that message arrived immediately after one of its poll calls
returned). On the other hand, the second configuration never misses a message by more than 50
milliseconds. The difference is that the second option requires a thread to wait. However, as a
result, it can respond much more quickly to arriving messages. This technique, known as “long
polling”, can be used to emulate event-driven behavior on a polled source.

A polling consumer can also delegate to a Spring TaskExecutor, as the following example shows:

PollingConsumer consumer = new PollingConsumer(channel, handler);

TaskExecutor taskExecutor = context.getBean("exampleExecutor", TaskExecutor.class
)

consumer.setTaskExecutor(taskExecutor);

Furthermore, a PollingConsumer has a property called adviceChain. This property lets you to specify
a List of AOP advices for handling additional cross cutting concerns including transactions. These
advices are applied around the doPol1() method. For more in-depth information, see the sections on
AOP advice chains and transaction support under Endpoint Namespace Support.

The earlier examples show dependency lookups. However, keep in mind that these consumers are
most often configured as Spring bean definitions. In fact, Spring Integration also provides a
FactoryBean called ConsumerEndpointFactoryBean that creates the appropriate consumer type based
on the type of channel. Also, Spring Integration has full XML namespace support to even further
hide those details. The namespace-based configuration is in this guide featured as each component
type is introduced.

Many of the MessageHandler implementations can generate reply messages. As
mentioned earlier, sending messages is trivial when compared to receiving
messages. Nevertheless, when and how many reply messages are sent depends on
the handler type. For example, an aggregator waits for a number of messages to

e arrive and is often configured as a downstream consumer for a splitter, which can
generate multiple replies for each message it handles. When using the namespace
configuration, you do not strictly need to know all of the details. However, it still
might be worth knowing that several of these components share a common base
class, the AbstractReplyProducingMessageHandler, and that it provides a
setOutputChannel(..) method.

10.1.4. Endpoint Namespace Support

Throughout this reference manual, you can find specific configuration examples for endpoint
elements, such as router, transformer, service-activator, and so on. Most of these support an input-

176

channel attribute and many support an output-channel attribute. After being parsed, these endpoint
elements produce an instance of either the PollingConsumer or the EventDrivenConsumer, depending
on the type of the input-channel that is referenced: PollableChannel or SubscribableChannel,
respectively. When the channel is pollable, the polling behavior is based on the endpoint element’s
poller sub-element and its attributes.

The following listing lists all of the available configuration options for a poller:

<int:poller cron=
default="false"
error-channel=""
fixed-delay=""
fixed-rate=""
id=""
max-messages-per-poll=
receive-timeout=""
ref=""
task-executor=
time-unit="MILLISECONDS"
trigger="">
<int:advice-chain />
<int:transactional />

</int:poller>

SEGESISNCNCIOISNONORCRCRACRS)

® Provides the ability to configure pollers by using Cron expressions. The underlying
implementation uses an org.springframework.scheduling.support.CronTrigger. If this attribute is
set, none of the following attributes must be specified: fixed-delay, trigger, fixed-rate, and ref.

@ By setting this attribute to true, you can define exactly one global default poller. An exception is
raised if more than one default poller is defined in the application context. Any endpoints
connected to a PollableChannel (PollingConsumer) or any SourcePollingChannelAdapter that does
not have an explicitly configured poller then uses the global default poller. It defaults to false.
Optional.

@ Identifies the channel to which error messages are sent if a failure occurs in this poller’s
invocation. To completely suppress exceptions, you can provide a reference to the nullChannel.
Optional.

@ The fixed delay trigger uses a PeriodicTrigger under the covers. If you do not use the time-unit
attribute, the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: fixed-rate, trigger, cron, and ref.

® The fixed rate trigger uses a PeriodicTrigger under the covers. If you do not use the time-unit
attribute, the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: fixed-delay, trigger, cron, and ref.

® The ID referring to the poller’s underlying bean-definition, which is of type
org.springframework.integration.scheduling.PollerMetadata. The id attribute is required for a
top-level poller element, unless it is the default poller (default="true").

@ See Configuring An Inbound Channel Adapter for more information. If not specified, the default
value depends on the context. If you use a PollingConsumer, this attribute defaults to -1.

177

./channel-adapter.pdf#channel-adapter-namespace-inbound

However, if you use a SourcePollingChannelAdapter, the max-messages-per-poll attribute defaults
to 1. Optional.

® Value is set on the underlying class PollerMetadata. If not specified, it defaults to 1000
(milliseconds). Optional.

© Bean reference to another top-level poller. The ref attribute must not be present on the top-level
poller element. However, if this attribute is set, none of the following attributes must be
specified: fixed-rate, trigger, cron, and fixed-delay.

Provides the ability to reference a custom task executor. See TaskExecutor Support for further
information. Optional.

@ This attribute specifies the java.util.concurrent.TimeUnit enum value on the underlying
org.springframework.scheduling.support.PeriodicTrigger. Therefore, this attribute can be used
only in combination with the fixed-delay or fixed-rate attributes. If combined with either cron
or a trigger reference attribute, it causes a failure. The minimal supported granularity for a
PeriodicTrigger is milliseconds. Therefore, the only available options are milliseconds and
seconds. If this value is not provided, any fixed-delay or fixed-rate value is interpreted as
milliseconds. Basically, this enum provides a convenience for seconds-based interval trigger
values. For hourly, daily, and monthly settings, we recommend using a cron trigger instead.

@ Reference to any Spring-configured bean that implements the
org.springframework.scheduling.Trigger interface. However, if this attribute is set, none of the
following attributes must be specified: fixed-delay, fixed-rate, cron, and ref. Optional.

® Allows specifying extra AOP advices to handle additional cross-cutting concerns. See Transaction
Support for further information. Optional.

Pollers can be made transactional. See AOP Advice chains for further information. Optional.

Examples

A simple interval-based poller with a 1-second interval can be configured as follows:

<int:transformer input-channel="pollable"
ref="transformer"
output-channel="output">
<int:poller fixed-rate="1000"/>
</int:transformer>

As an alternative to using the fixed-rate attribute, you can also use the fixed-delay attribute.

For a poller based on a Cron expression, use the cron attribute instead, as the following example
shows:

178

<int:transformer input-channel="pollable"
ref="transformer"
output-channel="output">
<int:poller cron="*/1@ * * * * MON-FRI"/>
</int:transformer>

If the input channel is a PollableChannel, the poller configuration is required. Specifically, as
mentioned earlier, the trigger is a required property of the PollingConsumer class. Therefore, if you
omit the poller sub-element for a polling consumer endpoint’s configuration, an exception may be
thrown. The exception may also be thrown if you attempt to configure a poller on the element that
is connected to a non-pollable channel.

It is also possible to create top-level pollers, in which case only a ref attribute is required, as the
following example shows:

<int:poller id="weekdayPoller" cron="*/10 * * * * MON-FRI"/>

<int:transformer input-channel="pollable"
ref="transformer"
output-channel="output">
<int:poller ref="weekdayPoller"/>
</int:transformer>

The ref attribute is allowed only on the inner poller definitions. Defining this
o attribute on a top-level poller results in a configuration exception being thrown
during initialization of the application context.

Global Default Pollers

To simplify the configuration even further, you can define a global default poller. A single top-level
poller within an ApplicationContext may have the default attribute set to true. In that case, any
endpoint with a PollableChannel for its input channel, that is defined within the same
ApplicationContext, and has no explicitly configured poller sub-element uses that default. The
following example shows such a poller and a transformer that uses it:

<int:poller id="defaultPoller" default="true" max-messages-per-poll="5" fixed-rate=
"3000"/>

<!-- No <poller/> sub-element is necessary, because there is a default -->
<int:transformer input-channel="pollable"

ref="transformer"

output-channel="output"/>

179

Transaction Support

Spring Integration also provides transaction support for the pollers so that each receive-and-
forward operation can be performed as an atomic unit of work. To configure transactions for a
poller, add the <transactional/> sub-element. The following example shows the available attributes:

<int:poller fixed-delay="1000">
<int:transactional transaction-manager="txManager"
propagation="REQUIRED"
isolation="REPEATABLE_READ"
timeout="10000"
read-only="false"/>
</int:poller>

For more information, see Poller Transaction Support.

AOP Advice chains

Since Spring transaction support depends on the proxy mechanism with TransactionInterceptor
(AOP Advice) handling transactional behavior of the message flow initiated by the poller, you must
sometimes provide extra advices to handle other cross cutting behavior associated with the poller.
For that, the poller defines an advice-chain element that lets you add more advices in a class
that implements the MethodInterceptor interface. The following example shows how to define an
advice-chain for a poller:

<int:service-activator id="advicedSa" input-channel="goodInputWithAdvice" ref=
"testBean"
method="good" output-channel="output">
<int:poller max-messages-per-poll="1" fixed-rate="10000">
<int:advice-chain>
<ref bean="adviceA" />
<beans:bean class="org.something.SampleAdvice" />
<ref bean="txAdvice" />
</int:advice-chain>
</int:poller>
</int:service-activator>

For more information on how to implement the MethodInterceptor interface, see the AOP sections of
the Spring Framework Reference Guide. An advice chain can also be applied on a poller that does
not have any transaction configuration, letting you enhance the behavior of the message flow
initiated by the poller.

When using an advice chain, the <transactional/> child element cannot be

o specified. Instead, declare a <tx:advice/> bean and add it to the <advice-chain/>.
See Poller Transaction Support for complete configuration details.

180

./transactions.pdf#transaction-poller
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#aop-api
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#aop-api
./transactions.pdf#transaction-poller

TaskExecutor Support

The polling threads may be executed by any instance of Spring’s TaskExecutor abstraction. This
enables concurrency for an endpoint or group of endpoints. As of Spring 3.0, the core Spring
Framework has a task namespace, and its <executor/> element supports the creation of a simple
thread pool executor. That element accepts attributes for common concurrency settings, such as
pool-size and queue-capacity. Configuring a thread-pooling executor can make a substantial
difference in how the endpoint performs under load. These settings are available for each
endpoint, since the performance of an endpoint is one of the major factors to consider (the other
major factor being the expected volume on the channel to which the endpoint subscribes). To
enable concurrency for a polling endpoint that is configured with the XML namespace support,
provide the task-executor reference on its <poller/> element and then provide one or more of the
properties shown in the following example:

<int:poller task-executor="pool" fixed-rate="1000"/>

<task:executor id="pool"
pool-size="5-25"
queue-capacity="20"
keep-alive="120"/>

If you do not provide a task-executor, the consumer’s handler is invoked in the caller’s thread. Note
that the caller is usually the default TaskScheduler (see Configuring the Task Scheduler). You should
also keep in mind that the task-executor attribute can provide a reference to any implementation of
Spring’s TaskExecutor interface by specifying the bean name. The executor element shown earlier is
provided for convenience.

As mentioned earlier in the background section for polling consumers, you can also configure a
polling consumer in such a way as to emulate event-driven behavior. With a long receive-timeout
and a short interval-trigger, you can ensure a very timely reaction to arriving messages even on a
polled message source. Note that this applies only to sources that have a blocking wait call with a
timeout. For example, the file poller does not block. Each receive() call returns immediately and
either contains new files or not. Therefore, even if a poller contains a long receive-timeout, that
value would never be used in such a scenario. On the other hand, when using Spring Integration’s
own queue-based channels, the timeout value does have a chance to participate. The following
example shows how a polling consumer can receive messages nearly instantaneously:

<int:service-activator input-channel="someQueueChannel"
output-channel="output">
<int:poller receive-timeout="30000" fixed-rate="10"/>

</int:service-activator>

Using this approach does not carry much overhead, since, internally, it is nothing more then a

181

./configuration.pdf#namespace-taskscheduler

timed-wait thread, which does not require nearly as much CPU resource usage as (for example) a
thrashing, infinite while loop.

10.1.5. Changing Polling Rate at Runtime

When configuring a poller with a fixed-delay or a fixed-rate attribute, the default implementation
uses a PeriodicTrigger instance. The PeriodicTrigger is part of the core Spring Framework. It
accepts the interval only as a constructor argument. Therefore, it cannot be changed at runtime.

However, you can define your own implementation of the org.springframework.scheduling.Trigger
interface. You could even use the PeriodicTrigger as a starting point. Then you can add a setter for
the interval (period), or you can even embed your own throttling logic within the trigger itself. The
period property is used with each call to nextExecutionTime to schedule the next poll. To use this
custom trigger within pollers, declare the bean definition of the custom trigger in your application
context and inject the dependency into your poller configuration by using the trigger attribute,
which references the custom trigger bean instance. You can now obtain a reference to the trigger
bean and change the polling interval between polls.

For an example, see the Spring Integration Samples project. It contains a sample called dynamic-
poller, which uses a custom trigger and demonstrates the ability to change the polling interval at
runtime.

The sample provides a custom trigger that implements the org.springframework.scheduling.Trigger
interface. The sample’s trigger is based on Spring’s PeriodicTrigger implementation. However, the
fields of the custom trigger are not final, and the properties have explicit getters and setters, letting
you dynamically change the polling period at runtime.

It is important to note, though, that because the Trigger method is

o nextExecutionTime(), any changes to a dynamic trigger do not take effect until the
next poll, based on the existing configuration. It is not possible to force a trigger to
fire before its currently configured next execution time.

10.1.6. Payload Type Conversion

Throughout this reference manual, you can also see specific configuration and implementation
examples of various endpoints that accept a message or any arbitrary Object as an input parameter.
In the case of an Object, such a parameter is mapped to a message payload or part of the payload or
header (when using the Spring Expression Language). However, the type of input parameter of the
endpoint method sometimes does not match the type of the payload or its part. In this scenario, we
need to perform type conversion. Spring Integration provides a convenient way for registering type
converters (by using the Spring ConversionService) within its own instance of a conversion service
bean named integrationConversionService. That bean is automatically created as soon as the first
converter is defined by using the Spring Integration infrastructure. To register a converter, you can
implement org.springframework.core.convert.converter.Converter,
org.springframework.core.convert.converter.GenericConverter, or
org.springframework.core.convert.converter.ConverterFactory.

The Converter implementation is the simplest and converts from a single type to another. For more
sophistication, such as converting to a class hierarchy, you can implement a GenericConverter and

182

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/scheduling/Trigger.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/scheduling/support/PeriodicTrigger.html

possibly a ConditionalConverter. These give you complete access to the from and to type descriptors,
enabling complex conversions. For example, if you have an abstract class called Something that is
the target of your conversion (parameter type, channel data type, and so on), you have two
concrete implementations called Thing1l and Thing, and you wish to convert to one or the other
based on the input type, the GenericConverter would be a good fit. For more information, see the
Javadoc for these interfaces:

 org.springframework.core.convert.converter.Converter

* org.springframework.core.convert.converter.GenericConverter

* org.springframework.core.convert.converter.ConverterFactory

When you have implemented your converter, you can register it with convenient namespace
support, as the following example shows:

<int:converter ref="sampleConverter"/>

<bean id="sampleConverter" class="foo.bar.TestConverter"/>

Alternately, you can use an inner bean, as the following example shows:

<int:converter>
<bean class="o.s.i.config.xml.ConverterParserTests$TestConverter3"/>
</int:converter>

Starting with Spring Integration 4.0, you can use annotations to create the preceding configuration,
as the following example shows:

@Component
@IntegrationConverter
public class TestConverter implements Converter<Boolean, Number> {

public Number convert(Boolean source) {
return source ? 1 : 0;

Alternately, you can use the @Configuration annotation, as the following example shows:

183

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/core/convert/converter/Converter.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/core/convert/converter/package-summary.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/convert/converter/ConverterFactory.html

public class ContextConfiquration {

public SerializingConverter serializingConverter() {
return new SerializingConverter();

When configuring an application context, the Spring Framework lets you add a
conversionService bean (see Configuring a ConversionService chapter). This
service is used, when needed, to perform appropriate conversions during bean
creation and configuration.

In contrast, the integrationConversionService is used for runtime conversions.
These uses are quite different. Converters that are intended for use when wiring
bean constructor arguments and properties may produce unintended results if
used at runtime for Spring Integration expression evaluation against messages
within data type channels, payload type transformers, and so on.

o However, if you do want to use the Spring conversionService as the Spring
Integration integrationConversionService, you can configure an alias in the
application context, as the following example shows:

<alias name="conversionService" alias="
integrationConversionService"/>

In this case, the converters provided by the conversionService are available for
Spring Integration runtime conversion.

10.1.7. Content Type Conversion

Starting with version 5.0, by default, the method invocation mechanism is based on the
org.springframework.messaging.handler.invocation.InvocableHandlerMethod infrastructure. Its
HandlerMethodArgumentResolver implementations (such as PayloadArgumentResolver and
MessageMethodArgumentResolver) can use the MessageConverter abstraction to convert an incoming
payload to the target method argument type. The conversion can be based on the contentType
message header. For this purpose, Spring Integration provides the
ConfigurableCompositeMessageConverter, which delegates to a list of registered converters to be
invoked until one of them returns a non-null result. By default, this converter provides (in strict
order):

184

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#core-convert-Spring-config

1. MappingJackson2MessageConverter if the Jackson processor is present on the classpath

2. ByteArrayMessageConverter
3. ObjectStringMessageConverter

4. GenericMessageConverter

See the Javadoc (linked in the preceding list) for more information about their purpose and
appropriate contentType values for conversion. The ConfigurableCompositeMessageConverter is used
because it can be be supplied with any other MessageConverter implementations, including or
excluding the previously mentioned default converters. It can also be registered as an appropriate
bean in the application context, overriding the default converter, as the following example shows:

(name = IntegrationContextUtils.
ARGUMENT_RESOLVER_MESSAGE_CONVERTER_BEAN_NAME)
public ConfigurableCompositeMessageConverter compositeMessageConverter() {
List<MessageConverter> converters =
Arrays.asList(new MarshallingMessageConverter(jaxb2Marshaller()),
new JavaSerializationMessageConverter());
return new ConfigurableCompositeMessageConverter(converters);

Those two new converters are registered in the composite before the defaults. You can also not use
a ConfigurableCompositeMessageConverter but provide your own MessageConverter by registering a
bean with the name, integrationArgumentResolverMessageConverter (by setting the
IntegrationContextUtils.ARGUMENT _RESOLVER_MESSAGE_CONVERTER_BEAN_NAME property).

The MessageConverter-based (including contentType header) conversion is not
o available when using SpEL method invocation. In this case, only the regular class-
to-class conversion mentioned above in the Payload Type Conversion is available.

10.1.8. Asynchronous Polling

If you want the polling to be asynchronous, a poller can optionally specify a task-executor attribute
that points to an existing instance of any TaskExecutor bean (Spring 3.0 provides a convenient
namespace configuration through the task namespace). However, there are certain things you must
understand when configuring a poller with a TaskExecutor.

The problem is that there are two configurations in place, the poller and the TaskExecutor. They
must be in tune with each other. Otherwise, you might end up creating an artificial memory leak.

Consider the following configuration:

185

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jms/support/converter/MappingJackson2MessageConverter.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/converter/ByteArrayMessageConverter.html
https://docs.spring.io/spring-integration/docs/current/api//org/springframework/integration/support/converter/ObjectStringMessageConverter.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/converter/GenericMessageConverter.html

<int:channel id="publishChannel">
<int:queue />
</int:channel>

<int:service-activator input-channel="publishChannel" ref="myService">
<int:poller receive-timeout="5000" task-executor="taskExecutor" fixed-rate="

50" />

</int:service-activator>

<task:executor id="taskExecutor" pool-size="20" />

The preceding configuration demonstrates an out-of-tune configuration.

By default, the task executor has an unbounded task queue. The poller keeps scheduling new tasks
even though all the threads are blocked, waiting for either a new message to arrive or the timeout
to expire. Given that there are 20 threads executing tasks with a five-second timeout, they are
executed at a rate of 4 per second. However, new tasks are being scheduled at a rate of 20 per
second, so the internal queue in the task executor grows at a rate of 16 per second (while the
process is idle), so we have a memory leak.

One of the ways to handle this is to set the queue-capacity attribute of the task executor. Even 0 is a
reasonable value. You can also manage it by specifying what to do with messages that can not be
queued by setting the rejection-policy attribute of the Task Executor (for example, to DISCARD). In
other words, there are certain details you must understand when configuring TaskExecutor. See
“Task Execution and Scheduling” in the Spring reference manual for more detail on the subject.

10.1.9. Endpoint Inner Beans

Many endpoints are composite beans. This includes all consumers and all polled inbound channel
adapters. Consumers (polled or event-driven) delegate to a MessageHandler. Polled adapters obtain
messages by delegating to a MessageSource. Often, it is useful to obtain a reference to the delegate
bean, perhaps to change configuration at runtime or for testing. These beans can be obtained from
the ApplicationContext with well known names. MessageHandler instances are registered with the
application context with bean IDs similar to someConsumer.handler (wWhere 'consumer’ is the value of
the endpoint’s id attribute). MessageSource instances are registered with bean IDs similar to
somePolledAdapter.source, where 'somePolledAdapter’ is the ID of the adapter.

The preceding only applies to the framework component itself. You can instead use an inner bean
definition, as the following example shows:

<int:service-activator id="exampleServiceActivator" input-channel="inChannel"
output-channel = "outChannel" method="foo">
<beans:bean class="org.foo.ExampleServiceActivator"/>
</int:service-activator>

186

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#scheduling

The bean is treated like any inner bean declared and is not registered with the application context.
If you wish to access this bean in some other manner, declare it at the top level with an id and use
the ref attribute instead. See the Spring Documentation for more information.

10.2. Endpoint Roles

Starting with version 4.2, endpoints can be assigned to roles. Roles let endpoints be started and
stopped as a group. This is particularly useful when using leadership election, where a set of
endpoints can be started or stopped when leadership is granted or revoked, respectively. For this
purpose the framework registers a SmartLifecycleRoleController bean in the application context
with the name IntegrationContextUtils.INTEGRATION_LIFECYCLE_ROLE_CONTROLLER. Whenever it is
necessary to control lifecycles, this bean can be injected or @Autowired:

<bean class="com.some.project.SomelLifecycleControl">
<property name="roleController" ref="integrationLifecycleRoleController"/>
</bean>

You can assign endpoints to roles using XML, Java configuration, or programmatically. The
following example shows how to configure endpoint roles with XML:

<int:inbound-channel-adapter id="ica" channel="someChannel" expression=""foo""
role="cluster"
auto-startup="false">
<int:poller fixed-rate="60000" />
</int:inbound-channel-adapter>

The following example shows how to configure endpoint roles for a bean created in Java:

@Bean
@ServiceActivator (inputChannel = "sendAsyncChannel", autoStartup="false")
@ORole("cluster")
public MessageHandler sendAsyncHandler() {
return // some MessageHandler

}

The following example shows how to configure endpoint roles on a method in Java:

187

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-inner-beans

("#args[0].toLowerCase()")
("cluster")
public String handle(String payload) {
return payload.toUpperCase();
by

The following example shows how to configure endpoint roles by wusing the
SmartLifecycleRoleController in Java:

private SmartLifecycleRoleController roleController;

this.roleController.addSmartLifeCycleToRole("cluster”, someEndpoint);

The following example shows how to configure endpoint roles by using an IntegrationFlow in Java:

IntegrationFlow flow -> flow
.handle(..., e -> e.role("cluster"));

Each of these adds the endpoint to the cluster role.

Invoking roleController.startLifecyclesInRole("cluster”) and the corresponding stop method
starts and stops the endpoints.

e Any object that implements SmartLifecycle can be programmatically added — not
just endpoints.

The SmartLifecycleRoleController implements ApplicationlListener<AbstractlLeaderEvent> and it
automatically starts and stops its configured SmartLifecycle objects when leadership is granted or
revoked (when some bean publishes OnGrantedEvent or OnRevokedEvent, respectively).
When using leadership election to start and stop components, it is important to set
the auto-startup XML attribute (autoStartup bean property) to false so that the

application context does not start the components during context initialization.

Starting with version 4.3.8, the SmartLifecycleRoleController provides several status methods:

188

public Collection<String> getRoles() @
public boolean allEndpointsRunning(String role) @
public boolean noEndpointsRunning(String role) ®

public Map<String, Boolean> getEndpointsRunningStatus(String role) @

@ Returns a list of the roles being managed.
@ Returns true if all endpoints in the role are running.
® Returns true if none of the endpoints in the role are running.

@ Returns a map of component name : running status. The component name is usually the bean
name.

10.3. Leadership Event Handling

Groups of endpoints can be started and stopped based on leadership being granted or revoked,
respectively. This is useful in clustered scenarios where shared resources must be consumed by
only a single instance. An example of this is a file inbound channel adapter that is polling a shared
directory. (See Reading Files).

To participate in a leader election and be notified when elected leader, when leadership is revoked,
or on failure to acquire the resources to become leader, an application creates a component in the
application context called a “leader initiator”. Normally, a leader initiator is a SmartLifecycle, so it
starts (optionally) when the context starts and then publishes notifications when leadership
changes. You can also receive failure notifications by setting the publishFailedEvents to true
(starting with version 5.0), for cases when you want take a specific action if a failure occurs. By
convention, you should provide a Candidate that receives the callbacks. You can also revoke the
leadership through a Context object provided by the framework. Your code can also listen for
0.s.1.leader.event.AbstractLeaderEvent instances (the super class of OnGrantedEvent and
OnRevokedEvent) and respond accordingly (for instance, by using a SmartLifecycleRoleController).
The events contain a reference to the Context object. The following listing shows the definition of
the Context interface:

189

./file.pdf#file-reading

public interface Context {
boolean islLeader();
void yield();

String getRole();

Starting with version 5.0.6, the context provides a reference to the candidate’s role.

Spring Integration provides a basic implementation of a leader initiator that is based on the
LockRegistry abstraction. To use it, you need to create an instance as a bean, as the following
example shows:

public LockRegistrylLeaderInitiator leaderInitiator(LockRegistry locks) {
return new LockRegistrylLeaderInitiator(locks);

}

If the lock registry is implemented correctly, there is only ever at most one leader. If the lock
registry also provides locks that throw exceptions (ideally, InterruptedException) when they expire
or are broken, the duration of the leaderless periods can be as short as is allowed by the inherent
latency in the lock implementation. By default, the busyWaitMillis property adds some additional
latency to prevent CPU starvation in the (more usual) case that the locks are imperfect and you only
know they expired when you try to obtain one again.

See Zookeeper Leadership Event Handling for more information about leadership election and
events that use Zookeeper.

10.4. Messaging Gateways

A gateway hides the messaging API provided by Spring Integration. It lets your application’s
business logic be unaware of the Spring Integration API. By using a generic Gateway, your code
interacts with only a simple interface.

10.4.1. Enter the GatewayProxyFactoryBean

As mentioned earlier, it would be great to have no dependency on the Spring Integration
API—including the gateway class. For that reason, Spring Integration provides the
GatewayProxyFactoryBean, which generates a proxy for any interface and internally invokes the
gateway methods shown below. By using dependency injection, you can then expose the interface
to your business methods.

190

./zookeeper.pdf#zk-leadership

The following example shows an interface that can be used to interact with Spring Integration:

package org.cafeteria;
public interface Cafe {

void placeOrder(Order order);

10.4.2. Gateway XML Namespace Support

Namespace support is also provided. It lets you configure an interface as a service, as the following
example shows:

<int:gateway id="cafeService"
service-interface="org.cafeteria.Cafe"
default-request-channel="requestChannel"
default-reply-timeout="10000"
default-reply-channel="replyChannel"/>

With this configuration defined, the cafeService can now be injected into other beans, and the code
that invokes the methods on that proxied instance of the Cafe interface has no awareness of the
Spring Integration API. The general approach is similar to that of Spring Remoting (RMI,
HttpInvoker, and so on). See the “Samples” Appendix for an example that uses the gateway element
(in the Cafe demo).

The defaults in the preceding configuration are applied to all methods on the gateway interface. If a
reply timeout is not specified, the calling thread waits indefinitely for a reply. See Gateway
Behavior When No response Arrives.

The defaults can be overridden for individual methods. See Gateway Configuration with
Annotations and XML.

10.4.3. Setting the Default Reply Channel

Typically, you need not specify the default-reply-channel, since a Gateway auto-creates a
temporary, anonymous reply channel, where it listens for the reply. However, some cases may
prompt you to define a default-reply-channel (or reply-channel with adapter gateways, such as
HTTP, JMS, and others).

For some background, we briefly discuss some of the inner workings of the gateway. A gateway
creates a temporary point-to-point reply channel. It is anonymous and is added to the message
headers with the name, replyChannel. When providing an explicit default-reply-channel (reply-

191

./samples.pdf#samples

channel with remote adapter gateways), you can point to a publish-subscribe channel, which is so
named because you can add more than one subscriber to it. Internally, Spring Integration creates a
bridge between the temporary replyChannel and the explicitly defined default-reply-channel.

Suppose you want your reply to go not only to the gateway but also to some other consumer. In this
case, you want two things:

* A named channel to which you can subscribe

* That channel to be a publish-subscribe-channel

The default strategy used by the gateway does not satisfy those needs, because the reply channel
added to the header is anonymous and point-to-point. This means that no other subscriber can get a
handle to it and, even if it could, the channel has point-to-point behavior such that only one
subscriber would get the message. By defining a default-reply-channel you can point to a channel
of your choosing. In this case, that is a publish-subscribe-channel. The gateway creates a bridge
from it to the temporary, anonymous reply channel that is stored in the header.

You might also want to explicitly provide a reply channel for monitoring or auditing through an
interceptor (for example, wiretap). To configure a channel interceptor, you need a named channel.

10.4.4. Gateway Configuration with Annotations and XML

Consider the following example, which expands on the previous Cafe interface example by adding a
@Gateway annotation:

public interface Cafe {

(requestChannel="orders")
void placeOrder(Order order);

The @Header annotation lets you add values that are interpreted as message headers, as the
following example shows:

public interface FileWriter {

(requestChannel="filesOut")
void write(byte[] content, (FileHeaders.FILENAME) String filename);

If you prefer the XML approach to configuring gateway methods, you can add method elements to
the gateway configuration, as the following example shows:

192

./channel.pdf#channel-wiretap

<int:gateway id="myGateway" service-interface="org.foo.bar.TestGateway"
default-request-channel="1inputC">
<int:default-header name="calledMethod" expression="#gatewayMethod.name"/>
<int:method name="echo" request-channel="inputA" reply-timeout="2" request-
timeout="200"/>
<int:method name="echoUpperCase" request-channel="inputB"/>
<int:method name="echoViaDefault"/>
</int:qgateway>

You can also use XML to provide individual headers for each method invocation. This could be
useful if the headers you want to set are static in nature and you do not want to embed them in the
gateway’s method signature by using @Header annotations. For example, in the loan broker example,
we want to influence how aggregation of the loan quotes is done, based on what type of request
was initiated (single quote or all quotes). Determining the type of the request by evaluating which
gateway method was invoked, although possible, would violate the separation of concerns
paradigm (the method is a Java artifact). However, expressing your intention (meta information) in
message headers is natural in a messaging architecture. The following example shows how to add a
different message header for each of two methods:

<int:gateway id="loanBrokerGateway"
service-interface=

"org.springframework.integration.loanbroker.LoanBrokerGateway">
<int:method name="getLoanQuote" request-channel="1oanBrokerPreProcessingChannel
>

<int:header name="RESPONSE_TYPE" value="BEST"/>
</int:method>
<int:method name="getAlllLoanQuotes" request-channel=
"loanBrokerPreProcessingChannel">

<int:header name="RESPONSE _TYPE" value="ALL"/>

</int:method>

</int:gateway>

n

In the preceding example a different value is set for the 'RESPONSE_TYPE' header, based on the
gateway’s method.

Expressions and “Global” Headers

The <header/> element supports expression as an alternative to value. The SpEL expression is
evaluated to determine the value of the header. Starting with version 5.2, the #root object of the
evaluation context is a MethodArgsHolder with getMethod() and getArgs() accessors.

These two expression evaluation context variables are deprecated since version 5.2:

 #args: An Object[] containing the method arguments

193

» #gatewayMethod: The object (derived from java.reflect.Method) that represents the method in
the service-interface that was invoked. A header containing this variable can be used later in
the flow (for example, for routing). For example, if you wish to route on the simple method
name, you might add a header with the following expression: #gatewayMethod. name.

The java.reflect.Method is not serializable. A header with an expression of method

o is lost if you later serialize the message. Consequently, you may wish to use
method.name or method.toString() in those cases. The toString() method provides a
String representation of the method, including parameter and return types.

Since version 3.0, <default-header/> elements can be defined to add headers to all the messages
produced by the gateway, regardless of the method invoked. Specific headers defined for a method
take precedence over default headers. Specific headers defined for a method here override any
@Header annotations in the service interface. However, default headers do NOT override any @Header
annotations in the service interface.

The gateway now also supports a default-payload-expression, which is applied for all methods
(unless overridden).

10.4.5. Mapping Method Arguments to a Message

Using the configuration techniques in the previous section allows control of how method
arguments are mapped to message elements (payload and headers). When no explicit configuration
is used, certain conventions are used to perform the mapping. In some cases, these conventions
cannot determine which argument is the payload and which should be mapped to headers.
Consider the following example:

public String send1(Object thing1, Map thing2);

public String send2(Map thing1, Map thing2);

In the first case, the convention is to map the first argument to the payload (as long as it is not a Map)
and the contents of the second argument become headers.

In the second case (or the first when the argument for parameter thing1 is a Map), the framework
cannot determine which argument should be the payload. Consequently, mapping fails. This can
generally be resolved using a payload-expression, a @Payload annotation, or a @Headers annotation.

Alternatively (and whenever the conventions break down), you can take the entire responsibility
for mapping the method calls to messages. To do so, implement an MethodArgsMessageMapper and
provide it to the <gateway/> by using the mapper attribute. The mapper maps a MethodArgsHolder,
which is a simple class that wraps the java.reflect.Method instance and an Object[] containing the
arguments. When providing a custom mapper, the default-payload-expression attribute and
<default-header/> elements are not allowed on the gateway. Similarly, the payload-expression
attribute and <header/> elements are not allowed on any <method/> elements.

194

Mapping Method Arguments

The following examples show how method arguments can be mapped to the message and shows
some examples of invalid configuration:

195

public interface MyGateway {
void payloadAndHeaderMapWithoutAnnotations(String s, Map<String, Object> map);

void payloadAndHeaderMapWithAnnotations(@Payload String s, @Headers Map<
String, Object> map);

void headerValuesAndPayloadWithAnnotations(@Header ("k1") String x, @Payload
String s, @Header("k2") String y);

void mapOnly(Map<String, Object> map); // the payload is the map and no custom
headers are added

void twoMapsAndOneAnnotatedWithPayload(@Payload Map<String, Object> payload,
Map<String, Object> headers);

@Payload("#args[@] + #args[1] + "!'")
void payloadAnnotationAtMethodLevel(String a, String b);

@Payload("@someBean.exclaim(#args[0])")
void payloadAnnotationAtMethodLevelUsingBeanResolver(String s);

void payloadAnnotationWithExpression(@Payload("toUpperCase()") String s);

void payloadAnnotationWithExpressionUsingBeanResolver(@Payload(
"@someBean.sum(#this)") String s); // @

// 1invalid
void twoMapsWithoutAnnotations(Map<String, Object> m1, Map<String, Object> m2

// invalid
void twoPayloads(@Payload String s1, @Payload String s2);

// 1invalid
void payloadAndHeaderAnnotationsOnSameParameter(@Payload @Header("x") String
s);

// invalid
void payloadAndHeadersAnnotationsOnSameParameter(@Payload @Headers Map<String,
Object> map);

}

@ Note that, in this example, the SpEL variable, #this, refers to the argument—in this case, the
value of s.

The XML equivalent looks a little different, since there is no #this context for the method argument.

196

However, expressions can refer to method arguments by using the #args variable, as the following
example shows:

<int:gateway id="myGateway" service-interface="org.something.MyGateway">
<int:method name="send1" payload-expression="#args[@] + 'thing2'"/>
<int:method name="send2" payload-expression="@someBean.sum(#args[0])"/>
<int:method name="send3" payload-expression="#method"/>
<int:method name="send4">

<int:header name="thing1" expression="#args[2].toUpperCase()"/>

</int:method>

</int:qgateway>

10.4.6. @MessagingGateway Annotation

Starting with version 4.0, gateway service interfaces can be marked with a @MessagingGateway
annotation instead of requiring the definition of a <gateway /> xml element for configuration. The
following pair of examples compares the two approaches for configuring the same gateway:

197

<int:gateway id="myGateway" service-interface="org.something.TestGateway"
default-request-channel="1inputC">

<int:default-header name="calledMethod" expression="#gatewayMethod.name"/>

<int:method name="echo" request-channel="inputA" reply-timeout="2" request-
timeout="200"/>

<int:method name="echoUpperCase" request-channel="inputB">

<int:header name="thing1" value="thing2"/>

</int:method>

<int:method name="echoViaDefault"/>
</int:gateway>

@MessagingGateway(name = "myGateway", defaultRequestChannel = "inputC",
defaultHeaders = @GatewayHeader(name = "calledMethod",
expression="#gatewayMethod.name"))
public interface TestGateway {

@Gateway(requestChannel = "inputA", replyTimeout = 2, requestTimeout = 200)
String echo(String payload);

@Gateway(requestChannel = "inputB", headers = @GatewayHeader(name = "thing1",
value="thing2"))
String echoUpperCase(String payload);

String echoViaDefault(String payload);

}
Similarly to the XML version, when Spring Integration discovers these annotations
during a component scan, it creates the proxy implementation with its messaging
infrastructure. To perform this scan and register the BeanDefinition in the
application context, add the @IntegrationComponentScan annotation to a
o @Configuration class. The standard @ComponentScan infrastructure does not deal

with interfaces. Consequently, we introduced the custom
@IntegrationComponentScan logic to fine the @MessagingGateway annotation on the
interfaces and register GatewayProxyFactoryBean instances for them. See also
Annotation Support.

Along with the @MessagingGateway annotation you can mark a service interface with the @Profile
annotation to avoid the bean creation, if such a profile is not active.

If you have no XML configuration, the @EnableIntegration annotation is required

o on at least one @Configuration class. See Configuration and @EnableIntegration for
more information.

198

./configuration.pdf#annotations
./overview.pdf#configuration-enable-integration
./overview.pdf#configuration-enable-integration

10.4.7. Invoking No-Argument Methods

When invoking methods on a Gateway interface that do not have any arguments, the default
behavior is to receive a Message from a PollableChannel.

Sometimes, however, you may want to trigger no-argument methods so that you can interact with
other components downstream that do not require user-provided parameters, such as triggering
no-argument SQL calls or stored procedures.

To achieve send-and-receive semantics, you must provide a payload. To generate a payload, method
parameters on the interface are not necessary. You can either use the @Payload annotation or the
payload-expression attribute in XML on the method element. The following list includes a few
examples of what the payloads could be:

* a literal string

* #gatewayMethod.name

* new java.util.Date()

o @someBean.someMethod()'s return value

The following example shows how to use the @Payload annotation:

public interface Cafe {

@Payload("new java.util.Date()")
List<Order> retrieveOpenOrders();

If a method has no argument and no return value but does contain a payload expression, it is
treated as a send-only operation.

10.4.8. Error Handling

The gateway invocation can result in errors. By default, any error that occurs downstream is re-
thrown “as is” upon the gateway’s method invocation. For example, consider the following simple
flow:

gateway -> service-activator

If the service invoked by the service activator throws a MyException (for example), the framework
wraps it in a MessagingException and attaches the message passed to the service activator in the
failedMessage property. Consequently, any logging performed by the framework has full the context
of the failure. By default, when the exception is caught by the gateway, the MyException is
unwrapped and thrown to the caller. You can configure a throws clause on the gateway method
declaration to match the particular exception type in the cause chain. For example, if you want to

199

catch a whole MessagingException with all the messaging information of the reason of downstream
error, you should have a gateway method similar to the following:

public interface MyGateway {

void performProcess() throws MessagingException;

Since we encourage POJO programming, you may not want to expose the caller to messaging
infrastructure.

If your gateway method does not have a throws clause, the gateway traverses the cause tree, looking
for a RuntimeException that is not a MessagingException. If none is found, the framework throws the
MessagingException. If the MyException in the preceding discussion has a cause of SomeOtherException
and your method throws SomeOtherException, the gateway further unwraps that and throws it to the
caller.

When a gateway is declared with no service-interface, an internal framework interface
RequestReplyExchanger is used.

Consider the following example:

public interface RequestReplyExchanger {

Message<?> exchange(Message<?> request) throws MessagingException;

Before version 5.0, this exchange method did not have a throws clause and, as a result, the exception
was unwrapped. If you use this interface and want to restore the previous unwrap behavior, use a
custom service-interface instead or access the cause of the MessagingException yourself.

However, you may want to log the error rather than propagating it or you may want to treat an
exception as a valid reply (by mapping it to a message that conforms to some "error message"
contract that the caller understands). To accomplish this, the gateway provides support for a
message channel dedicated to the errors by including support for the error-channel attribute. In the
following example, a 'transformer’ creates a reply Message from the Exception:

200

<int:gateway id="sampleGateway"
default-request-channel="gatewayChannel"
service-interface="foo.bar.SimpleGateway"
error-channel="exceptionTransformationChannel"/>

<int:transformer input-channel="exceptionTransformationChannel"
ref="exceptionTransformer" method="createErrorResponse"/>

The exceptionTransformer could be a simple POJO that knows how to create the expected error
response objects. That becomes the payload that is sent back to the caller. You could do many more
elaborate things in such an “error flow”, if necessary. It might involve routers (including Spring
Integration’s ErrorMessageExceptionTypeRouter), filters, and so on. Most of the time, a simple
'transformer’ should be sufficient, however.

Alternatively, you might want to only log the exception (or send it somewhere asynchronously). If
you provide a one-way flow, nothing would be sent back to the caller. If you want to completely
suppress exceptions, you can provide a reference to the global nul1Channel (essentially a /dev/null
approach). Finally, as mentioned above, if no error-channel is defined, then the exceptions
propagate as usual.

When you use the @MessagingGateway annotation (see @MessagingGateway Annotation), you can use
use the errorChannel attribute.

Starting with version 5.0, when you use a gateway method with a void return type (one-way flow),
the error-channel reference (if provided) is populated in the standard errorChannel header of each
sent message. This feature allows a downstream asynchronous flow, based on the standard
ExecutorChannel configuration (or a QueueChannel), to override a default global errorChannel
exceptions sending behavior. Previously you had to manually specify an errorChannel header with
the @GatewayHeader annotation or the <header> element. The error-channel property was ignored for
void methods with an asynchronous flow. Instead, error messages were sent to the default
errorChannel.

201

Exposing the messaging system through simple POJI Gateways provides benefits,
but “hiding” the reality of the underlying messaging system does come at a price,
so there are certain things you should consider. We want our Java method to
return as quickly as possible and not hang for an indefinite amount of time while
the caller is waiting on it to return (whether void, a return value, or a thrown
Exception). When regular methods are used as a proxies in front of the messaging
system, we have to take into account the potentially asynchronous nature of the
underlying messaging. This means that there might be a chance that a message
that was initiated by a gateway could be dropped by a filter and never reach a
component that is responsible for producing a reply. Some service activator
method might result in an exception, thus providing no reply (as we do not
generate null messages). In other words, multiple scenarios can cause a reply

o message to never come. That is perfectly natural in messaging systems. However,
think about the implication on the gateway method. The gateway’s method input
arguments were incorporated into a message and sent downstream. The reply
message would be converted to a return value of the gateway’s method. So you
might want to ensure that, for each gateway call, there is always a reply message.
Otherwise, your gateway method might never return and hang indefinitely. One
way to handle this situation is by using an asynchronous gateway (explained later
in this section). Another way of handling it is to explicitly set the reply-timeout
attribute. That way, the gateway does not hang any longer than the time specified
by the reply-timeout and returns 'null' if that timeout does elapse. Finally, you
might want to consider setting downstream flags, such as 'requires-reply’, on a
service-activator or 'throw-exceptions-on-rejection' on a filter. These options are
discussed in more detail in the final section of this chapter.

If the downstream flow returns an ErrorMessage, its payload (a Throwable) is treated
as a regular downstream error. If there is an error-channel configured, it is sent to
the error flow. Otherwise the payload is thrown to the caller of the gateway.
Similarly, if the error flow on the error-channel returns an ErrorMessage, its
payload is thrown to the caller. The same applies to any message with a Throwable
payload. This can be useful in asynchronous situations when when you need to

o propagate an Exception directly to the caller. To do so, you can either return an
Exception (as the reply from some service) or throw it. Generally, even with an
asynchronous flow, the framework takes care of propagating an exception thrown
by the downstream flow back to the gateway. The TCP Client-Server Multiplex
sample demonstrates both techniques to return the exception to the caller. It
emulates a socket IO error to the waiting thread by using an aggregator with group-
timeout (see Aggregator and Group Timeout) and a MessagingTimeoutException reply
on the discard flow.

10.4.9. Gateway Timeouts

Gateways have two timeout properties: requestTimeout and replyTimeout. The request timeout
applies only if the channel can block (for example, a bounded QueueChannel that is full). The
replyTimeout value is how long the gateway waits for a reply or returns null. It defaults to infinity.

202

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/tcp-client-server-multiplex
./aggregator.pdf#agg-and-group-to

The timeouts can be set as defaults for all methods on the gateway (defaultRequestTimeout and
defaultReplyTimeout) or on the MessagingGateway interface annotation. Individual methods can
override these defaults (in <method/> child elements) or on the @Gateway annotation.

Starting with version 5.0, the timeouts can be defined as expressions, as the following example
shows:

(payloadExpression = "#args[@]", requestChannel = "someChannel",
requestTimeoutExpression = "#args[1]", replyTimeoutExpression = "#args[2]
||)
String lateReply(String payload, long requestTimeout, long replyTimeout);

The evaluation context has a BeanResolver (use @someBean to reference other beans), and the #args
array variable is available.

When configuring with XML, the timeout attributes can be a long value or a SpEL expression, as the
following example shows:

<method name="someMethod" request-channel="someRequestChannel"
payload-expression="#args[0]"
request-timeout="1000"
reply-timeout="#args[1]">

</method>

10.4.10. Asynchronous Gateway

As a pattern, the messaging gateway offers a nice way to hide messaging-specific code while still
exposing the full capabilities of the messaging system. As described earlier, the
GatewayProxyFactoryBean provides a convenient way to expose a proxy over a service-interface
giving you POJO-based access to a messaging system (based on objects in your own domain,
primitives/Strings, or other objects). However, when a gateway is exposed through simple POJO
methods that return values, it implies that, for each request message (generated when the method
is invoked), there must be a reply message (generated when the method has returned). Since
messaging systems are naturally asynchronous, you may not always be able to guarantee the
contract where “for each request, there will always be be a reply”. Spring Integration 2.0
introduced support for an asynchronous gateway, which offers a convenient way to initiate flows
when you may not know if a reply is expected or how long it takes for replies to arrive.

To handle these types of scenarios, Spring Integration uses java.util.concurrent.Future instances to
support an asynchronous gateway.

From the XML configuration, nothing changes, and you still define asynchronous gateway the same
way as you define a regular gateway, as the following example shows:

203

<int:gateway id="mathService"
service-interface=
"org.springframework.integration.sample.gateway.futures.MathServiceGateway"
default-request-channel="requestChannel"/>

However, the gateway interface (a service interface) is a little different, as follows:

public interface MathServiceGateway {

Future<Integer> multiplyByTwo(int i);

As the preceding example shows, the return type for the gateway method is a Future. When
GatewayProxyFactoryBean sees that the return type of the gateway method is a Future, it immediately
switches to the asynchronous mode by using an AsyncTaskExecutor. That is the extent of the
differences. The call to such a method always returns immediately with a Future instance. Then you
can interact with the Future at your own pace to get the result, cancel, and so on. Also, as with any
other use of Future instances, calling get() may reveal a timeout, an execution exception, and so on.
The following example shows how to use a Future that returns from an asynchronous gateway:

MathServiceGateway mathService = ac.getBean("mathService", MathServiceGateway
.class);

Future<Integer> result = mathService.multiplyByTwo(number);

// do something else here since the reply might take a moment

int finalResult = result.get(1000, TimeUnit.SECONDS);

For a more detailed example, see the async-gateway sample in the Spring Integration samples.

ListenableFuture

Starting with version 4.1, asynchronous gateway methods can also return ListenableFuture
(introduced in Spring Framework 4.0). These return types let you provide a callback, which is
invoked when the result is available (or an exception occurs). When the gateway detects this return
type and the task executor is an AsynclListenableTaskExecutor, the executor’s submitListenable()
method is invoked. The following example shows how to use a ListenableFuture:

204

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/async-gateway

ListenableFuture<String> result = this.asyncGateway.async("something");
result.addCallback(new ListenableFutureCallback<String>() {

public void onSuccess(String result) {

}

public void onFailure(Throwable t) {

}
};
AsyncTaskExecutor
By default, the GatewayProxyFactoryBean uses
org.springframework.core.task.SimpleAsyncTaskExecutor when submitting internal

AsyncInvocationTask instances for any gateway method whose return type is a Future. However, the
async-executor attribute in the <gateway/> element’s configuration lets you provide a reference to
any implementation of java.util.concurrent.Executor available within the Spring application
context.

The (default) SimpleAsyncTaskExecutor supports both Future and ListenableFuture return types,
returning FutureTask or ListenableFutureTask respectively. See CompletablefFuture. Even though
there is a default executor, it is often useful to provide an external one so that you can identify its
threads in logs (when using XML, the thread name is based on the executor’s bean name), as the
following example shows:

public AsyncTaskExecutor exec() {
SimpleAsyncTaskExecutor simpleAsyncTaskExecutor = new SimpleAsyncTaskExecutor

();

simpleAsyncTaskExecutor.setThreadNamePrefix("exec-");
return simpleAsyncTaskExecutor;

(asyncExecutor = "exec")
public interface ExecGateway {

(requestChannel = "gatewayChannel")
Future<?> doAsync(String foo);

205

If you wish to return a different Future implementation, you can provide a custom executor or
disable the executor altogether and return the Future in the reply message payload from the
downstream flow. To disable the executor, set it to null in the GatewayProxyFactoryBean (by using

setAsyncTaskExecutor(null)). When configuring the gateway with XML, use async-executor="".
When configuring by using the @MessagingGateway annotation, use code similar to the following:

(asyncExecutor = AnnotationConstants.NULL)
public interface NoExecGateway {

(requestChannel = "gatewayChannel")
Future<?> doAsync(String foo);

}
If the return type is a specific concrete Future implementation or some other sub-
o interface that is not supported by the configured executor, the flow runs on the
caller’s thread and the flow must return the required type in the reply message
payload.
CompletableFuture

Starting with version 4.2, gateway methods can now return CompletableFuture<?>. There are two
modes of operation when returning this type:

* When an async executor is provided and the return type is exactly CompletableFuture (not a
subclass), the framework runs the task on the executor and immediately returns a
CompletableFuture to the caller. CompletableFuture.supplyAsync(Supplier<U> supplier, Executor
executor) is used to create the future.

* When the async executor is explicitly set to null and the return type is CompletableFuture or the
return type is a subclass of CompletableFuture, the flow is invoked on the caller’s thread. In this
scenario, the downstream flow is expected to return a CompletableFuture of the appropriate

type.

Usage Scenarios

In the following scenario, the caller thread returns immediately with a CompletableFuture<Invoice>,
which is completed when the downstream flow replies to the gateway (with an Invoice object).

CompletableFuture<Invoice> order(Order order);

<int:gateway service-interface="something.Service" default-request-channel="
orders" />

206

In the following scenario, the caller thread returns with a CompletableFuture<Invoice> when the
downstream flow provides it as the payload of the reply to the gateway. Some other process must
complete the future when the invoice is ready.

CompletableFuture<Invoice> order(Order order);

<int:gateway service-interface="foo.Service" default-request-channel="orders"
async-executor="" />

In the following scenario, the caller thread returns with a CompletableFuture<Invoice> when the
downstream flow provides it as the payload of the reply to the gateway. Some other process must
complete the future when the invoice is ready. If DEBUG logging is enabled, a log entry is emitted,
indicating that the async executor cannot be used for this scenario.

MyCompletableFuture<Invoice> order(Order order);

<int:gateway service-interface="foo.Service" default-request-channel="orders" />

CompletableFuture instances can be used to perform additional manipulation on the reply, as the
following example shows:

CompletableFuture<String> process(String data);

CompletableFuture result = process("foo")
.thenApply(t -> t.toUpperCase());

String out = result.get(10, TimeUnit.SECONDS);

Reactor Mono

Starting with version 5.0, the GatewayProxyFactoryBean allows the use of Project Reactor with
gateway interface methods, using a Mono<T> return type. The internal AsyncInvocationTask is
wrapped in a Mono. fromCallable().

A NMono can be used to retrieve the result later (similar to a Future<?>), or you can consume from it

207

https://projectreactor.io/
https://github.com/reactor/reactor-core

with the dispatcher by invoking your Consumer when the result is returned to the gateway.

The Mono is not immediately flushed by the framework. Consequently, the
underlying message flow is not started before the gateway method returns (as it is

o with a Future<?> Executor task). The flow starts when the Mono is subscribed to.
Alternatively, the Mono (being a Composable) might be a part of Reactor stream,
when the subscribe() is related to the entire Flux. The following example shows
how to create a gateway with Project Reactor:

public static interface TestGateway {

(requestChannel = "promiseChannel™)
Mono<Integer> multiply(Integer value);

}

(inputChannel = "promiseChannel")
public Integer multiply(Integer value) {
return value * 2;

}

Flux.just("1", "2", "3", "4", "5")
.map(Integer::parselnt)
.flatMap(this.testGateway: :multiply)
.collectList()

.subscribe(integers -> ...);

Another example that uses Project Reactor is a simple callback scenario, as the following example
shows:

Mono<Invoice> mono = service.process(myOrder);

mono.subscribe(invoice -> handleInvoice(invoice));

The calling thread continues, with handleInvoice() being called when the flow completes.

Downstream Flows Returning an Asynchronous Type

As mentioned in the ListenableFuture section above, if you wish some downstream component to

208

return a message with an async payload (Future, Mono, and others), you must explicitly set the async
executor to null (or "" when using XML configuration). The flow is then invoked on the caller
thread and the result can be retrieved later.

void Return Type

Unlike the return types mentioned earlier, when the method return type is void, the framework
cannot implicitly determine that you wish the downstream flow to run asynchronously, with the
caller thread returning immediately. In this case, you must annotate the interface method with
@Async, as the following example shows:

public interface MyGateway {
(requestChannel = "sendAsyncChannel")

void sendAsync(String payload);

Unlike the Future<?> return types, there is no way to inform the caller if some exception is thrown
by the flow, unless some custom TaskExecutor (such as an ErrorHandlingTaskExecutor) is associated
with the @Async annotation.

10.4.11. Gateway Behavior When No response Arrives

As explained earlier, the gateway provides a convenient way of interacting with a messaging
system through POJO method invocations. However, a typical method invocation, which is
generally expected to always return (even with an Exception), might not always map one-to-one to
message exchanges (for example, a reply message might not arrive —the equivalent to a method
not returning).

The rest of this section covers various scenarios and how to make the gateway behave more
predictably. Certain attributes can be configured to make synchronous gateway behavior more
predictable, but some of them might not always work as you might expect. One of them is reply-
timeout (at the method level or default-reply-timeout at the gateway level). We examine the reply-
timeout attribute to see how it can and cannot influence the behavior of the synchronous gateway
in various scenarios. We examine a single-threaded scenario (all components downstream are
connected through a direct channel) and multi-threaded scenarios (for example, somewhere
downstream you may have a pollable or executor channel that breaks the single-thread boundary).

Long-running Process Downstream

Sync Gateway, single-threaded

If a component downstream is still running (perhaps because of an infinite loop or a slow
service), setting a reply-timeout has no effect, and the gateway method call does not return until
the downstream service exits (by returning or throwing an exception).

209

Sync Gateway, multi-threaded

If a component downstream is still running (perhaps because of an infinite loop or a slow
service) in a multi-threaded message flow, setting the reply-timeout has an effect by allowing
gateway method invocation to return once the timeout has been reached, because the
GatewayProxyFactoryBean polls on the reply channel, waiting for a message until the timeout
expires. However, if the timeout has been reached before the actual reply was produced, it could
result in a 'null' return from the gateway method. You should understand that the reply message
(if produced) is sent to a reply channel after the gateway method invocation might have
returned, so you must be aware of that and design your flow with it in mind.

Downstream Component Returns null’

Sync Gateway — single-threaded

If a component downstream returns mull' and no reply-timeout has been configured, the
gateway method call hangs indefinitely, unless a reply-timeout has been configured or the
requires-reply attribute has been set on the downstream component (for example, a service
activator) that might return 'null'. In this case, an exception would be thrown and propagated to
the gateway.

Sync Gateway — multi-threaded

The behavior is the same as the previous case.

Downstream Component Return Signature is 'void' While Gateway Method Signature Is Non-
void

Sync Gateway — single-threaded

If a component downstream returns 'void' and no reply-timeout has been configured, the
gateway method call hangs indefinitely unless a reply-timeout has been configured.

Sync Gateway — multi-threaded

The behavior is the same as the previous case.

Downstream Component Results in Runtime Exception

Sync Gateway — single-threaded

If a component downstream throws a runtime exception, the exception is propagated through
an error message back to the gateway and re-thrown.

Sync Gateway — multi-threaded

The behavior is the same as the previous case.

210

You should understand that, by default, reply-timeout is unbounded. Consequently,
if you do not explicitly set the reply-timeout, your gateway method invocation
might hang indefinitely. So, to make sure you analyze your flow and if there is
even a remote possibility of one of these scenarios to occur, you should set the
reply-timeout attribute to a "'safe™ value. Even better, you can set the requires-
reply attribute of the downstream component to 'true’ to ensure a timely response,
as produced by the throwing of an exception as soon as that downstream
component returns null internally. However you should also realize that there are
some scenarios (see the first one) where reply-timeout does not help. That means it

o is also important to analyze your message flow and decide when to use a
synchronous gateway rather than an asynchrnous gateway. As described earlier,
the latter case is a matter of defining gateway methods that return Future
instances. Then you are guaranteed to receive that return value, and you have
more granular control over the results of the invocation. Also, when dealing with a
router, you should remember that setting the resolution-required attribute to
'true’ results in an exception thrown by the router if it can not resolve a particular
channel. Likewise, when dealing with a Filter, you can set the throw-exception-on-
rejection attribute. In both of these cases, the resulting flow behaves like it contain
a service activator with the 'requires-reply' attribute. In other words, it helps to
ensure a timely response from the gateway method invocation.

m

reply-timeout is wunbounded for <gateway/> elements (created by the
GatewayProxyFactoryBean). Inbound gateways for external integration (WS, HTTP,
and so on) share many characteristics and attributes with these gateways.

o However, for those inbound gateways, the default reply-timeout is 1000
milliseconds (one second). If a downstream asynchronous hand-off is made to
another thread, you may need to increase this attribute to allow enough time for
the flow to complete before the gateway times out.

You should understand that the timer starts when the thread returns to the
gateway — that is, when the flow completes or a message is handed off to another

o thread. At that time, the calling thread starts waiting for the reply. If the flow was
completely synchronous, the reply is immediately available. For asynchronous
flows, the thread waits for up to this time.

See IntegrationFlow as Gateway in the Java DSL chapter for options to define gateways through
IntegrationFlows.

10.5. Service Activator

The service activator is the endpoint type for connecting any Spring-managed object to an input
channel so that it may play the role of a service. If the service produces output, it may also be
connected to an output channel. Alternatively, an output-producing service may be located at the
end of a processing pipeline or message flow, in which case the inbound message’s replyChannel
header can be used. This is the default behavior if no output channel is defined. As with most of the
configuration options described here, the same behavior actually applies for most of the other

211

./dsl.pdf#java-dsl-gateway
./dsl.pdf#java-dsl-gateway

components.

10.5.1. Configuring Service Activator

To create a service activator, use the 'service-activator' element with the 'input-channel' and 'ref"
attributes, as the following example shows:

<int:service-activator input-channel="exampleChannel" ref="exampleHandler"/>

The preceding configuration selects all the methods from the exampleHandler that meet one of the
messaging requirements, which are as follows:

e annotated with @ServiceActivator
* ispublic

e not return void if requiresReply == true

The target method for invocation at runtime is selected for each request message by their payload
type or as a fallback to the Message<?> type if such a method is present on target class.

Starting with version 5.0, one service method can be marked with the
@org.springframework.integration.annotation.Default as a fallback for all non-matching cases. This
can be useful when using content-type conversion with the target method being invoked after
conversion.

To delegate to an explicitly defined method of any object, you can add the method attribute, as the
following example shows:

<int:service-activator input-channel="exampleChannel" ref="somePojo" method=
"someMethod" />

In either case, when the service method returns a non-null value, the endpoint tries to send the
reply message to an appropriate reply channel. To determine the reply channel, it first checks
whether an output-channel was provided in the endpoint configuration, as the following example
shows:

<int:service-activator input-channel="exampleChannel” output-channel="
replyChannel”
ref="somePojo" method="someMethod"/>

If the method returns a result and no output-channel is defined, the framework then checks the
request message’s replyChannel header value. If that value is available, it then checks its type. If it is
a MessageChannel, the reply message is sent to that channel. If it is a String, the endpoint tries to
resolve the channel name to a channel instance. If the channel cannot be resolved, a

212

./endpoint.pdf#content-type-conversion

DestinationResolutionException is thrown. It it can be resolved, the message is sent there. If the
request message does not have a replyChannel header and the reply object is a Message, its
replyChannel header is consulted for a target destination. This is the technique used for request-
reply messaging in Spring Integration, and it is also an example of the return address pattern.

If your method returns a result and you want to discard it and end the flow, you should configure
the output-channel to send to a NullChannel. For convenience, the framework registers one with the
name, nul1Channel. See Special Channels for more information.

The service activator is one of those components that is not required to produce a reply message. If
your method returns null or has a void return type, the service activator exits after the method
invocation, without any signals. This behavior can be controlled by the
AbstractReplyProducingMessageHandler.requiresReply option, which is also exposed as requires-
reply when configuring with the XML namespace. If the flag is set to true and the method returns
null, a ReplyRequiredException is thrown.

The argument in the service method could be either a message or an arbitrary type. If the latter,
then it is assumed to be a message payload, which is extracted from the message and injected into
the service method. We generally recommend this approach, as it follows and promotes a POJO
model when working with Spring Integration. Arguments may also have @Header or @Headers
annotations, as described in Annotation Support.

The service method is not required to have any arguments, which means you can
implement event-style service activators (where all you care about is an invocation

o of the service method) and not worry about the contents of the message. Think of
it as a null JMS message. An example use case for such an implementation is a
simple counter or monitor of messages deposited on the input channel.

Starting with version 4.1, the framework correctly converts message properties (payload and
headers) to the Java 8 Optional POJO method parameters, as the following example shows:

public class MyBean {
public String computeValue(Optional<String> payload,
(value="foo", required=false) String fool,
(value="foo") Optional<String> foo2) {
if (payload.isPresent()) {
String value = payload.get();

}

else {

We generally recommend using a ref attribute if the custom service activator handler

213

./channel.pdf#channel-special-channels
./configuration.pdf#annotations

implementation can be reused in other <service-activator> definitions. However, if the custom
service activator handler implementation is only used within a single definition of the <service-
activator>, you can provide an inner bean definition, as the following example shows:

<int:service-activator id="exampleServiceActivator" input-channel="inChannel"
output-channel = "outChannel" method="someMethod">
<beans:bean class="org.something.ExampleServiceActivator"/>
</int:service-activator>

Using both the ref attribute and an inner handler definition in the same <service-
o activator> configuration is not allowed, as it creates an ambiguous condition and
results in an exception being thrown.

If the ref attribute references a bean that extends AbstractMessageProducingHandler
(such as handlers provided by the framework itself), the configuration is

o optimized by injecting the output channel into the handler directly. In this case,
each ref must be to a separate bean instance (or a prototype-scoped bean) or use
the inner <bean/> configuration type. If you inadvertently reference the same
message handler from multiple beans, you get a configuration exception.

Service Activators and the Spring Expression Language (SpEL)

Since Spring Integration 2.0, service activators can also benefit from SpEL.

For example, you can invoke any bean method without pointing to the bean in a ref attribute or
including it as an inner bean definition, as follows:

<int:service-activator input-channel="in" output-channel="out"
expression="@accountService.processAccount(payload, headers.accountId)"/>

<bean id="accountService" class="thing1.thing2.Account"/>

In the preceding configuration, instead of injecting 'accountService' by using a ref or as an inner
bean, we use SpEL’s @beanId notation and invoke a method that takes a type compatible with the
message payload. We also pass a header value. Any valid SpEL expression can be evaluated against
any content in the message. For simple scenarios, your service activators need not reference a bean
if all logic can be encapsulated in such an expression, as the following example shows:

<int:service-activator input-channel="in" output-channel="out" expression="payload
* 2|l/>

214

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

In the preceding configuration, our service logic is to multiply the payload value by two. SpEL lets
us handle it relatively easily.

See Service Activators and the .handle() method in the Java DSL chapter for more information
about configuring service activator.

10.5.2. Asynchronous Service Activator

The service activator is invoked by the calling thread. This is an upstream thread if the input
channel is a SubscribableChannel or a poller thread for a PollableChannel. If the service returns a
ListenableFuture<?>, the default action is to send that as the payload of the message sent to the
output (or reply) channel. Starting with version 4.3, you can now set the async attribute to true (by
using setAsync(true) when using Java configuration). If the service returns a ListenableFuture<?>
when this the async attribute is set to true, the calling thread is released immediately and the reply
message is sent on the thread (from within your service) that completes the future. This is
particularly advantageous for long-running services that use a PollableChannel, because the poller
thread is released to perform other services within the framework.

If the service completes the future with an Exception, normal error processing occurs. An
ErrorMessage is sent to the errorChannel message header, if present. Otherwise, an ErrorMessage is
sent to the default errorChannel (if available).

10.5.3. Service Activator and Method Return Type

The service method can return any type which becomes reply message payload. In this case a new
Message<?> object is created and all the headers from a request message are copied. This works the
same way for most Spring Integration MessageHandler implementations, when interaction is based
on a POJO method invocation.

A complete Message<?> object can also be returned from the method. However keep in mind that,
unlike transformers, for a Service Activator this message will be modified by copying the headers
from the request message if they are not already present in the returned message. So, if your
method parameter is a Message<?> and you copy some, but not all, existing headers in your service
method, they will reappear in the reply message. It is not a Service Activator responsibility to
remove headers from a reply message and, pursuing the loosely-coupled principle, it is better to
add a HeaderFilter in the integration flow. Alternatively, a Transformer can be used instead of a
Service Activator but, in that case, when returning a full Message<?> the method is completely
responsible for the message, including copying request message headers (if needed). You must
ensure that important framework headers (e.g. replyChannel, errorChannel), if present, have to be
preserved.

10.6. Delayer

A delayer is a simple endpoint that lets a message flow be delayed by a certain interval. When a
message is delayed, the original sender does not block. Instead, the delayed messages are scheduled
with an instance of org.springframework.scheduling.TaskScheduler to be sent to the output channel
after the delay has passed. This approach is scalable even for rather long delays, since it does not
result in a large number of blocked sender threads. On the contrary, in the typical case, a thread

215

./dsl.pdf#java-dsl-handle
./dsl.pdf#java-dsl-handle
./dsl.pdf#java-dsl-handle
./transformer.pdf#transformer

pool is used for the actual execution of releasing the messages. This section contains several
examples of configuring a delayer.

10.6.1. Configuring a Delayer

The <delayer> element is used to delay the message flow between two message channels. As with
the other endpoints, you can provide the 'input-channel' and 'output-channel' attributes, but the
delayer also has 'default-delay’ and 'expression’ attributes (and the 'expression’ element) that
determine the number of milliseconds by which each message should be delayed. The following
example delays all messages by three seconds:

<int:delayer id="delayer" input-channel="1input"
default-delay="3000" output-channel="output"/>

If you need to determine the delay for each message, you can also provide the SpEL expression by
using the 'expression' attribute, as the following expression shows:

<int:delayer id="delayer" input-channel="input" output-channel="output"
default-delay="3000" expression="headers['delay']"/>

In the preceding example, the three-second delay applies only when the expression evaluates to
null for a given inbound message. If you want to apply a delay only to messages that have a valid
result of the expression evaluation, you can use a 'default-delay' of 0 (the default). For any message
that has a delay of @ (or less), the message is sent immediately, on the calling thread.

The following example shows the Java configuration equivalent of the preceding example:

(inputChannel = "input")

public DelayHandler delayer() {
DelayHandler handler = new DelayHandler("delayer.messageGroupId");
handler.setDefaultDelay(3_000L);
handler.setDelayExpressionString("headers['delay']");
handler.setOutputChannelName("output");
return handler;

The following example shows the Java DSL equivalent of the preceding example:

216

public IntegrationFlow flow() {
return IntegrationFlows.from("input")
.delay("delayer.messageGroupId", d -> d
.defaultDelay(3_000L)
.delayExpression("headers['delay']"))
.channel("output")
.get();

o The XML parser uses a message group ID of <beanName>.messageGroupId.

The delay handler supports expression evaluation results that represent an
interval in milliseconds (any Object whose toString() method produces a value
that can be parsed into a Long) as well as java.util.Date instances representing an
absolute time. In the first case, the milliseconds are counted from the current time
(for example a value of 5000 would delay the message for at least five seconds from

(r) the time it is received by the delayer). With a Date instance, the message is not
released until the time represented by that Date object. A value that equates to a
non-positive delay or a Date in the past results in no delay. Instead, it is sent
directly to the output channel on the original sender’s thread. If the expression
evaluation result is not a Date and can not be parsed as a Long, the default delay (if
any — the default is 0) is applied.

The expression evaluation may throw an evaluation exception for various reasons,
including an invalid expression or other conditions. By default, such exceptions
are ignored (though logged at the DEBUG level) and the delayer falls back to the
o default delay (if any). You can modify this behavior by setting the ignore-

expression-failures attribute. By default, this attribute is set to true and the
delayer behavior is as described earlier. However, if you wish to not ignore
expression evaluation exceptions and throw them to the delayer’s caller, set the
ignore-expression-failures attribute to false.

217

The delayer delegates to an instance of Spring’s TaskScheduler abstraction. The default scheduler
used by the delayer is the ThreadPoolTaskScheduler instance provided by Spring Integration on
startup. See Configuring the Task Scheduler. If you want to delegate to a different scheduler, you
can provide a reference through the delayer element’s 'scheduler' attribute, as the following

In the preceding example, the delay expression is specified as headers['delay'].
This is the SpEL Indexer syntax to access a Map element (MessageHeaders implements
Map). It invokes: headers.get("delay"). For simple map element names (that do not
contain ".") you can also use the SpEL “dot accessor” syntax, where the header
expression shown earlier can be specified as headers.delay. However, different
results are achieved if the header is missing. In the first case, the expression
evaluates to null. The second results in something similar to the following:

org.springframework.expression.spel.SpelEvaluationException:
EL1008E: (pos 8):

Field or property 'delay' cannot be found on object of
type 'org.springframework.messaging.MessageHeaders'

Consequently, if there is a possibility of the header being omitted and you want to
fall back to the default delay, it is generally more efficient (and recommended) to
use the indexer syntax instead of dot property accessor syntax, because detecting
the null is faster than catching an exception.

example shows:

218

<int:delayer id="delayer" input-channel="input" output-channel="output"

expression="headers.delay"
scheduler="exampleTaskScheduler"/>

<task:scheduler id="exampleTaskScheduler" pool-size="3"/>

If you configure an external ThreadPoolTaskScheduler, you can set
waitForTasksToCompleteOnShutdown = true on this property. It allows successful
completion of 'delay' tasks that are already in the execution state (releasing the
message) when the application is shutdown. Before Spring Integration 2.2, this
property was available on the <delayer> element, because DelayHandler could
create its own scheduler on the background. Since 2.2, the delayer requires an
external scheduler instance and waitForTasksToCompleteOnShutdown was deleted.
You should use the scheduler’s own configuration.

./configuration.pdf#namespace-taskscheduler

ThreadPoolTaskScheduler has a property errorHandler, which can be injected with
some implementation of org.springframework.util.ErrorHandler. This handler
allows processing an Exception from the thread of the scheduled task sending the

delayed message. By default, it uses an
(r') org.springframework.scheduling.support.TaskUtils$LoggingErrorHandler, and you
- can see a stack trace in the logs. You might want to consider using an

org.springframework.integration.channel.MessagePublishingErrorHandler, which
sends an ErrorMessage into an error-channel, either from the failed message’s
header or into the default error-channel. This error handling is performed after a
transaction rolls back (if present). See Release Failures.

10.6.2. Delayer and a Message Store

The DelayHandler persists delayed messages into the message group in the provided MessageStore.
(The 'groupld' is based on the required 'id" attribute of the <delayer> element.) A delayed message is
removed from the MessageStore by the scheduled task immediately before the DelayHandler sends
the message to the output-channel. If the provided MessageStore is persistent (such as
JdbcMessageStore), it provides the ability to not lose messages on the application shutdown. After
application startup, the DelayHandler reads messages from its message group in the MessageStore
and reschedules them with a delay based on the original arrival time of the message (if the delay is
numeric). For messages where the delay header was a Date, that Date is used when rescheduling. If
a delayed message remains in the MessageStore more than its 'delay’, it is sent immediately after
startup.

The <delayer> can be enriched with either of two mutually exclusive elements: <transactional> and
<advice-chain>. The List of these AOP advices is applied to the proxied internal
DelayHandler.ReleaseMessageHandler, which has the responsibility to release the message, after the
delay, on a Thread of the scheduled task. It might be used, for example, when the downstream
message flow throws an exception and the transaction of the ReleaseMessageHandler is rolled back.
In this case, the delayed message remains in the persistent MessageStore. You can use any custom
org.aopalliance.aop.Advice implementation within the <advice-chain>. The <transactional> element
defines a simple advice chain that has only the transactional advice. The following example shows
an advice-chain within a <delayer>:

219

<int:delayer id="delayer" input-channel="1input" output-channel="output"
expression="headers.delay"
message-store="jdbcMessageStore">
<int:advice-chain>
<beans:ref bean="customAdviceBean"/>
<tx:advice>
<tx:attributes>
<tx:method name="*" read-only="true"/>
</tx:attributes>
</tx:advice>
</int:advice-chain>
</int:delayer>

The DelayHandler can be exported as a JMX MBean with managed operations (getDelayedMessageCount
and reschedulePersistedMessages), which allows the rescheduling of delayed persisted messages at
runtime — for example, if the TaskScheduler has previously been stopped. These operations can be
invoked through a Control Bus command, as the following example shows:

Message<String> delayerReschedulingMessage =
MessageBuilder.withPayload("@'delayer.handler'.reschedulePersistedMessages()"
).build();
controlBusChannel.send(delayerReschedulingMessage);

o For more information regarding the message store, JMX, and the control bus, see
System Management.

10.6.3. Release Failures
Starting with version 5.0.8, there are two new properties on the delayer:

» maxAttempts (default 5)

e retryDelay (default 1 second)

When a message is released, if the downstream flow fails, the release will be attempted after the
retryDelay. If the maxAttempts is reached, the message is discarded (unless the release is
transactional, in which case the message will remain in the store, but will no longer be scheduled
for release, until the application is restarted, or the reschedulePersistedMessages() method is
invoked, as discussed above).

In addition, you can configure a delayedMessageErrorChannel; when a release fails, an ErrorMessage is
sent to that channel with the exception as the payload and has the originalMessage property. The
ErrorMessage contains a header IntegrationMessageHeaderAccessor .DELIVERY_ATTEMPT containing the
current count.

220

./system-management.pdf#system-management-chapter

If the error flow consumes the error message and exits normally, no further action is taken; if the
release is transactional, the transaction will commit and the message deleted from the store. If the
error flow throws an exception, the release will be retried up to maxAttempts as discussed above.

10.7. Scripting Support

Spring Integration 2.1 added support for the JSR223 Scripting for Java specification, introduced in
Java version 6. It lets you use scripts written in any supported language (including Ruby, JRuby,
Javascript, Groovy and Kotlin) to provide the logic for various integration components, similar to
the way the Spring Expression Language (SpEL) is used in Spring Integration. For more information
about JSR223, see the documentation.

You need to include this dependency into your project:

Maven

<dependency>
<groupId>org.springframework.integration</groupld>
<artifactId>spring-integration-scripting</artifactId>
<version>5.2.0.RC1</version>

</dependency>

Gradle

compile "org.springframework.integration:spring-integration-scripting:5.2.0.RC1"

In addition you need to add a script engine implementation, e.g. JRuby, Jython.

Starting with version 5.2, Spring Integration provides a Kotlin Jsr223 support. You need to add these
dependencies into your project to make it working:

runtime 'org.jetbrains.kotlin:kotlin-script-util'
runtime 'org.jetbrains.kotlin:kotlin-compiler-embeddable’
runtime 'org.jetbrains.kotlin:kotlin-scripting-compiler-embeddable’

The KotlinScriptExecutor is selected by the provided kotlin language indicator or script file comes
with the .kts extension.

o Note that this feature requires Java 6 or higher.
In order to use a JVM scripting language, a JSR223 implementation for that language must be

included in your class path. Java 6 natively supports Javascript. The Groovy and JRuby projects
provide JSR233 support in their standard distributions.

221

https://www.jcp.org/en/jsr/detail?id=223
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/api.html
https://groovy-lang.org/
https://www.jruby.org

Various JSR223 language implementations have been developed by third parties. A

o particular implementation’s compatibility with Spring Integration depends on how
well it conforms to the specification and the implementer’s interpretation of the
specification.

If you plan to use Groovy as your scripting language, we recommended you use
@ Spring-Integration’s Groovy Support as it offers additional features specific to
Groovy. However, this section is relevant as well.

10.7.1. Script Configuration

Depending on the complexity of your integration requirements, scripts may be provided inline as
CDATA in XML configuration or as a reference to a Spring resource that contains the script. To
enable scripting support, Spring Integration defines a ScriptExecutingMessageProcessor, which
binds the message payload to a variable named payload and the message headers to a headers
variable, both accessible within the script execution context. All you need to do is write a script that
uses these variables. The following pair of examples show sample configurations that create filters:

Example 2. Filter

<int:filter input-channel="referencedScriptInput">
<int-script:script location="some/path/to/ruby/script/RubyFilterTests.rb"/>
</int:filter>

<int:filter input-channel="inlineScriptInput">
<int-script:script lang="groovy">
<I[CDATAL
return payload == 'good'
11>
</int-script:script>
</int:filter>

As the preceding examples show, the script can be included inline or can be included by reference
to a resource location (by using the location attribute). Additionally, the 1ang attribute corresponds
to the language name (or its JSR223 alias)

Other Spring Integration endpoint elements that support scripting include router, service-
activator, transformer, and splitter. The scripting configuration in each case would be identical to
the above (besides the endpoint element).

Another useful feature of scripting support is the ability to update (reload) scripts without having to
restart the application context. To do so, specify the refresh-check-delay attribute on the script
element, as the following example shows:

222

./groovy.pdf#groovy

<int-script:script location="..." refresh-check-delay="5000"/>

In the preceding example, the script location is checked for updates every 5 seconds. If the script is
updated, any invocation that occurs later than 5 seconds since the update results in running the
new script.

Consider the following example:

<int-script:script location="..." refresh-check-delay="0"/>

In the preceding example, the context is updated with any script modifications as soon as such
modification occurs, providing a simple mechanism for 'real-time' configuration. Any negative
value means the script is not reloaded after initialization of the application context. This is the
default behavior. The following example shows a script that never updates:

<int-script:script location="..." refresh-check-delay="-1"/>

o Inline scripts can not be reloaded.

Script Variable Bindings

Variable bindings are required to enable the script to reference variables externally provided to the
script’s execution context. By default, payload and headers are used as binding variables. You can
bind additional variables to a script by using <variable> elements, as the following example shows:

<script:script lang="js" location="foo/bar/MyScript.js">
<script:variable name="foo" value="thing1"/>
<script:variable name="bar" value="thing2"/>
<script:variable name="date" ref="date"/>
</script:script>

As shown in the preceding example, you can bind a script variable either to a scalar value or to a
Spring bean reference. Note that payload and headers are still included as binding variables.

With Spring Integration 3.0, in addition to the variable element, the variables attribute has been
introduced. This attribute and the variable elements are not mutually exclusive, and you can
combine them within one script component. However, variables must be unique, regardless of
where they are defined. Also, since Spring Integration 3.0, variable bindings are allowed for inline

223

scripts, too, as the following example shows:

<service-activator input-channel="input">
<script:script lang="ruby" variables="thing1=THING1, date-ref=dateBean">
<script:variable name="thing2" ref="thing2Bean"/>
<script:variable name="thing3" value="thing2"/>
<I[CDATAL
payload.foo = thing1l
payload.date = date
payload.bar = thing2
payload.baz = thing3
payload
11>

</script:script>
</service-activator>

The preceding example shows a combination of an inline script, a variable element, and a
variables attribute. The variables attribute contains a comma-separated value, where each segment
contains an '=' separated pair of the variable and its value. The variable name can be suffixed with
-ref, as in the date-ref variable in the preceding example. That means that the binding variable has
the name, date, but the value is a reference to the dateBean bean from the application context. This
may be useful when using property placeholder configuration or command-line arguments.

If you need more control over how variables are generated, you can implement your own Java class
that uses the ScriptVariableGenerator strategy, which is defined by the following interface:

public interface ScriptVariableGenerator {

Map<String, Object> generateScriptVariables(Message<?> message);

This interface requires you to implement the generateScriptVariables(Message) method. The
message argument lets you access any data available in the message payload and headers, and the
return value is the Map of bound variables. This method is called every time the script is executed
for a message. The following example shows how to provide an implementation of
ScriptVariableGenerator and reference it with the script-variable-generator attribute:

<int-script:script location="foo/bar/MyScript.groovy"
script-variable-generator="variableGenerator"/>

<bean id="variableGenerator" class="foo.bar.MyScriptVariableGenerator"/>

224

If a script-variable-generator is not provided, script components use
DefaultScriptVariableGenerator, which merges any provided <variable> elements with payload and
headers variables from the Message in its generateScriptVariables(Message) method.

o You cannot provide both the script-variable-generator attribute and <variable>
element(s). They are mutually exclusive.

10.8. Groovy support

In Spring Integration 2.0, we added Groovy support, letting you use the Groovy scripting language
to provide the logic for various integration components — similar to the way the Spring Expression
Language (SpEL) is supported for routing, transformation, and other integration concerns. For
more information about Groovy, see the Groovy documentation, which you can find on the project
website.

You need to include this dependency into your project:

Maven

<dependency>
<groupId>org.springframework.integration</groupld>
<artifactId>spring-integration-groovy</artifactId>
<version>5.2.0.RC1</version>

</dependency>

Gradle

compile "org.springframework.integration:spring-integration-groovy:5.2.0.RC1"

10.8.1. Groovy Configuration

With Spring Integration 2.1, the configuration namespace for the Groovy support is an extension of
Spring Integration’s scripting support and shares the core configuration and behavior described in
detail in the Scripting Support section. Even though Groovy scripts are well supported by generic
scripting support, the Groovy support provides the Groovy configuration namespace, which is
backed by the Spring Framework’s org.springframework.scripting.groovy.GroovyScriptFactory and
related components, offering extended capabilities for using Groovy. The following listing shows
two sample configurations:

225

https://groovy-lang.org/
https://groovy-lang.org/
./scripting.pdf#scripting

Example 3. Filter

<int:filter input-channel="referencedScriptInput">

<int-groovy:script location="some/path/to/groovy/file/GroovyFilterTests.groovy
I|/>
</int:filter>

<int:filter input-channel="inlineScriptInput">
<int-groovy:script><![CDATA[
return payload == 'good'
11></int-groovy:script>
</int:filter>

As the preceding examples show, the configuration looks identical to the general scripting support
configuration. The only difference is the use of the Groovy namespace, as indicated by the int-
groovy namespace prefix. Also note that the lang attribute on the <script> tag is not valid in this
namespace.

10.8.2. Groovy Object Customization

If you need to customize the Groovy object itself (beyond setting variables) you can reference a
bean that implements GroovyObjectCustomizer by using the customizer attribute. For example, this
might be useful if you want to implement a domain-specific language (DSL) by modifying the
MetaClass and registering functions to be available within the script. The following example shows
how to do so:

<int:service-activator input-channel="groovyChannel">

<int-groovy:script location="somewhere/SomeScript.groovy" customizer=
"groovyCustomizer"/>
</int:service-activator>

<beans:bean id="groovyCustomizer" class="org.something.MyGroovyObjectCustomizer"/>

Setting a custom GroovyObjectCustomizer is not mutually exclusive with <variable> elements or the
script-variable-generator attribute. It can also be provided when defining an inline script.

Spring Integration 3.0 introduced the variables attribute, which works in conjunction with the
variable element. Also, groovy scripts have the ability to resolve a variable to a bean in the
BeanFactory, if a binding variable was not provided with the name. The following example shows
how to use a variable (entityManager):

226

<int-groovy:script>
<I[CDATA[
entityManager.persist(payload)
payload
11>

</int-groovy:script>

entityManager must be an appropriate bean in the application context.

For more information regarding the <variable> element, the variables attribute, and the script-
variable-generator attribute, see Script Variable Bindings.

10.8.3. Groovy Script Compiler Customization

The @CompileStatic hint is the most popular Groovy compiler customization option. It can be used
on the class or method level. For more information, see the Groovy Reference Manual and,
specifically, @CompileStatic. To utilize this feature for short scripts (in integration scenarios), we
are forced to change simple scripts to more Java-like code. Consider the following <filter> script:

headers.type == 'good'

The preceding script becomes the following method in Spring Integration:

.transform.CompileStatic
String filter(Map headers) {
headers.type == 'good'
}

filter(headers)

With that, the filter() method is transformed and compiled to static Java code, bypassing the
Groovy dynamic phases of invocation, such as getProperty() factories and (CallSite proxies.

Starting with version 4.3, you can configure the Spring Integration Groovy components with the
compile-static boolean option, specifying that ASTTransformationCustomizer for @CompileStatic
should be added to the internal CompilerConfiguration. With that in place, you can omit the method
declaration with @CompileStatic in our script code and still get compiled plain Java code. In this
case, the preceding script can be short but still needs to be a little more verbose than interpreted
script, as the following example shows:

227

./scripting.pdf#scripting-script-variable-bindings
https://groovy-lang.org/metaprogramming.html#section-typechecked
https://groovy-lang.org/metaprogramming.html#xform-CompileStatic

binding.variables.headers.type == 'good'

You must access the headers and payload (or any other) variables through the groovy.lang.Script
binding property because, with @CompileStatic, we do not have the dynamic
GroovyObject.getProperty() capability.

In addition, we introduced the compiler-configuration bean reference. With this attribute, you can
provide any other required Groovy compiler customizations, such as ImportCustomizer. For more
information about this feature, see the Groovy Documentation for advanced compiler
configuration.

Using compilerConfiguration does not automatically add an
ASTTransformationCustomizer for the @CompileStatic annotation, and it overrides
o the compileStatic option. If you still need CompileStatic, you should manually add
a new ASTTransformationCustomizer (CompileStatic.class) into the
CompilationCustomizers of that custom compilerConfiguration.

o The Groovy compiler customization does not have any effect on the refresh-check-
delay option, and reloadable scripts can be statically compiled, too.

10.8.4. Control Bus

As described in (Enterprise Integration Patterns), the idea behind the control bus is that you can use
the same messaging system for monitoring and managing the components within the framework as
is used for “application-level” messaging. In Spring Integration, we build upon the adapters
described earlier so that you can send Messages as a means of invoking exposed operations. One
option for those operations is Groovy scripts. The following example configures a Groovy script for
the control bus:

<int-groovy:control-bus input-channel="operationChannel"/>

The control bus has an input channel that can be accessed to invoke operations on the beans in the
application context.

The Groovy control bus runs messages on the input channel as Groovy scripts. It takes a message,
compiles the body to a script, customizes it with a GroovyObjectCustomizer, and runs it. The control
bus' MessageProcessor exposes all beans in the application context that are annotated with
@ManagedResource and implement Spring’s Lifecycle interface or extend Spring’s
CustomizableThreadCreator base class (for example, several of the TaskExecutor and TaskScheduler
implementations).

228

https://melix.github.io/blog/2011/05/12/customizing_groovy_compilation_process.html
https://melix.github.io/blog/2011/05/12/customizing_groovy_compilation_process.html
https://www.enterpriseintegrationpatterns.com/ControlBus.html

Be careful about using managed beans with custom scopes (such as 'request’) in
the Control Bus' command scripts, especially inside an asynchronous message

o flow. If MessageProcessor of the control bus cannot expose a bean from the
application context, you may end up with some BeansException during the
command script’s run. For example, if a custom scope’s context is not established,
the attempt to get a bean within that scope triggers a BeanCreationException.

If you need to further customize the Groovy objects, you can also provide a reference to a bean that
implements GroovyObjectCustomizer through the customizer attribute, as the following example
shows:

<int-groovy:control-bus input-channel="input"
output-channel="output"
customizer="groovyCustomizer"/>

<beans:bean id="groovyCustomizer" class="org.foo.MyGroovyObjectCustomizer"/>

10.9. Adding Behavior to Endpoints

Prior to Spring Integration 2.2, you could add behavior to an entire Integration flow by adding an
AOP Advice to a poller’s <advice-chain/> element. However, suppose you want to retry, say, just a
REST Web Service call, and not any downstream endpoints.

For example, consider the following flow:
inbound-adapter->poller->http-gateway1->http-gateway2->jdbc-outbound-adapter

If you configure some retry-logic into an advice chain on the poller and the call to http-gateway?2
failed because of a network glitch, the retry causes both http-gatewayl and http-gateway2 to be
called a second time. Similarly, after a transient failure in the jdbc-outbound-adapter, both HTTP
gateways are called a second time before again calling the jdbc-outbound-adapter.

Spring Integration 2.2 adds the ability to add behavior to individual endpoints. This is achieved by
the addition of the <request-handler-advice-chain/> element to many endpoints. The following
example shows how to the <request-handler-advice-chain/> element within an outbound-gateway:

<int-http:outbound-gateway id="withAdvice"
url-expression=""http://localhost/test1'"
request-channel="requests"
reply-channel="nextChannel™>
<int:request-handler-advice-chain>
<ref bean="myRetryAdvice" />
</request-handler-advice-chain>
</int-http:outbound-gateway>

229

In this case, myRetryAdvice is applied only locally to this gateway and does not apply to further
actions taken downstream after the reply is sent to nextChannel. The scope of the advice is limited to
the endpoint itself.

At this time, you cannot advise an entire <chain/> of endpoints. The schema does
not allow a <request-handler-advice-chain> as a child element of the chain itself.

However, a <request-handler-advice-chain> can be added to individual reply-
producing endpoints within a <chain> element. An exception is that, in a chain that

o produces no reply, because the last element in the chain is an outbound-channel-
adapter, that last element cannot be advised. If you need to advise such an element,
it must be moved outside of the chain (with the output-channel of the chain being
the input-channel of the adapter). The adapter can then be advised as usual. For
chains that produce a reply, every child element can be advised.

10.9.1. Provided Advice Classes

In addition to providing the general mechanism to apply AOP advice classes, Spring Integration
provides these out-of-the-box advice implementations:

* RequestHandlerRetryAdvice (described in Retry Advice)

* RequestHandler(CircuitBreakerAdvice (described in Circuit Breaker Advice)

» ExpressionEvaluatingRequestHandlerAdvice (described in Expression Evaluating Advice)
» RatelimiterRequestHandlerAdvice (described in Rate Limiter Advice)

» CacheRequestHandlerAdvice (described in Caching Advice)

Retry Advice

The retry advice (o.s.i.handler.advice.RequestHandlerRetryAdvice) leverages the rich retry
mechanisms provided by the Spring Retry project. The core component of spring-retry is the
RetryTemplate, which allows configuration of sophisticated retry scenarios, including RetryPolicy
and BackoffPolicy strategies (with a number of implementations) as well as a Recovery(Callback
strategy to determine the action to take when retries are exhausted.

Stateless Retry

Stateless retry is the case where the retry activity is handled entirely within the advice. The
thread pauses (if configured to do so) and retries the action.

Stateful Retry

Stateful retry is the case where the retry state is managed within the advice but where an
exception is thrown and the caller resubmits the request. An example for stateful retry is when
we want the message originator (for example,JMS) to be responsible for resubmitting, rather
than performing it on the current thread. Stateful retry needs some mechanism to detect a
retried submission.

For more information on spring-retry, see the project’s Javadoc and the reference documentation
for Spring Batch, where spring-retry originated.

230

https://github.com/spring-projects/spring-retry
https://docs.spring.io/spring-integration/api/
https://docs.spring.io/spring-batch/reference/html/retry.html

The default back off behavior is to not back off. Retries are attempted immediately.
A Using a back off policy that causes threads to pause between attempts may cause

performance issues, including excessive memory use and thread starvation. In

high-volume environments, back off policies should be used with caution.

Configuring the Retry Advice

The examples in this section use the following <service-activator> that always throws an
exception:

public class FailingService {

public void service(String message) {
throw new RuntimeException("error");

}

Simple Stateless Retry

The default RetryTemplate has a SimpleRetryPolicy which tries three times. There is no
BackOffPolicy, so the three attempts are made back-to-back-to-back with no delay between
attempts. There is no RecoveryCallback, so the result is to throw the exception to the caller after
the final failed retry occurs. In a Spring Integration environment, this final exception might be
handled by using an error-channel on the inbound endpoint. The following example uses
RetryTemplate and shows its DEBUG output:

<int:service-activator input-channel="input" ref="failer" method="service">
<int:request-handler-advice-chain>
<bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice"/>
</request-handler-advice-chain>
</int:service-activator>

DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]
DEBUG [task-scheduler-2]Retry: count=0

DEBUG [task-scheduler-2]Checking for rethrow: count=1

DEBUG [task-scheduler-2]Retry: count=1

DEBUG [task-scheduler-2]Checking for rethrow: count=2

DEBUG [task-scheduler-2]Retry: count=2

DEBUG [task-scheduler-2]Checking for rethrow: count=3

DEBUG [task-scheduler-2]Retry failed last attempt: count=3

Simple Stateless Retry with Recovery

The following example adds a RecoveryCallback to the preceding example and uses an
ErrorMessageSendingRecoverer to send an ErrorMessage to a channel:

231

<int:service-activator input-channel="input" ref="failer" method="service">
<int:request-handler-advice-chain>
<bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice">
<property name="recoveryCallback">
<bean class="o.s.i.handler.advice.ErrorMessageSendingRecoverer

<constructor-arg ref="myErrorChannel" />
</bean>
</property>
</bean>
</request-handler-advice-chain>
</int:int:service-activator>

DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload-=...]
DEBUG [task-scheduler-2]Retry: count=0

DEBUG [task-scheduler-2]Checking for rethrow: count=1

DEBUG [task-scheduler-2]Retry: count=1

DEBUG [task-scheduler-2]Checking for rethrow: count=2

DEBUG [task-scheduler-2]Retry: count=2

DEBUG [task-scheduler-2]Checking for rethrow: count=3

DEBUG [task-scheduler-2]Retry failed last attempt: count=3

DEBUG [task-scheduler-2]Sending ErrorMessage :failedMessage:[Payload=...]

Stateless Retry with Customized Policies, and Recovery

232

For more sophistication, we can provide the advice with a customized RetryTemplate. This
example continues to use the SimpleRetryPolicy but increases the attempts to four. It also adds
an ExponentialBackoffPolicy where the first retry waits one second, the second waits five
seconds and the third waits 25 (for four attempts in all). The following listing shows the example
and its DEBUG output:

<int:service-activator input-channel="input" ref="failer" method="service">
<int:request-handler-advice-chain>
<bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice">
<property name="recoveryCallback">
<bean class="o.s.i.handler.advice.ErrorMessageSendingRecoverer

>
<constructor-arg ref="myErrorChannel" />
</bean>
</property>
<property name="retryTemplate" ref="retryTemplate" />

</bean>
</request-handler-advice-chain>
</int:service-activator>

<bean id="retryTemplate" class="
org.springframework.retry.support.RetryTemplate">
<property name="retryPolicy">
<bean class="org.springframework.retry.policy.SimpleRetryPolicy">
<property name="maxAttempts" value="4" />
</bean>
</property>
<property name="backOffPolicy">
<bean class="
org.springframework.retry.backoff.ExponentialBackOffPolicy">
<property name="initialInterval" value="1000" />
<property name="multiplier" value="5.0" />
<property name="maxInterval" value="60000" />
</bean>
</property>
</bean>

27.058 DEBUG [task-scheduler-1]preSend on channel 'input', message:
[Payload=...]

27.071 DEBUG [task-scheduler-1]Retry: count=0

27.080 DEBUG [task-scheduler-1]Sleeping for 1000

28.081 DEBUG [task-scheduler-1]Checking for rethrow: count=1
28.081 DEBUG [task-scheduler-T]Retry: count=1

28.081 DEBUG [task-scheduler-1]Sleeping for 5000

33.082 DEBUG [task-scheduler-1]Checking for rethrow: count=2
33.082 DEBUG [task-scheduler-1]Retry: count=2

33.083 DEBUG [task-scheduler-1]Sleeping for 25000

58.083 DEBUG [task-scheduler-1]Checking for rethrow: count=3
58.083 DEBUG [task-scheduler-1]Retry: count=3

58.084 DEBUG [task-scheduler-1]Checking for rethrow: count=4
58.084 DEBUG [task-scheduler-1]Retry failed last attempt: count=4
58.086 DEBUG [task-scheduler-1]Sending ErrorMessage
:failedMessage:[Payload=...]

233

Namespace Support for Stateless Retry

Starting with version 4.0, the preceding configuration can be greatly simplified, thanks to the
namespace support for the retry advice, as the following example shows:

<int:service-activator input-channel="input" ref="failer" method="service">
<int:request-handler-advice-chain>
<bean ref="retrier" />
</request-handler-advice-chain>
</int:service-activator>

<int:handler-retry-advice id="retrier" max-attempts="4" recovery-channel=
"myErrorChannel">

<int:exponential-back-off initial="1000" multiplier="5.0" maximum="60000"
/>
</int:handler-retry-advice>

In the preceding example, the advice is defined as a top-level bean so that it can be used in
multiple request-handler-advice-chain instances. You can also define the advice directly within
the chain, as the following example shows:

<int:service-activator input-channel="input" ref="failer" method="service">
<int:request-handler-advice-chain>
<int:retry-advice id="retrier" max-attempts="4" recovery-channel=
"myErrorChannel">
<int:exponential-back-off initial="1000" multiplier="5.0" maximum=
"60000" />
</int:retry-advice>
</request-handler-advice-chain>
</int:service-activator>

A <handler-retry-advice> can have a <fixed-back-off> or <exponential-back-off> child element
or have no child element. A <handler-retry-advice> with no child element uses no back off. If
there is no recovery-channel, the exception is thrown when retries are exhausted. The
namespace can only be used with stateless retry.

For more complex environments (custom policies etc), use normal <bean> definitions.

Simple Stateful Retry with Recovery

To make retry stateful, we need to provide the advice with a RetryStateGenerator
implementation. This class is used to identify a message as being a resubmission so that the
RetryTemplate can determine the current state of retry for this message. The framework provides
a SpelExpressionRetryStateGenerator, which determines the message identifier by using a SpEL
expression. This example again uses the default policies (three attempts with no back off). As
with stateless retry, these policies can be customized. The following listing shows the example

234

and its DEBUG output:

<int:service-activator input-channel="input" ref="failer" method="service">
<int:request-handler-advice-chain>
<bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice">
<property name="retryStateGenerator">
<bean class=
"0.s.i.handler.advice.SpelExpressionRetryStateGenerator">
<constructor-arg value="headers['jms_messageId']" />
</bean>
</property>
<property name="recoveryCallback">
<bean class="o.s.i.handler.advice.ErrorMessageSendingRecoverer

<constructor-arg ref="myErrorChannel" />
</bean>
</property>
</bean>
</int:request-handler-advice-chain>
</int:service-activator>

24.351 DEBUG [Container#@-1]preSend on channel 'input', message: [Payload=...]
24.368 DEBUG [Container#0-1]Retry: count=0

24.387 DEBUG [Container#0-1]Checking for rethrow: count=1

24.387 DEBUG [Container#0-1]Rethrow in retry for policy: count=1

24.387 WARN [Container#0-1]failure occurred in gateway sendAndReceive
org.springframework.integration.MessagingException: Failed to invoke handler

Caused by: java.lang.RuntimeException: foo

24.391 DEBUG [Container#0-1]Initiating transaction rollback on application
exception

25.412 DEBUG [Container#@-1]preSend on channel 'input', message: [Payload=...]
25.412 DEBUG [Container#0-1]Retry: count=1

25.413 DEBUG [Container#0-1]Checking for rethrow: count=2

25.413 DEBUG [Container#0-1]Rethrow in retry for policy: count=2

25.413 WARN [Container#0-1]failure occurred in gateway sendAndReceive
org.springframework.integration.MessagingException: Failed to invoke handler

Caused by: java.lang.RuntimeException: foo

25.414 DEBUG [Container#0-1]Initiating transaction rollback on application
exception

26.418 DEBUG [Container#@-1]preSend on channel 'input', message: [Payload=...]
26.418 DEBUG [Container#0-1]Retry: count=2

26.419 DEBUG [Container#0-1]Checking for rethrow: count=3

26.419 DEBUG [Container#0-1]Rethrow in retry for policy: count=3

26.419 WARN [Container#0-1]failure occurred in gateway sendAndReceive

235

org.springframework.integration.MessagingException: Failed to invoke handler
Caused by: java.lang.RuntimeException: foo

26.420 DEBUG [Container#@-1]Initiating transaction rollback on application
exception

27.425 DEBUG [Container#@-1]preSend on channel 'input', message: [Payload=...]
27.426 DEBUG [Container#@-1]Retry failed last attempt: count=3
27.426 DEBUG [Container#0-1]Sending ErrorMessage :failedMessage:[Payload=...]

If you compare the preceding example with the stateless examples, you can see that, with
stateful retry, the exception is thrown to the caller on each failure.

Exception Classification for Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry.
The default configuration retries for all exceptions and the exception classifier looks at the top-
level exception. If you configure it to, say, retry only on MyException and your application throws
a SomeOtherException where the cause is a MyException, retry does not occur.

Since Spring Retry 1.0.3, the BinaryExceptionClassifier has a property called traverseCauses (the
default is false). When true, it traverses exception causes until it finds a match or runs out of
causes to traverse.

To use this classifier for retry, use a SimpleRetryPolicy created with the constructor that takes the
max attempts, the Map of Exception objects, and the traverseCauses boolean. Then you can inject
this policy into the RetryTemplate.

o traverseCauses is required in this case because user exceptions may be wrapped in
a MessagingException.

Circuit Breaker Advice

The general idea of the circuit breaker pattern is that, if a service is not currently available, do not
waste time (and resources) trying to use it. The
0.s.i.handler.advice.RequestHandlerCircuitBreakerAdvice implements this pattern. When the
circuit breaker is in the closed state, the endpoint attempts to invoke the service. The circuit
breaker goes to the open state if a certain number of consecutive attempts fail. When it is in the
open state, new requests “fail fast” and no attempt is made to invoke the service until some time
has expired.

When that time has expired, the circuit breaker is set to the half-open state. When in this state, if
even a single attempt fails, the breaker immediately goes to the open state. If the attempt succeeds,
the breaker goes to the closed state, in which case it does not go to the open state again until the
configured number of consecutive failures again occur. Any successful attempt resets the state to
zero failures for the purpose of determining when the breaker might go to the open state again.

Typically, this advice might be used for external services, where it might take some time to fail

236

(such as a timeout attempting to make a network connection).

The RequestHandlerCircuitBreakerAdvice has two properties: threshold and halfOpenAfter. The
threshold property represents the number of consecutive failures that need to occur before the
breaker goes open. It defaults to 5. The halfOpenAfter property represents the time after the last
failure that the breaker waits before attempting another request. The default is 1000 milliseconds.

The following example configures a circuit breaker and shows its DEBUG and ERROR output:

<int:service-activator input-channel="input" ref="failer" method="service">
<int:request-handler-advice-chain>
<bean class="o0.s.i.handler.advice.RequestHandlerCircuitBreakerAdvice">
<property name="threshold" value="2" />
<property name="halfOpenAfter" value="12000" />
</bean>
</int:request-handler-advice-chain>
</int:service-activator>

05.617 DEBUG [task-scheduler-1]preSend on channel 'input', message: [Payload=...]
05.638 ERROR [task-scheduler-
1]org.springframework.messaging.MessageHandlingException:
java.lang.RuntimeException: foo

10.598 DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]
10.600 ERROR [task-scheduler-
2]org.springframework.messaging.MessageHandlingException:
java.lang.RuntimeException: foo

15.598 DEBUG [task-scheduler-3]preSend on channel 'input', message: [Payload=...]
15.599 ERROR [task-scheduler-3]org.springframework.messaging.MessagingException:
Circuit Breaker is Open for ServiceActivator

20.598 DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]
20.598 ERROR [task-scheduler-2]org.springframework.messaging.MessagingException:
Circuit Breaker is Open for ServiceActivator

25.598 DEBUG [task-scheduler-5]preSend on channel "input', message: [Payload=...]
25.601 ERROR [task-scheduler-
5]org.springframework.messaging.MessageHandlingException:
java.lang.RuntimeException: foo

30.598 DEBUG [task-scheduler-1]preSend on channel 'input', message:
[Payload=foo...]

30.599 ERROR [task-scheduler-1]org.springframework.messaging.MessagingException:
Circuit Breaker is Open for ServiceActivator

In the preceding example, the threshold is set to 2 and halfOpenAfter is set to 12 seconds. A new
request arrives every 5 seconds. The first two attempts invoked the service. The third and fourth

237

failed with an exception indicating that the circuit breaker is open. The fifth request was attempted
because the request was 15 seconds after the last failure. The sixth attempt fails immediately
because the breaker immediately went to open.

Expression Evaluating Advice

The final supplied advice class is the
0.s.i.handler.advice.ExpressionEvaluatingRequestHandlerAdvice. This advice is more general than
the other two advices. It provides a mechanism to evaluate an expression on the original inbound
message sent to the endpoint. Separate expressions are available to be evaluated, after either
success or failure. Optionally, a message containing the evaluation result, together with the input
message, can be sent to a message channel.

A typical use case for this advice might be with an <ftp:outbound-channel-adapter/>, perhaps to
move the file to one directory if the transfer was successful or to another directory if it fails:

The advice has properties to set an expression when successful, an expression for failures, and
corresponding channels for each. For the successful case, the message sent to the successChannel is
an AdviceMessage, with the payload being the result of the expression evaluation. An additional
property, called inputMessage, contains the original message sent to the handler. A message sent to
the failureChannel (when the handler throws an exception) is an ErrorMessage with a payload of
MessageHandlingExpressionEvaluatingAdviceException. Like all MessagingException instances, this
payload has failedMessage and cause properties, as well as an additional property called
evaluationResult, which contains the result of the expression evaluation.

o Starting with version 5.1.3, if channels are configured, but expressions are not
provided, the default expression is used to evaluate to the payload of the message.

When an exception is thrown in the scope of the advice, by default, that exception is thrown to the
caller after any failureExpression is evaluated. If you wish to suppress throwing the exception, set
the trapException property to true. The following advice shows how to configure an advice with
Java DSL:

238

public class EerhaApplication {

public static void main(String[] args) {

ConfigurableApplicationContext context = SpringApplication.run
(EerhaApplication.class, args);

MessageChannel in = context.getBean("advised.input", MessageChannel.class
)i

in.send(new GenericMessage<>("good"));

in.send(new GenericMessage<>("bad"));

context.close();

public IntegrationFlow advised() {
return f -> f.handle((GenericHandler<String>) (payload, headers) -> {
if (payload.equals("good")) {
return null;

}
else {

throw new RuntimeException("some failure");
}

}, ¢ -> c.advice(expressionAdvice()));

public Advice expressionAdvice() {

ExpressionEvaluatingRequestHandlerAdvice advice = new

ExpressionEvaluatingRequestHandlerAdvice();
advice.setSuccessChannelName("success.input");
advice.setOnSuccessExpressionString("payload +
advice.setFailureChannelName("failure.input");
advice.setOnFailureExpressionString(

"payload + ' was bad, with reason:

advice.setTrapException(true);
return advice;

was successful'");

+ f#exception.cause.message");

public IntegrationFlow success() {
return f -> f.handle(System.out::println);
}

public IntegrationFlow failure() {
return f -> f.handle(System.out::println);
}

239

Rate Limiter Advice

The Rate Limiter advice (RatelLimiterRequestHandlerAdvice) allows to ensure that an endpoint does
not get overloaded with requests. When the rate limit is breached the request will go in a blocked
state.

A typical use case for this advice might be an external service provider not allowing more than n
number of request per minute.

The RatelimiterRequestHandlerAdvice implementation is fully based on the Resilience4j project and
requires either RateLimiter or RatelLimiterConfig injections. Can also be configured with defaults
and/or custom name.

The following example configures a rate limiter advice with one request per 1 second:

public RatelLimiterRequestHandlerAdvice ratelLimiterRequestHandlerAdvice() {
return new RatelimiterRequestHandlerAdvice(RateLimiterConfig.custom()
.limitRefreshPeriod(Duration.ofSeconds(1))
.limitForPeriod(1)
build());

(inputChannel = "requestChannel", outputChannel = "resultChannel

adviceChain = "ratelLimiterRequestHandlerAdvice")
public String handleRequest(String payload) {

}

Caching Advice

Starting with version 5.2, the CacheRequestHandlerAdvice has been introduced. It is based on the
caching abstraction in Spring Framework and aligned with the concepts and functionality provided
by the @Caching annotation family. The logic internally is based on the CacheAspectSupport extension,
where proxying for caching operations is done around the
AbstractReplyProducingMessageHandler.RequestHandler.handleRequestMessage method with the
request Message<?> as the argument. This advice can be configured with a SpEL expression or a
Function to evaluate a cache key. The request Message<?> is available as the root object for the SpEL
evaluation context, or as the Function input argument. By default, the payload of the request
message is used for the cache key. The C(CacheRequestHandlerAdvice must be configured with
cacheNames, when a default cache operation is a CacheableOperation, or with a set of any arbitrary
CacheOperation s. Every CacheOperation can be configured separately or have shared options, like a
CacheManager, CacheResolver and CacheErrorHandler, can be reused from the
CacheRequestHandlerAdvice configuration. This configuration functionality is similar to Spring
Framework’s @CacheConfig and @Caching annotation combination. If a CacheManager is not provided,
a single bean is resolved by default from the BeanFactory in the CacheAspectSupport.

240

https://github.com/resilience4j/resilience4j#ratelimiter
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache

The following example configures two advices with different set of caching operations:

public CacheRequestHandlerAdvice cacheAdvice() {
CacheRequestHandlerAdvice cacheRequestHandlerAdvice = new

CacheRequestHandlerAdvice(TEST_CACHE);
cacheRequestHandlerAdvice.setKeyExpressionString(“payload");
return cacheRequestHandlerAdvice;

(inputChannel = "transformerChannel”, outputChannel = "nullChannel",
adviceChain = "cacheAdvice")
public Object transform(Message<?> message) {

}

public CacheRequestHandlerAdvice cachePutAndEvictAdvice() {
CacheRequestHandlerAdvice cacheRequestHandlerAdvice = new
CacheRequestHandlerAdvice();
cacheRequestHandlerAdvice.setKeyExpressionString(“payload");
CachePutOperation.Builder cachePutBuilder = new CachePutOperation.Builder();
cachePutBuilder.setCacheName(TEST_PUT_CACHE);
CacheEvictOperation.Builder cacheEvictBuilder = new CacheEvictOperation
.Builder();
cacheEvictBuilder.setCacheName(TEST_CACHE);
cacheRequestHandlerAdvice.setCacheOperations(cachePutBuilder.build(),
cacheEvictBuilder.build());
return cacheRequestHandlerAdvice;

}

(inputChannel = "serviceChannel", outputChannel = "nullChannel",
adviceChain = "cachePutAndEvictAdvice")
public Message<?> service(Message<?> message) {

}

10.9.2. Custom Advice Classes

In addition to the provided advice classes described earlier, you can implement your own advice
classes. While you can provide any implementation of org.aopalliance.aop.Advice (usually
org.aopalliance.intercept.MethodInterceptor), we generally recommend that you subclass
0.s.i.handler.advice.AbstractRequestHandlerAdvice. This has the benefit of avoiding the writing of
low-level aspect-oriented programming code as well as providing a starting point that is specifically
tailored for use in this environment.

Subclasses need to implement the doInvoke() method, the definition of which follows:

241

/**

* Subclasses implement this method to apply behavior to the {@link
MessageHandler} callback.execute()

* invokes the handler method and returns its result, or null).

* @param callback Subclasses invoke the execute() method on this interface to
invoke the handler method.

* @param target The target handler.

* @param message The message that will be sent to the handler.

* @return the result after invoking the {@link MessageHandler}.

* @throws Exception

*/

protected abstract Object doInvoke(ExecutionCallback callback, Object target,
Message<?> message) throws Exception;

The callback parameter is a convenience to avoid subclasses that deal with AOP directly. Invoking
the callback.execute() method invokes the message handler.

The target parameter is provided for those subclasses that need to maintain state for a specific
handler, perhaps by maintaining that state in a Map keyed by the target. This feature allows the
same advice to be applied to multiple handlers. The RequestHandlerCircuitBreakerAdvice uses advice
this to keep circuit breaker state for each handler.

The message parameter is the message sent to the handler. While the advice cannot modify the
message before invoking the handler, it can modify the payload (if it has mutable properties).
Typically, an advice would use the message for logging or to send a copy of the message somewhere
before or after invoking the handler.

The return value would normally be the value returned by callback.execute(). However, the advice
does have the ability to modify the return value. Note that only
AbstractReplyProducingMessageHandler instances return values. The following example shows a
custom advice class that extends AbstractRequestHandlerAdvice:

public class MyAdvice extends AbstractRequestHandlerAdvice {

@0verride
protected Object doInvoke(ExecutionCallback callback, Object target, Message<
7> message) throws Exception {
// add code before the invocation
Object result = callback.execute();
// add code after the invocation
return result;

242

In addition to the execute() method, ExecutionCallback provides an additional
method: cloneAndExecute(). This method must be used in cases where the
invocation might be called multiple times within a single execution of doInvoke(),
such as in the RequestHandlerRetryAdvice. This is required because the Spring AOP

o org.springframework.aop.framework.ReflectiveMethodInvocation object maintains
state by keeping track of which advice in a chain was last invoked. This state must
be reset for each call.

For more information, see the ReflectiveMethodInvocation Javadoc.

10.9.3. Other Advice Chain Elements

While the abstract class mentioned above is a convenience, you can add any Advice, including a
transaction advice, to the chain.

10.9.4. Handling Message Advice

As discussed in the introduction to this section, advice objects in a request handler advice chain are
applied to just the current endpoint, not the downstream flow (if any). For MessageHandler objects
that produce a reply (such as those that extend AbstractReplyProducingMessageHandler), the advice is
applied to an internal method: handleRequestMessage() (called from
MessageHandler.handleMessage()). For other message handlers, the advice is applied to
MessageHandler.handleMessage().

There are some circumstances where, even if a message handler is an
AbstractReplyProducingMessageHandler, the advice must be applied to the handleMessage method. For
example, the idempotent receiver might return null, which would cause an exception if the
handler’s replyRequired property is set to true. Another example is the
BoundRabbitChannelAdvice — see Strict Message Ordering.

Starting with version 4.3.1, a new HandleMessageAdvice interface and its base implementation
(AbstractHandleMessageAdvice) have Dbeen introduced. Advice objects that implement
HandleMessageAdvice are always applied to the handleMessage() method, regardless of the handler

type.

It is important to understand that HandleMessageAdvice implementations (such as idempotent
receiver), when applied to a handlers that return responses, are dissociated from the adviceChain
and properly applied to the MessageHandler .handleMessage() method.

0 Because of this disassociation, the advice chain order is not honored.

Consider the following configuration:

243

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/aop/framework/ReflectiveMethodInvocation.html
./amqp.pdf#amqp-strict-ordering

<some-reply-producing-endpoint ... >
<int:request-handler-advice-chain>
<tx:advice ... />
<bean ref="myHandleMessageAdvice" />
</int:request-handler-advice-chain>
</some-reply-producing-endpoint>

In the preceding example, the <tx:advice> is applied to the
AbstractReplyProducingMessageHandler.handleRequestMessage(). However, myHandleMessageAdvice is
applied for to MessageHandler.handleMessage(). Therefore, it is invoked before the <tx:advice>. To
retain the order, you should follow the standard Spring AOP configuration approach and use an
endpoint id together with the .handler suffix to obtain the target MessageHandler bean. Note that, in
that case, the entire downstream flow is within the transaction scope.

In the case of a MessageHandler that does not return a response, the advice chain order is retained.

10.9.5. Transaction Support

Starting with version 5.0, a new TransactionHandleMessageAdvice has been introduced to make the
whole downstream flow transactional, thanks to the HandleMessageAdvice implementation. When a
regular TransactionInterceptor is used in the <request-handler-advice-chain> element (for example,
through configuring <tx:advice>), a started transaction is only applied only for an internal
AbstractReplyProducingMessageHandler.handleRequestMessage() and is not propagated to the
downstream flow.

To simplify XML configuration, along with the <request-handler-advice-chain>, a <transactional>
element has been added to all <outbound-gateway> and <service-activator> and related components.
The following example shows <transactional> in use:

<int-rmi:outbound-gateway remote-channel="foo" host="localhost"
request-channel="good" reply-channel="reply" port="#{@port}">
<int-rmi:transactional/>
</int-rmi:outbound-gateway>

<bean id="transactionManager" class="org.mockito.Mockito" factory-method="mock">
<constructor-arg value="

org.springframework.transaction.PlatformTransactionManager"/>

</bean>

If you are familiar with the JPA integration components, such a configuration is not new, but now
we can start a transaction from any point in our flow — not only from the <poller> or a message-
driven channel adapter such as JMS.

Java configuration can be simplified by using the TransactionInterceptorBuilder, and the result
bean name can be used in the messaging annotations adviceChain attribute, as the following
example shows:

244

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#aop-api
./jpa.pdf#jpa
./jms.pdf#jms-message-driven-channel-adapter
./configuration.pdf#annotations

public ConcurrentMetadataStore store() {
return new SimpleMetadataStore(hazelcastInstance()
.getMap("idempotentReceiverMetadataStore"));

public IdempotentReceiverInterceptor idempotentReceiverInterceptor() {
return new IdempotentReceiverInterceptor(
new MetadataStoreSelector(
message -> message.getPayload().toString(),
message -> message.getPayload().toString().toUpperCase(), store()

public TransactionInterceptor transactionInterceptor() {
return new TransactionInterceptorBuilder(true)
.transactionManager(this.transactionManager)
.isolation(Isolation.READ_COMMITTED)
.propagation(Propagation.REQUIRES_NEW)
.build();

.springframework.integration.annotation.Transformer(inputChannel = "input",
outputChannel = "output",
adviceChain = { "idempotentReceiverInterceptor”,
"transactionInterceptor" })
public Transformer transformer() {
return message -> message;

}

Note the true parameter on the TransactionInterceptorBuilder constructor. It causes the creation of
a TransactionHandleMessageAdvice, not a regular TransactionInterceptor.

Java DSL supports an Advice through the .transactional() options on the endpoint configuration, as
the following example shows:

public IntegrationFlow updatingGatewayFlow() {
return f -> f
.handle(Jpa.updatingGateway(this.entityManagerFactory),
e -> e.transactional(true))
.channel(c -> c.queue("persistResults"));

245

10.9.6. Advising Filters

There is an additional consideration when advising Filter advices. By default, any discard actions
(when the filter returns false) are performed within the scope of the advice chain. This could
include all the flow downstream of the discard channel. So, for example, if an element downstream
of the discard channel throws an exception and there is a retry advice, the process is retried. Also, if
throwExceptionOnRejection is set to true (the exception is thrown within the scope of the advice).

Setting discard-within-advice to false modifies this behavior and the discard (or exception) occurs
after the advice chain is called.

10.9.7. Advising Endpoints Using Annotations

When configuring certain endpoints by using annotations (eFilter, @ServiceActivator, @Splitter,
and @Transformer), you can supply a bean name for the advice chain in the adviceChain attribute. In
addition, the @Filter annotation also has the discardWithinAdvice attribute, which can be used to
configure the discard behavior, as discussed in Advising Filters. The following example causes the
discard to be performed after the advice:

public class MyAdvisedFilter {

(inputChannel="1input", outputChannel="output",
adviceChain="adviceChain", discardWithinAdvice="false")
public boolean filter(String s) {
return s.contains("good");

}

10.9.8. Ordering Advices within an Advice Chain

Advice classes are “around” advices and are applied in a nested fashion. The first advice is the
outermost, while the last advice is the innermost (that is, closest to the handler being advised). It is
important to put the advice classes in the correct order to achieve the functionality you desire.

For example, suppose you want to add a retry advice and a transaction advice. You may want to
place the retry advice advice first, followed by the transaction advice. Consequently, each retry is
performed in a new transaction. On the other hand, if you want all the attempts and any recovery
operations (in the retry RecoveryCallback) to be scoped within the transaction, you could put the
transaction advice first.

10.9.9. Advised Handler Properties

Sometimes, it is useful to access handler properties from within the advice. For example, most
handlers implement NamedComponent to let you access the component name.

The target object can be accessed through the target argument (when subclassing
AbstractRequestHandlerAdvice) or invocation.getThis() (when implementing

246

org.aopalliance.intercept.MethodInterceptor).

When the entire handler is advised (such as when the handler does not produce replies or the
advice implements HandleMessageAdvice), you can cast the target object to an interface, such as
NamedComponent, as shown in the following example:

String componentName = ((NamedComponent) target).getComponentName();

When you implement MethodInterceptor directly, you could cast the target object as follows:

String componentName = ((NamedComponent) invocation.getThis()).getComponentName();

When only the handleRequestMessage() method is advised (in a reply-producing handler), you need
to access the full handler, which is an AbstractReplyProducingMessageHandler. The following example
shows how to do so:

AbstractReplyProducingMessageHandler handler =
((AbstractReplyProducingMessageHandler.RequestHandler) target)
.getAdvisedHandler();

String componentName = handler.getComponentName();

10.9.10. Idempotent Receiver Enterprise Integration Pattern

Starting with version 4.1, Spring Integration provides an implementation of the Idempotent
Receiver Enterprise Integration Pattern. It is a functional pattern and the whole idempotency logic
should be implemented in the application. However, to simplify the decision-making, the
IdempotentReceiverInterceptor component is provided. This is an AOP Advice that is applied to the
MessageHandler.handleMessage() method and that can filter a request message or mark it as a
duplicate, according to its configuration.

Previously, you could have implemented this pattern by using a custom MessageSelector in a
<filter/> (see Filter), for example. However, since this pattern really defines the behavior of an
endpoint rather than being an endpoint itself, the idempotent receiver implementation does not
provide an endpoint component. Rather, it is applied to endpoints declared in the application.

The logic of the IdempotentReceiverInterceptor is based on the provided MessageSelector and, if the
message is not accepted by that selector, it is enriched with the duplicateMessage header set to true.
The target MessageHandler (or downstream flow) can consult this header to implement the correct
idempotency logic. If the IdempotentReceiverInterceptor is configured with a discardChannel or
throwExceptionOnRejection = true, the duplicate message is not sent to the target

247

https://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
https://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
./filter.pdf#filter

MessageHandler.handleMessage(). Rather, it is discarded. If you want to discard (do nothing with) the
duplicate message, the discardChannel should be configured with a NullChannel, such as the default
nullChannel bean.

To maintain state between messages and provide the ability to compare messages for the
idempotency, we provide the MetadataStoreSelector. It accepts a MessageProcessor implementation
(which creates a lookup key based on the Message) and an optional ConcurrentMetadataStore
(Metadata Store). See the MetadataStoreSelector Javadoc for more information. You can also
customize the value for ConcurrentMetadataStore by using an additional MessageProcessor. By default,
MetadataStoreSelector uses the timestamp message header.

For convenience, the MetadataStoreSelector options are configurable directly on the <idempotent-
receiver> component. The following listing shows all the possible attributes:

<idempotent-receiver
id="" @
endpoint="" @
selector="" ®
discard-channel="" @
metadata-store="" ®
key-strategy="" ®

key-expression="" @
value-strategy=""
value-expression="" ©

throw-exception-on-rejection="" />

@ The ID of the IdempotentReceiverInterceptor bean. Optional.

@ Consumer endpoint name(s) or pattern(s) to which this interceptor is applied. Separate
names (patterns) with commas (,), such as endpoint="aaa, bbb*, ccc, *ddd, eee*fff".
Endpoint bean names matching these patterns are then used to retrieve the target
endpoint’s MessageHandler = bean (using its .handler suffix), and the
IdempotentReceiverInterceptor is applied to those beans. Required.

® A MessageSelector bean reference. Mutually exclusive with metadata-store and key-strategy
(key-expression). When selector is not provided, one of key-strategy or key-strategy-
expression is required.

@ Identifies the channel to which to send a message when the IdempotentReceiverInterceptor
does not accept it. When omitted, duplicate messages are forwarded to the handler with a
duplicateMessage header. Optional.

® A ConcurrentMetadataStore reference. Used by the underlying MetadataStoreSelector.
Mutually exclusive with selector. Optional. The default MetadataStoreSelector uses an
internal SimpleMetadataStore that does not maintain state across application executions.

® A MessageProcessor reference. Used by the underlying MetadataStoreSelector. Evaluates an
idempotentKey from the request message. Mutually exclusive with selector and key-
expression. When a selector is not provided, one of key-strategy or key-strategy-expression
is required.

248

./meta-data-store.pdf#metadata-store
https://docs.spring.io/spring-integration/api/org/springframework/integration/selector/MetadataStoreSelector.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/selector/MetadataStoreSelector.html

@ A SpEL expression to populate an ExpressionEvaluatingMessageProcessor. Used by the
underlying MetadataStoreSelector. Evaluates an idempotentKey by using the request message
as the evaluation context root object. Mutually exclusive with selector and key-strategy.
When a selector is not provided, one of key-strategy or key-strategy-expression is
required.

® A MessageProcessor reference. Used by the underlying MetadataStoreSelector. Evaluates a
value for the idempotentKey from the request message. Mutually exclusive with selector and
value-expression. By default, the 'MetadataStoreSelector' uses the 'timestamp' message
header as the Metadata 'value'.

@ A SpEL expression to populate an ExpressionEvaluatingMessageProcessor. Used by the
underlying MetadataStoreSelector. Evaluates a value for the idempotentKey by using the
request message as the evaluation context root object. Mutually exclusive with selector and
value-strategy. By default, the 'MetadataStoreSelector' uses the 'timestamp' message header
as the metadata 'value'.

@ Whether to throw an exception if the IdempotentReceiverInterceptor rejects the message.
Defaults to false. It is applied regardless of whether or not a discard-channel is provided.

For Java configuration, Spring Integration provides the method-level @IdempotentReceiver
annotation. It is used to mark a method that has a messaging annotation (@ServiceActivator, @Router,
and others) to specify which ‘IdempotentReceiverInterceptor objects are applied to this endpoint.
The following example shows how to use the @IdempotentReceiver annotation:

public IdempotentReceiverInterceptor idempotentReceiverInterceptor() {
return new IdempotentReceiverInterceptor(new MetadataStoreSelector(m ->
m.getHeaders().get
(INVOICE_NBR_HEADER)));

}

(inputChannel = "input", outputChannel = "output")
("idempotentReceiverInterceptor")
public MessageHandler myService() {

}

When you use the Java DSL, you can add the interceptor to the endpoint’s advice chain, as the
following example shows:

249

public IntegrationFlow flow() {

.handle("someBean", "someMethod",
e -> e.advice(idempotentReceiverInterceptor()))

The IdempotentReceiverInterceptor is designed only for the
o MessageHandler.handleMessage(Message<?>) method. Starting with version 4.3.1, it

implements HandleMessageAdvice, with the AbstractHandleMessageAdvice as a base

class, for better dissociation. See Handling Message Advice for more information.

10.10. Logging Channel Adapter

The <logging-channel-adapter> is often used in conjunction with a wire tap, as discussed in Wire
Tap. However, it can also be used as the ultimate consumer of any flow. For example, consider a
flow that ends with a <service-activator> that returns a result, but you wish to discard that result.
To do that, you could send the result to NullChannel. Alternatively, you can route it to an INFO level
<logging-channel-adapter>. That way, you can see the discarded message when logging at INFO level
but not see it when logging at (for example) the WARN level. With a NullChannel, you would see only
the discarded message when logging at the DEBUG level. The following listing shows all the possible
attributes for the logging-channel-adapter element:

<int:logging-channel-adapter
channel="" ®
level="INFO" @
expression="" @
log-full-message="false" @
logger-name="" /> ®

@ The channel connecting the logging adapter to an upstream component.
@ The logging level at which messages sent to this adapter will be logged. Default: INFO.

® A SpEL expression representing exactly what parts of the message are logged. Default:
payload—only the payload is logged. if log-full-message is specified, this attribute cannot be
specified.

@ When true, the entire message (including headers) is logged. Default: false — only the payload is
logged. This attribute cannot be specified if expression is specified.

® Specifies the name of the logger (known as category in log4j). Used to identify log messages
created by this adapter. This enables setting the log name (in the logging subsystem) for
individual adapters. By default, all adapters log wunder the following name:

250

./channel.pdf#channel-wiretap
./channel.pdf#channel-wiretap

org.springframework.integration.handler.LoggingHandler.

10.10.1. Using Java Configuration

The following Spring Boot application shows an example of configuring the LoggingHandler by using
Java configuration:

public class LoggingJavaApplication {

public static void main(String[] args) {
ConfigurableApplicationContext context =
new SpringApplicationBuilder(LogginglavaApplication.class)
.web(false)
.run(args);
MyGateway gateway = context.getBean(MyGateway.class);
gateway.sendTolLogger ("foo");

(inputChannel = "logChannel")
public LoggingHandler logging() {
LoggingHandler adapter = new LoggingHandler(LoggingHandler.Level.DEBUG);
adapter.setLoggerName("TEST_LOGGER");
adapter.setLogExpressionString("headers.id +
return adapter;

+ payload");

(defaultRequestChannel = "logChannel")
public interface MyGateway {

void sendTolLogger(String data);

10.10.2. Configuring with the Java DSL

The following Spring Boot application shows an example of configuring the logging channel
adapter by using the Java DSL:

251

public class LoggingJavaApplication {

public static void main(String[] args) {
ConfigurableApplicationContext context =
new SpringApplicationBuilder(LogginglavaApplication.class)
.web(false)
.run(args);
MyGateway gateway = context.getBean(MyGateway.class);
gateway.sendTolLogger("foo");

public IntegrationFlow loggingFlow() {
return IntegrationFlows.from(MyGateway.class)
.log(LoggingHandler.Level.DEBUG, "TEST_LOGGER",
m -> m.getHeaders().getId() + ": " + m.getPayload());

public interface MyGateway {

void sendTolLogger(String data);

10.11. java.util.function Interfaces Support

Starting with version 5.1, Spring Integration provides direct support for interfaces in the
java.util.function package. All messaging endpoints, (Service Activator, Transformer, Filter, etc.)
can now refer to Function (or Consumer) beans. The Messaging Annotations can be applied directly
on these beans similar to regular MessageHandler definitions. For example if you have this Function

bean definition:

252

./configuration.pdf#annotations

@Configuration
public class FunctionConfiguration {

@Bean
public Function<String, String> functionAsService() {
return String::toUpperCase;

}

You can use it as a simple reference in an XML configuration file:

<service-activator input-channel="processorViaFunctionChannel" ref=
"functionAsService"/>

When we configure our flow with Messaging Annotations, the code is straightforward:

@Bean

@Transformer(inputChannel = "functionServiceChannel")

public Function<String, String> functionAsService() {
return String::toUpperCase;

}

When the function returns an array, Collection (essentially, any Iterable), Stream or Reactor Flux,
@Splitter can be used on such a bean to perform iteration over the result content.

The java.util.function.Consumer interface can be used for an <int:outbound-channel-adapter> or,
together with the @ServiceActivator annotation, to perform the final step of a flow:

253

@Bean
@ServiceActivator(inputChannel = "messageConsumerServiceChannel")
public Consumer<Message<?>> messageConsumerAsService() {
// Has to be an anonymous class for proper type inference
return new Consumer<Message<?>>() {

@0verride

public void accept(Message<?> e) {
collector().add(e);

}

Also, pay attention to the comment in the code snippet above: if you would like to deal with the
whole message in your Function/Consumer you cannot use a lambda definition. Because of Java type
erasure we cannot determine the target type for the apply()/accept() method call.

The java.util.function.Supplier interface can simply be used together with the
@InboundChannelAdapter annotation, or as a ref in an <int:inbound-channel-adapter>:

@Bean

@InboundChannelAdapter(value = "inputChannel", poller = @Poller(fixedDelay = "
1000"))
public Supplier<String> pojoSupplier() {

return () -> "foo";

}

With the Java DSL we just need to use a reference to the function bean in the endpoint definitions.
Meanwhile an implementation of the Supplier interface can be used as regular MessageSource
definition:

254

public Function<String, String> toUpperCaseFunction() {
return String::toUpperCase;

}

public Supplier<String> stringSupplier() {
return () -> "foo";

}

public IntegrationFlow supplierFlow() {
return IntegrationFlows.from(stringSupplier())
.transform(toUpperCaseFunction())
.channel("suppliedChannel")

.get();

This function support is useful when used together with the Spring Cloud Function framework,
where we have a function catalog and can refer to its member functions from an integration flow
definition.

10.11.1. Kotlin Lambdas

The Framework also has been improved to support Kotlin lambdas for functions so now you can
use a combination of the Kotlin language and Spring Integration flow definitions:

(inputChannel = "functionServiceChannel")
fun kotlinFunction(): (String) -> String {
return { it.toUpperCase() }
}

(inputChannel = "messageConsumerServiceChannel")
fun kotlinConsumer(): (Message<Any>) -> Unit {
return { print(it) }
}

(value = "counterChannel”,
poller = [Poller(fixedRate = "10", maxMessagesPerPoll = "1")])
fun kotlinSupplier(): () -> String {
return { "baz" }

}

255

https://cloud.spring.io/spring-cloud-function/

Chapter 11. Java DSL

The Spring Integration Java configuration and DSL provides a set of convenient builders and a
fluent API that lets you configure Spring Integration message flows from Spring @Configuration
classes.

The Java DSL for Spring Integration is essentially a facade for Spring Integration. The DSL provides
a simple way to embed Spring Integration Message Flows into your application by using the fluent
Builder pattern together with existing Java configuration from Spring Framework and Spring
Integration. We also use and support lambdas (available with Java 8) to further simplify Java
configuration.

The cafe offers a good example of using the DSL.

The DSL is presented by the IntegrationFlows factory for the IntegrationFlowBuilder. This produces
the IntegrationFlow component, which should be registered as a Spring bean (by using the @Bean
annotation). The builder pattern is used to express arbitrarily complex structures as a hierarchy of
methods that can accept lambdas as arguments.

The IntegrationFlowBuilder only collects integration components (MessageChannel instances,
AbstractEndpoint instances, and so on) in the IntegrationFlow bean for further parsing and
registration of concrete beans in the application context by the IntegrationFlowBeanPostProcessor.

The Java DSL uses Spring Integration classes directly and bypasses any XML generation and
parsing. However, the DSL offers more than syntactic sugar on top of XML. One of its most
compelling features is the ability to define inline lambdas to implement endpoint logic, eliminating
the need for external classes to implement custom logic. In some sense, Spring Integration’s support
for the Spring Expression Language (SpEL) and inline scripting address this, but lambdas are easier
and much more powerful.

The following example shows how to use Java Configuration for Spring Integration:

256

https://github.com/spring-projects/spring-integration-samples/tree/master/dsl/cafe-dsl

public class MyConfiguration {

public AtomicInteger integerSource() {
return new AtomicInteger();

}

public IntegrationFlow myFlow() {
return IntegrationFlows.from(integerSource::getAndIncrement,
¢ -> c.poller(Pollers.fixedRate(100)))
.channel("inputChannel)
.filter((Integer p) -> p > 0)
.transform(Object::toString)
.channel(MessageChannels.queue())
.get();

The result of the preceding configuration example is that it creates, after ApplicationContext start
up, Spring Integration endpoints and message channels. Java configuration can be used both to
replace and augment XML configuration. You need not replace all of your existing XML
configuration to use Java configuration.

11.1. DSL Basics

The org.springframework.integration.dsl package contains the IntegrationFlowBuilder API
mentioned earlier and a number of IntegrationComponentSpec implementations, which are also
builders and provide the fluent API to configure concrete endpoints. The IntegrationFlowBuilder
infrastructure provides common enterprise integration patterns (EIP) for message-based
applications, such as channels, endpoints, pollers, and channel interceptors.

Endpoints are expressed as verbs in the DSL to improve readability. The following list includes the
common DSL method names and the associated EIP endpoint:

 transform — Transformer

o filter - Filter

* handle — ServiceActivator

» split — Splitter

* aggregate — Aggregator

* route — Router

* bridge — Bridge

257

https://www.enterpriseintegrationpatterns.com/

Conceptually, integration processes are constructed by composing these endpoints into one or more
message flows. Note that EIP does not formally define the term 'message flow', but it is useful to
think of it as a unit of work that uses well known messaging patterns. The DSL provides an
IntegrationFlow component to define a composition of channels and endpoints between them, but
now IntegrationFlow plays only the configuration role to populate real beans in the application
context and is not used at runtime. The following example uses the IntegrationFlows factory to
define an IntegrationFlow bean by using EIP-methods from IntegrationFlowBuilder:

public IntegrationFlow integerFlow() {
return IntegrationFlows.from("input")
.<String, Integer>transform(Integer::parselnt)
.get();

The transform method accepts a lambda as an endpoint argument to operate on the message
payload. The real argument of this method is GenericTransformer<S, T>. Consequently, any of the
provided transformers (ObjectToJsonTransformer, FileToStringTransformer, and other) can be used
here.

Under the covers, IntegrationFlowBuilder recognizes the MessageHandler and the endpoint for it,
with MessageTransformingHandler and ConsumerEndpointFactoryBean, respectively. Consider another
example:

public IntegrationFlow myFlow() {
return IntegrationFlows.from("input")
.filter("World"::equals)
.transform("Hello "::concat)
.handle(System.out::println)

.get();
}
The preceding example composes a sequence of Filter Transformer Service Activator. The
flow is "one way". That is, it does not provide a reply message but only prints the payload to

STDOUT. The endpoints are automatically wired together by using direct channels.

258

Lambdas And Message<?> Arguments

When using lambdas in EIP methods, the "input" argument is generally the
message payload. If you wish to access the entire message, use one of the
overloaded methods that take a Class<?> as the first parameter. For example, this
won’t work:

.<Message<?>, Foo>transform(m -> newFooFromMessage(m))

This will fail at runtime with a ClassCastException because the lambda doesn’t
retain the argument type and the framework will attempt to cast the payload to a
Message<?>.

Instead, use:

.(Message.class, m -> newFooFromMessage(m))

Bean Definitions override

The Java DSL can register beans for the object defined in-line in the flow
definition, as well as can reuse existing, injected beans. In case of the same bean
name defined for in-line object and existing bean definition, a
BeanDefinitionOverrideException is thrown indicating that such a configuration is

o wrong. However when you deal with prototype beans, there is no way to detect
from the integration flow processor an existing bean definition because every time
we call a prototype bean from the BeanFactory we get a new instance. This way a
provided instance is used in the IntegrationFlow as is without any bean
registration and any possible check against existing prototype bean definition.
However BeanFactory.initializeBean() is called for this object if it has an explicit
id and bean definition for this name is in prototype scope.

11.2. Message Channels

In addition to the IntegrationFlowBuilder with EIP methods, the Java DSL provides a fluent API to
configure MessageChannel instances. For this purpose the MessageChannels builder factory is
provided. The following example shows how to use it:

public MessageChannel priorityChannel() {
return MessageChannels.priority(this.mongoDbChannelMessageStore,
"priorityGroup")
.interceptor(wireTap())
.get();

259

The same MessageChannels builder factory can be used in the channel() EIP method from
IntegrationFlowBuilder to wire endpoints, similar to wiring an input-channel/output-channel pair in
the XML configuration. By default, endpoints are wired with DirectChannel instances where the
bean name is based on the following pattern:
[IntegrationFlow.beanName].channel#[channelNameIndex]. This rule is also applied for unnamed
channels produced by inline MessageChannels builder factory usage. However all MessageChannels
methods have a variant that is aware of the channelld that you can use to set the bean names for
MessageChannel instances. The MessageChannel references and beanName can be used as bean-method
invocations. The following example shows the possible ways to use the channel() EIP method:

public MessageChannel queueChannel() {
return MessageChannels.queue().get();

}

public MessageChannel publishSubscribe() {
return MessageChannels.publishSubscribe().get();

}

public IntegrationFlow channelFlow() {
return IntegrationFlows.from("input")
.fixedSubscriberChannel()
.channel("queueChannel")
.channel(publishSubscribe())
.channel(MessageChannels.executor ("executorChannel", this.
taskExecutor))
.channel("output")

.get();

m

* from("input") means "'find and use the MessageChannel with the "input" id, or create one".

» fixedSubscriberChannel() produces an instance of FixedSubscriberChannel and registers it with a
name of channelFlow.channel#0

* channel("queueChannel") works the same way but uses an existing queueChannel bean.
 channel(publishSubscribe()) is the bean-method reference.

» channel(MessageChannels.executor("executorChannel”, this.taskExecutor)) is the
IntegrationFlowBuilder that exposes IntegrationComponentSpec to the ExecutorChannel and
registers it as executorChannel.

* channel("output") registers the DirectChannel bean with output as its name, as long as no beans
with this name already exist.

Note: The preceding IntegrationFlow definition is valid, and all of its channels are applied to
endpoints with BridgeHandler instances.

260

Be careful to use the same inline channel definition through MessageChannels

o factory from different IntegrationFlow instances. Even if the DSL parser registers
non-existent objects as beans, it cannot determine the same object (MessageChannel)
from different IntegrationFlow containers. The following example is wrong:

public IntegrationFlow startFlow() {
return IntegrationFlows.from("input")
.transform(...)
.channel(MessageChannels.queue("queueChannel"))

.get();

public IntegrationFlow endFlow() {
return IntegrationFlows.from(MessageChannels.queue("queueChannel"))
.handle(...)
-get();

The result of that bad example is the following exception:

Caused by: java.lang.IllegalStateException:
Could not register object [queueChannel] under bean name 'queueChannel':
there is already object [queueChannel] bound
at
0.s.b.f.s.DefaultSingletonBeanRegistry.registerSingleton(DefaultSingletonBeanRegistry.
java:129)

To make it work, you need to declare @Bean for that channel and use its bean method from different

IntegrationFlow instances.

11.3. Pollers

Spring Integration also provides a fluent API that lets you configure PollerMetadata for
AbstractPollingEndpoint implementations. You can use the Pollers builder factory to configure
common bean definitions or those created from IntegrationFlowBuilder EIP methods, as the

following example shows:

(name = PollerMetadata.DEFAULT_POLLER)
public PollerSpec poller() {
return Pollers.fixedRate(500)
.errorChannel("myErrors");

See Pollers and PollerSpec in the Javadoc for more information.

261

https://docs.spring.io/spring-integration/api/org/springframework/integration/dsl/Pollers.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/dsl/PollerSpec.html

If you use the DSL to construct a PollerSpec as a @Bean, do not call the get() method
in the bean definition. The PollerSpec is a FactoryBean that generates the
PollerMetadata object from the specification and initializes all of its properties.

11.4. DSL and Endpoint Configuration

All IntegrationFlowBuilder EIP methods have a variant that applies the lambda parameter to
provide options for AbstractEndpoint instances: SmartLifecycle, PollerMetadata, request-handler-
advice-chain, and others. Each of them has generic arguments, so it lets you configure an endpoint
and even its MessageHandler in the context, as the following example shows:

public IntegrationFlow flow2() {
return IntegrationFlows.from(this.inputChannel)
.transform(new PayloadSerializingTransformer(),
c -> c.autoStartup(false).id("

payloadSerializingTransformer"))

.transform((Integer p) -> p * 2, ¢ -> c.advice(this
.expressionAdvice()))

.get();
}

In addition, the EndpointSpec provides an id() method to let you register an endpoint bean with a
given bean name, rather than a generated one.

If the MessageHandler is referenced as a bean, then any existing adviceChain configuration will be
overridden if the .advice() method is present in the DSL definition:

public TcpOutboundGateway tcpOut() {
TcpOutboundGateway gateway = new TcpOutboundGateway();
gateway.setConnectionFactory(cf());
gateway.setAdviceChain(Collections.singletonList(fooAdvice()));
return gateway;

public IntegrationFlow clientTcpFlow() {
return f -> f
.handle(tcpOut(), e -> e.advice(testAdvice()))
.transform(Transformers.objectToString());

That is they are not merged, only the testAdvice() bean is used in this case.

262

11.5. Transformers

The DSL API provides a convenient, fluent Transformers factory to be used as inline target object
definition within the .transform() EIP method. The following example shows how to use it:

public IntegrationFlow transformFlow() {
return IntegrationFlows.from("input")
.transform(Transformers.fromJson(MyPojo.class))
.transform(Transformers.serializer())

.get();

It avoids inconvenient coding using setters and makes the flow definition more straightforward.
Note that you can use Transformers to declare target Transformer instances as @Bean instances and,
again, use them from IntegrationFlow definition as bean methods. Nevertheless, the DSL parser
takes care of bean declarations for inline objects, if they are not yet defined as beans.

See Transformers in the Javadoc for more information and supported factory methods.

Also see Lambdas And Message<?> Arguments.

11.6. Inbound Channel Adapters

Typically, message flows start from an inbound channel adapter (such as <int-jdbc:inbound-
channel-adapter>). The adapter is configured with <poller>, and it asks a MessageSource<?> to
periodically produce messages. Java DSL allows for starting IntegrationFlow from a
MessageSource<?>, too. For this purpose, the IntegrationFlows builder factory provides an overloaded
IntegrationFlows.from(MessageSource<?> messageSource) method. You can configure the
MessageSource<?> as a bean and provide it as an argument for that method. The second parameter of
IntegrationFlows.from() is a Consumer<SourcePollingChannelAdapterSpec> lambda that lets you
provide options (such as PollerMetadata or SmartLifecycle) for the SourcePollingChannelAdapter. The
following example shows how to use the fluent API and a lambda to create an IntegrationFlow:

263

https://docs.spring.io/spring-integration/api/org/springframework/integration/dsl/Transformers.html

public MessageSource<Object> jdbcMessageSource() {
return new JdbcPollingChannelAdapter(this.dataSource, "SELECT * FROM
something");

}

public IntegrationFlow pollingFlow() {
return IntegrationFlows.from(jdbcMessageSource(),
¢ -> c.poller(Pollers.fixedRate(100).maxMessagesPerPoll(1)))
.transform(Transformers.toJson())
.channel("furtherProcessChannel")
.get();

For those cases that have no requirements to build Message objects directly, you can use the
IntegrationFlows.from() variant that is based on the java.util.function.Supplier . The result of the
Supplier.get() is automatically wrapped in a Message (if it is not already a Message).

11.7. Message Routers

Spring Integration natively provides specialized router types, including:

» HeaderValueRouter

« PayloadTypeRouter

« ExceptionTypeRouter
« RecipientListRouter
« XPathRouter

As with many other DSL IntegrationFlowBuilder EIP methods, the route() method can apply any
AbstractMessageRouter implementation or, for convenience, a String as a SpEL expression or a ref-
method pair. In addition, you can configure route() with a lambda and use a lambda for a
Consumer<RouterSpec<MethodInvokingRouter>>. The fluent API also provides
AbstractMappingMessageRouter options such as channelMapping(String key, String channelName)
pairs, as the following example shows:

264

@Bean
public IntegrationFlow routeFlowBylLambda() {
return IntegrationFlows.from("routerInput")
.<Integer, Boolean>route(p ->p % 2 == 0,
m -> m.suffix("Channel")
.channelMapping(true, "even")
.channelMapping(false, "odd")

.get();

The following example shows a simple expression-based router:

@Bean
public IntegrationFlow routeFlowByExpression() {
return IntegrationFlows.from("routerInput")
.route("headers['destChannel']")
.get();

The routeToRecipients() method takes a Consumer<RecipientListRouterSpec>, as the following
example shows:

265

public IntegrationFlow recipientListFlow() {
return IntegrationFlows.from("recipientListInput")
.<String, String>transform(p -> p.replaceFirst("Payload", ""))
.routeToRecipients(r -> r
.recipient("thing1-channel”, "'thing1' == payload")
.recipientMessageSelector("thing2-channel”, m ->
m.getHeaders().containsKey("recipient")
&& (boolean) m.getHeaders().get("recipient"))
.recipientFlow("'thing1"' == payload or 'thing2' == payload or
"thing3' == payload",
f -> f.<String, String>transform(String::toUpperCase)
.channel(c -> c.queue(
"recipientListSubFlowTResult")))
.recipientFlow((String p) -> p.startsWith("thing3"),
f -> f.transform("Hello "::concat)
.channel(c -> c.queue(
"recipientListSubFlow2Result")))
.recipientFlow(new FunctionExpression<Message<?>>(m ->
"thing3".equals(m.getPayload())),
f -> f.channel(c -> c.queue(
"recipientListSubFlow3Result")))
.defaultOutputToParentFlow())

.get();

The .defaultOutputToParentFlow() of the .routeToRecipients() definition lets you set the router’s
defaultOutput as a gateway to continue a process for the unmatched messages in the main flow.

Also see Lambdas And Message<?> Arguments.

11.8. Splitters

To create a splitter, use the split() EIP method. By default, if the payload is an Iterable, an
Iterator, an Array, a Stream, or a reactive Publisher, the split() method outputs each item as an
individual message. It accepts a lambda, a SpEL expression, or any AbstractMessageSplitter
implementation. Alternatively, you can wuse it without parameters to provide the
DefaultMessageSplitter. The following example shows how to use the split() method by providing
a lambda:

266

public IntegrationFlow splitFlow() {
return IntegrationFlows.from("splitInput")
.split(s -> s.applySequence(false).delimiters(","))
.channel(MessageChannels.executor (taskExecutor()))
.get();

The preceding example creates a splitter that splits a message containing a comma-delimited
String.

Also see Lambdas And Message<?> Arguments.

11.9. Aggregators and Resequencers

An Aggregator is conceptually the opposite of a Splitter. It aggregates a sequence of individual
messages into a single message and is necessarily more complex. By default, an aggregator returns
a message that contains a collection of payloads from incoming messages. The same rules are
applied for the Resequencer. The following example shows a canonical example of the splitter-
aggregator pattern:

public IntegrationFlow splitAggregateFlow() {
return IntegrationFlows.from("splitAggregateInput")
.split()
.channel(MessageChannels.executor(this.taskExecutor()))
.resequence()
.aggregate()
.get();

The split() method splits the list into individual messages and sends them to the ExecutorChannel.
The resequence() method reorders messages by sequence details found in the message headers. The
aggregate() method collects those messages.

However, you can change the default behavior by specifying a release strategy and correlation
strategy, among other things. Consider the following example:

.aggregate(a ->
a.correlationStrategy(m -> m.getHeaders().get("myCorrelationKey"))
.releaseStrategy(g -> g.size() > 10)
.messageStore(messageStore()))

The preceding example correlates messages that have myCorrelationKey headers and releases the
messages once at least ten have been accumulated.

267

Similar lambda configurations are provided for the resequence() EIP method.

11.10. Service Activators and the .handle() method

The .handle() EIP method’s goal is to invoke any MessageHandler implementation or any method on
some POJO. Another option is to define an “activity” by using lambda expressions. Consequently, we
introduced a generic GenericHandler<P> functional interface. Its handle method requires two
arguments: P payload and MessageHeaders headers (starting with version 5.1). Having that, we can
define a flow as follows:

public IntegrationFlow myFlow() {
return IntegrationFlows.from("flow3Input")
.<Integer>handle((p, h) -> p * 2)
.get();

The preceding example doubles any integer it receives.

However, one main goal of Spring Integration is loose coupling, through runtime type conversion
from message payload to the target arguments of the message handler. Since Java does not support
generic type resolution for lambda classes, we introduced a workaround with an additional
payloadType argument for the most EIP methods and LambdaMessageProcessor. Doing so delegates the
hard conversion work to Spring’s ConversionService, which uses the provided type and the
requested message to target method arguments. The following example shows what the resulting
IntegrationFlow might look like:

public IntegrationFlow integerFlow() {
return IntegrationFlows.from("input")
.<byte[], String>transform(p - > new String(p, "UTF-8"))
.handle(Integer.class, (p, h) ->p * 2)
-get();

We also can register some BytesToIntegerConverter within ConversionService to get rid of that
additional .transform():

268

public BytesToIntegerConverter bytesToIntegerConverter() {
return new BytesToIntegerConverter();

}

public IntegrationFlow integerFlow() {
return IntegrationFlows.from("input")
.handle(Integer.class, (p, h) ->p * 2)
.get();

Also see Lambdas And Message<?> Arguments.

11.11. Operator log()

For convenience, to log the message journey through the Spring Integration flow (<logging-channel-
adapter>), a log() operator is presented. Internally, it is represented by the WireTap
ChannelInterceptor with a LoggingHandler as its subscriber. It is responsible for logging the incoming
message into the next endpoint or the current channel. The following example shows how to use
LoggingHandler:

filter(...)
.log(LoggingHandler.Level .ERROR, "test.category", m -> m.getHeaders().getId())
.route(...)

In the preceding example, an id header is logged at the ERROR level onto test.category only for
messages that passed the filter and before routing.

When this operator is used at the end of a flow, it is a one-way handler and the flow ends. To make
it as a reply-producing flow, you can either use a simple bridge() after the log() or, starting with
version 5.1, you can use a LogAndReply() operator instead. logAndReply can only be used at the end of
a flow.

11.12. MessageChannelSpec.wireTap()

Spring Integration includes a .wireTap() fluent API MessageChannelSpec builders. The following
example shows how to use the wireTap method to log input:

269

public QueueChannelSpec myChannel() {
return MessageChannels.queue()
.wireTap("loggingFlow.input");

public IntegrationFlow loggingFlow() {
return f -> f.log();
}

If the MessageChannel is an instance of InterceptableChannel, the 1og() or wireTap()
operators are applied to the current MessageChannel. Otherwise, an intermediate
DirectChannel is injected into the flow for the currently configured endpoint. In the
following example, the WireTap interceptor is added to myChannel directly, because
DirectChannel implements InterceptableChannel:

o MessageChannel myChannel() {
return new DirectChannel();

}

.channel(myChannel())
.log()

When the current MessageChannel does not implement InterceptableChannel, an implicit
DirectChannel and BridgeHandler are injected into the IntegrationFlow, and the WireTap is added to
this new DirectChannel. The following example does not have any channel declaration:

.handle(...)
-log()
}

In the preceding example (and any time no channel has been declared), an implicit DirectChannel is
injected in the current position of the IntegrationFlow and used as an output channel for the
currently configured ServiceActivatingHandler (from the .handle(), described earlier).

11.13. Working With Message Flows

IntegrationFlowBuilder provides a top-level API to produce integration components wired to

270

message flows. When your integration may be accomplished with a single flow (which is often the
case), this is convenient. Alternately IntegrationFlow instances can be joined via MessageChannel
instances.

By default, MessageFlow behaves as a “chain” in Spring Integration parlance. That is, the endpoints
are automatically and implicitly wired by DirectChannel instances. The message flow is not actually
constructed as a chain, which offers much more flexibility. For example, you may send a message to
any component within the flow, if you know its inputChannel name (that is, if you explicitly define
it). You may also reference externally defined channels within a flow to allow the use of channel
adapters (to enable remote transport protocols, file I/O, and so on), instead of direct channels. As
such, the DSL does not support the Spring Integration chain element, because it does not add much
value in this case.

Since the Spring Integration Java DSL produces the same bean definition model as any other
configuration options and is based on the existing Spring Framework @Configuration infrastructure,
it can be used together with XML definitions and wired with Spring Integration messaging
annotation configuration.

You can also define direct IntegrationFlow instances by using a lambda. The following example
shows how to do so:

public IntegrationFlow lambdaFlow() {
return f -> f.filter("World"::equals)
.transform("Hello "::concat)
.handle(System.out::println);

The result of this definition is the same set of integration components that are wired with an
implicit direct channel. The only limitation here is that this flow is started with a named direct
channel - 1ambdaFlow. input. Also, a Lambda flow cannot start from MessageSource or MessageProducer.

Starting with version 5.1, this kind of IntegrationFlow is wrapped to the proxy to expose lifecycle
control and provide access to the inputChannel of the internally associated StandardIntegrationFlow.

Starting with version 5.0.6, the generated bean names for the components in an IntegrationFlow
include the flow bean followed by a dot (.) as a prefix. For example, the
ConsumerEndpointFactoryBean for the .transform("Hello "::concat) in the preceding sample results
in a bean name of lambdaFlow.o.s.i.config.ConsumerEndpointFactoryBean#0. (The o.s.i is a
shortened from org.springframework.integration to fit on the page.) The Transformer
implementation bean for that endpoint has a bean name of lambdaFlow.transformer#@ (starting with
version 5.1), where instead of a fully qualified name of the MethodInvokingTransformer class, its
component type is used. The same pattern is applied for all the NamedComponent s when the bean
name has to be generated within the flow. These generated bean names are prepended with the
flow ID for purposes such as parsing logs or grouping components together in some analysis tool, as
well as to avoid a race condition when we concurrently register integration flows at runtime. See
Dynamic and Runtime Integration Flows for more information.

271

11.14. FunctionExpression

We introduced the FunctionExpression class (an implementation of SpEL’s Expression interface) to
let us use lambdas and generics. The Function<T, R> option is provided for the DSL components,
along with an expression option, when there is the implicit Strategy variant from Core Spring
Integration. The following example shows how to use a function expression:

.enrich(e -> e.requestChannel("enrichChannel")
.requestPayload(Message: :getPayload)
.propertyFunction("date", m -> new Date()))

The FunctionExpression also supports runtime type conversion, as is done in SpelExpression.

11.15. Sub-flows support

Some of if else and publish-subscribe components provide the ability to specify their logic or
mapping by using sub-flows. The simplest sample is .publishSubscribeChannel(), as the following
example shows:

public IntegrationFlow subscribersFlow() {
return flow -> flow
.publishSubscribeChannel(Executors.newCachedThreadPool(), s -> s
.subscribe(f -> f
.<Integer>handle((p, h) -> p / 2)
.channel(c -> c.queue("subscriber1Results")))
.subscribe(f -> f
.<Integer>handle((p, h) -> p * 2)
.channel(c -> c.queue("subscriber2Results"))))
.<Integer>handle((p, h) -> p * 3)
.channel(c -> c.queue("subscriber3Results"));

You can achieve the same result with separate IntegrationFlow @Bean definitions, but we hope you
find the sub-flow style of logic composition useful. We find that it results in shorter (and so more
readable) code.

A similar publish-subscribe sub-flow composition provides the .routeToRecipients() method.
Another example is using .discardFlow() instead of .discardChannel() on the .filter () method.

The .route() deserves special attention. Consider the following example:

272

@Bean
public IntegrationFlow routeFlow() {
return f -> f
.<Integer, Boolean>route(p ->p % 2 == 0,
m -> m.channelMapping("true”, "evenChannel")
.SubFlowMapping("false", sf ->
sf.<Integer>handle((p, h) -> p * 3)))

.transform(Object::toString)
.channel(c -> c.queue("oddChannel"));

The .channelMapping() continues to work as it does in regular Router mapping, but the
.subFlowMapping() tied that sub-flow to the main flow. In other words, any router’s sub-flow returns
to the main flow after .route().

273

Sometimes, you need to refer to an existing IntegrationFlow @Bean from the
.subFlowMapping(). The following example shows how to do so:

public IntegrationFlow splitRouteAggregate() {
return f -> f

.split()
.<Integer, Boolean>route(o -> 0 % 2 == 0,
m->m
.subFlowMapping(true, oddFlow())
.SubFlowMapping(false, sf -> sf.gateway
(evenFlow())))
.aggregate();

}

public IntegrationFlow oddFlow() {
return f -> f.handle(m -> System.out.println("odd"));

}
o public IntegrationFlow evenFlow() {
return f -> f.handle((p, h) -> "even");
}

In this case, when you need to receive a reply from such a sub-flow and continue
the main flow, this IntegrationFlow bean reference (or its input channel) has to be
wrapped with a .gateway() as shown in the preceding example. The oddFlow()
reference in the preceding example is not wrapped to the .gateway(). Therefore,
we do not expect a reply from this routing branch. Otherwise, you end up with an
exception similar to the following:

Caused by: org.springframework.beans.factory.BeanCreationException:

The 'currentComponent'
(org.springframework.integration.router.MethodInvokingRouter@7965a51c)

is a one-way 'MessageHandler' and it isn't appropriate to configure
"outputChannel’.

This is the end of the integration flow.

When you configure a sub-flow as a lambda, the framework handles the request-
reply interaction with the sub-flow and a gateway is not needed.

Sub-flows can be nested to any depth, but we do not recommend doing so. In fact, even in the

router case, adding complex sub-flows within a flow would quickly begin to look like a plate of
spaghetti and be difficult for a human to parse.

274

In cases where the DSL supports a subflow configuration, when a channel is
normally needed for the component being configured, and that subflow starts with
a channel() element, the framework implicitly places a bridge() between the
component output channel and the flow’s input channel. For example, in this
filter definition:

.filter(p -> p instanceof String, e -> e
.discardFlow(df -> df
o .channel(MessageChannels.queue())
..)

the Framework internally creates a DirectChannel bean for injecting into the
MessageFilter.discardChannel. Then it wraps the subflow into an IntegrationFlow
starting with this implicit channel for the subscription and places a bridge before
the channel() specified in the flow. When an existing IntegrationFlow bean is used
as a subflow reference (instead of an inline subflow, e.g. a lambda), there is no
such bridge required because the framework can resolve the first channel from
the flow bean. With an inline subflow, the input channel is not yet available.

11.16. Using Protocol Adapters

All of the examples shown so far illustrate how the DSL supports a messaging architecture by using
the Spring Integration programming model. However, we have yet to do any real integration. Doing
S0 requires access to remote resources over HTTP, JMS, AMQP, TCP,]DBC, FTP, SMTP, and so on or
access to the local file system. Spring Integration supports all of these and more. Ideally, the DSL
should offer first class support for all of them, but it is a daunting task to implement all of these and
keep up as new adapters are added to Spring Integration. So the expectation is that the DSL is
continually catching up with Spring Integration.

Consequently, we provide the high-level API to seamlessly define protocol-specific messaging. We
do so with the factory and builder patterns and with lambdas. You can think of the factory classes
as “Namespace Factories”, because they play the same role as the XML namespace for components
from the concrete protocol-specific Spring Integration modules. Currently, Spring Integration Java
DSL supports the Amqgp, Feed, Jms, Files, (S)Ftp, Http, JPA, MongoDb, TCP/UDP, Mail, WebFlux, and Scripts
namespace factories. The following example shows how to use three of them (Amqp, Jms, and Mail):

275

public IntegrationFlow amgpFlow() {
return IntegrationFlows.from(Amgp.inboundGateway(this.rabbitConnectionFactory,
queue()))

.transform("hello "::concat)
.transform(String.class, String::toUpperCase)
.get();

public IntegrationFlow jmsOutboundGatewayFlow() {
return IntegrationFlows.from("jmsOutboundGatewayChannel™)

.handle(Jms.outboundGateway(this.jmsConnectionFactory)

.replyContainer(c ->
c.concurrentConsumers(3)
.sessionTransacted(true))

.requestDestination("jmsPipelineTest"))

.get();

public IntegrationFlow sendMailFlow() {
return IntegrationFlows.from("sendMailChannel™)

.handle(Mail.outboundAdapter("localhost")
.port(smtpPort)
.credentials("user", "pw")
.protocol("smtp")
.javaMailProperties(p -> p.put("mail.debug", "true")),

e -> e.id("sendMailEndpoint"))
.get();

The preceding example shows how to use the “namespace factories” as inline adapters
declarations. However, you can use them from @Bean definitions to make the IntegrationFlow
method chain more readable.

We are soliciting community feedback on these namespace factories before we
o spend effort on others. We also appreciate any input into prioritization for which
adapters and gateways we should support next.

You can find more Java DSL samples in the protocol-specific chapters throughout this reference
manual.

All other protocol channel adapters may be configured as generic beans and wired to the
IntegrationFlow, as the following examples show:

276

public QueueChannelSpec wrongMessagesChannel() {
return MessageChannels
.queue()
.wireTap("wrongMessagesWireTapChannel");

public IntegrationFlow xpathFlow(MessageChannel wrongMessagesChannel) {
return IntegrationFlows.from("inputChannel")

.filter(new StringValueTestXPathMessageSelector("namespace-uri(/*)",

"my:namespace"),
e -> e.discardChannel(wrongMessagesChannel))

.log(LoggingHandler.Level.ERROR, "test.category", m -> m.getHeaders()
.getId())

.route(xpathRouter (wrongMessagesChannel))

-get();

public AbstractMappingMessageRouter xpathRouter(MessageChannel
wrongMessagesChannel) {
XPathRouter router = new XPathRouter("local-name(/*)");
router.setEvaluateAsString(true);
router.setResolutionRequired(false);
router.setDefaultOutputChannel(wrongMessagesChannel);
router.setChannelMapping("Tags", "splittingChannel");
router.setChannelMapping("Tag", "receivedChannel");
return router;

11.17. IntegrationFlowAdapter

The IntegrationFlow interface can be implemented directly and specified as a component for
scanning, as the following example shows:

277

public class MyFlow implements IntegrationFlow {

public void configure(IntegrationFlowDefinition<?> f) {
f.<String, String>transform(String::toUpperCase);

}

It is picked up by the IntegrationFlowBeanPostProcessor and correctly parsed and registered in the
application context.

For convenience and to gain the benefits of loosely coupled architecture, we provide the
IntegrationFlowAdapter base class implementation. It requires a buildFlow() method
implementation to produce an IntegrationFlowDefinition by using one of from() methods, as the
following example shows:

public class MyFlowAdapter extends IntegrationFlowAdapter {
private final AtomicBoolean invoked = new AtomicBoolean();

public Date nextExecutionTime(TriggerContext triggerContext) {
return this.invoked.getAndSet(true) ? null : new Date();

}

protected IntegrationFlowDefinition<?> buildFlow() {
return from(this, "messageSource",
e -> e.poller(p -> p.trigger(this::nextExecutionTime)))
.split(this)
.transform(this)
.aggregate(a -> a.processor(this, null), null)
.enrichHeaders(Collections.singletonMap("thing1", "THING1"))
.filter(this)
.handle(this)
.channel(c -> c.queue("myFlowAdapterQOutput"));

}

public String messageSource() {
return "T,H,I,N,G,2";
}

public String[] split(String payload) {

278

return StringUtils.commaDelimitedListToStringArray(payload);

public String transform(String payload) {
return payload.tolLowerCase();

}

public String aggregate(List<String> payloads) {
return payloads.stream().collect(Collectors.joining());

}
public boolean filter(Optional<String> thing1) {
return thingl.isPresent();
}
public String handle(String payload, String thing1) {
return payload + ":" + thingT;
}

11.18. Dynamic and Runtime Integration Flows

IntegrationFlow and all its dependent components can be registered at runtime. Before version 5.0,
we used the BeanFactory.registerSingleton() hook. Starting in the Spring Framework 5.0, we use
the instanceSupplier hook for programmatic BeanDefinition registration. The following example
shows how to programmatically register a bean:

BeanDefinition beanDefinition =
BeanDefinitionBuilder.genericBeanDefinition((Class<Object>) bean.
getClass(), () -> bean)
.getRawBeanDefinition();

((BeanDefinitionRegistry) this.beanFactory).registerBeanDefinition(beanName,
beanDefinition);

Note that, in the preceding example, the instanceSupplier hook is the last parameter to the
genericBeanDefinition method, provided by a lambda in this case.

All the necessary bean initialization and lifecycle is done automatically, as it is with the standard
context configuration bean definitions.

279

To simplify the development experience, Spring Integration introduced IntegrationFlowContext to
register and manage IntegrationFlow instances at runtime, as the following example shows:

private AbstractServerConnectionFactory serveri;

private IntegrationFlowContext flowContext;

public void testTcpGateways() {
TestingUtilities.waitListening(this.server1, null);

IntegrationFlow flow = f -> f

.handle(Tcp.outboundGateway(Tcp.netClient("localhost", this.server1
.getPort())
.serializer(TcpCodecs.crlf())
.deserializer(TcpCodecs.lengthHeader1())
.id("client1"))
.remoteTimeout(m -> 5000))
.transform(Transformers.objectToString());

IntegrationFlowRegistration theFlow = this.flowContext.registration(flow)
.register();

assertThat(theFlow.getMessagingTemplate().convertSendAndReceive("foo", String
.class), equalTo("F00"));

}

This is useful when we have multiple configuration options and have to create several instances of
similar flows. To do so, we can iterate our options and create and register IntegrationFlow instances
within a loop. Another variant is when our source of data is not Spring-based and we must create it
on the fly. Such a sample is Reactive Streams event source, as the following example shows:

280

Flux<Message<?>> messageFlux =
Flux.just("1,2,3,4")
.map(v -> v.split(","))
.flatMapIterable(Arrays::aslist)
.map(Integer::parselnt)
.map(GenericMessage<Integer>::new);

QueueChannel resultChannel = new QueueChannel();

IntegrationFlow integrationFlow =
IntegrationFlows.from(messageFlux)
.<Integer, Integer>transform(p -> p * 2)
.channel(resultChannel)
-.get();

this.integrationFlowContext.registration(integrationFlow)
.register();

The IntegrationFlowRegistrationBuilder (as a result of the IntegrationFlowContext.registration())
can be used to specify a bean name for the IntegrationFlow to register, to control its autoStartup,
and to register, non-Spring Integration beans. Usually, those additional beans are connection
factories (AMQP, JMS, (S)FTP, TCP/UDP, and others.), serializers and deserializers, or any other
required support components.

You can use the IntegrationFlowRegistration.destroy() callback to remove a dynamically registered
IntegrationFlow and all its dependent beans when you no longer need them. See the
IntegrationFlowContext Javadoc for more information.

Starting with version 5.0.6, all generated bean names in an IntegrationFlow
definition are prepended with the flow ID as a prefix. We recommend always
specifying an explicit flow ID. Otherwise, a synchronization barrier is initiated in

o the IntegrationFlowContext, to generate the bean name for the IntegrationFlow and
register its beans. We synchronize on these two operations to avoid a race
condition when the same generated bean name may be used for different
IntegrationFlow instances.

Also, starting with version 5.0.6, the registration builder API has a new method:
useFlowIdAsPrefix(). This is useful if you wish to declare multiple instances of the same flow and
avoid bean name collisions when components in the flows have the same ID, as the following
example shows:

281

https://docs.spring.io/spring-integration/api/org/springframework/integration/dsl/context/IntegrationFlowContext.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/dsl/context/IntegrationFlowContext.html

private void registerFlows() {
IntegrationFlowRegistration flowl =
this.flowContext.registration(buildFlow(1234))
Lid("tep1")
.useFlowIdAsPrefix()
.register();

IntegrationFlowRegistration flow2 =
this.flowContext.registration(buildFlow(1235))
.id("tep2")
.useFlowIdAsPrefix()
.register();

}

private IntegrationFlow buildFlow(int port) {
return f -> f

.handle(Tcp.outboundGateway(Tcp.netClient("localhost", port)
.serializer(TcpCodecs.crlf())
.deserializer(TcpCodecs.lengthHeader1())
.id("client"))

.remoteTimeout(m -> 5000))
.transform(Transformers.objectToString());

In this case, the message handler for the first flow can be referenced with bean a name of
tepl.client.handler.

e An id attribute is required when you usE useFlowIdAsPrefix().

11.19. IntegrationFlow as Gateway

The IntegrationFlow can start from the service interface that provides a GatewayProxyFactoryBean
component, as the following example shows:

282

public interface ControlBusGateway {

void send(String command);

public IntegrationFlow controlBusFlow() {
return IntegrationFlows.from(ControlBusGateway.class)
.controlBus()

.get();

All the proxy for interface methods are supplied with the channel to send messages to the next
integration component in the IntegrationFlow. You can mark the service interface with the
@MessagingGateway annotation and mark the methods with the @Gateway annotations. Nevertheless,
the requestChannel is ignored and overridden with that internal channel for the next component in
the IntegrationFlow. Otherwise, creating such a configuration by using IntegrationFlow does not
make sense.

By default a GatewayProxyFactoryBean gets a conventional bean name, such as
[FLOW_BEAN_NAME.gateway]. You can change that ID by using the @MessagingGateway.name() attribute or
the overloaded IntegrationFlows.from(Class<?> servicelnterface, Consumer<GatewayProxySpec>
endpointConfigurer) factory method. Also all the attributes from the @MessagingGateway annotation
on the interface are applied to the target GatewayProxyFactoryBean. When annotation configuration
is not applicable, the Consumer<GatewayProxySpec> variant can be used for providing appropriate
option for the target proxy. This DSL method is available starting with version 5.2; the method
IntegrationFlows.from(Class<?> servicelnterface, String beanName) is deprecated in favor of
GatewayProxySpec.beanName() option.

With Java 8, you can even create an integration gateway with the java.util.function interfaces, as
the following example shows:

public IntegrationFlow errorRecovererFlow() {
return IntegrationFlows.from(Function.class, (gateway) -> gateway.beanName(
"errorRecovererFunction"))
.handle((GenericHandler<?>) (p, h) -> {
throw new RuntimeException("intentional");
}, e -> e.advice(retryAdvice()))
-get();

283

That errorRecovererFlow can be used as follows:

@Autowired
@Qualifier("errorRecovererFunction")
private Function<String, String> errorRecovererFlowGateway;

284

Chapter 12. System Management

12.1. Metrics and Management

This section describes how to capture metrics for Spring Integration. In recent versions, we have
relied more on Micrometer (see micrometer.io), and we plan to use Micrometer even more in
future releases.

12.1.1. Configuring Metrics Capture

o Prior to version 4.2, metrics were only available when JMX was enabled. See JMX
Support.

To enable MessageSource, MessageChannel, and MessageHandler metrics, add an <int:management/> bean
to the application context (in XML) or annotate one of your @Configuration classes with
@EnableIntegrationManagement (in Java). MessageSource instances maintain only counts,
MessageChannel instances and MessageHandler instances maintain duration statistics in addition to
counts. See MessageChannel Metric Features and MessageHandler Metric Features, later in this
chapter.

Doing so causes the automatic registration of the IntegrationManagementConfigurer bean in the
application context. Only one such bean can exist in the context, and, if registered manually via a
<bean/> definition, it must have the bean name set to integrationManagementConfiqurer. This bean
applies its configuration to beans after all beans in the context have been instantiated.

In addition to metrics, you can control debug logging in the main message flow. In very high
volume applications, even calls to isDebugEnabled() can be quite expensive with some logging
subsystems. You can disable all such logging to avoid this overhead. Exception logging (debug or
otherwise) is not affected by this setting.

The following listing shows the available options for controlling logging:

285

https://micrometer.io
./jmx.pdf#jmx
./jmx.pdf#jmx

<int:management
default-logging-enabled="true" @M
default-counts-enabled="false" @
default-stats-enabled="false" ®
counts-enabled-patterns="foo, !'baz, ba*" @
stats-enabled-patterns="fiz, buz" ®
metrics-factory="myMetricsFactory" /> ®

@Configuration

@EnablelIntegration

@EnableIntegrationManagement(
defaultLoggingEnabled = "true", @
defaultCountsEnabled = "false", @
defaultStatsEnabled = "false", ®
countsEnabled = { "foo", "${count.patterns}" }, @
statsEnabled = { "qux", "!*" }, ®
MetricsFactory = "myMetricsFactory") ®

public static class ContextConfiguration {

}

@ Set to false to disable all logging in the main message flow, regardless of the log system category
settings. Set to 'true' to enable debug logging (if also enabled by the logging subsystem). Only
applied if you have not explicitly configured the setting in a bean definition. The default is true.

@ Enable or disable count metrics for components that do not match one of the patterns in <4>.
Only applied if you have not explicitly configured the setting in a bean definition. The default is
false.

® Enable or disable statistical metrics for components that do not match one of the patterns in <5>.
Only applied if you have not explicitly configured the setting in a bean definition. The default is
'false’.

@ A comma-delimited list of patterns for beans for which counts should be enabled. You can
negate the pattern with !. First match (positive or negative) wins. In the unlikely event that you
have a bean name starting with !, escape the ! in the pattern. For example, \!something
positively matches a bean named !something.

® A comma-delimited list of patterns for beans for which statistical metrics should be enabled. You
can negate the pattern\ with !. First match (positive or negative) wins. In the unlikely event that
you have a bean name starting with !, escape the ! in the pattern. \!something positively matches
a bean named !something. The collection of statistics implies the collection of counts.

® A reference to a MetricsFactory. See Metrics Factory.

At runtime, counts and statistics can be obtained by calling getChannelMetrics, getHandlerMetrics
and getSourceMetrics (all from the IntegrationManagementConfigurer class), which return
MessageChannelMetrics, MessageHandlerMetrics, and MessageSourceMetrics, respectively.

286

See the Javadoc for complete information about these classes.
When JMX is enabled (see JMX Support), IntegrationMBeanExporter also exposes these metrics.

IMPORTANT: defaultLoggingEnabled, defaultCountsEnabled, and defaultStatsEnabled are applied
only if you have not explicitly configured the corresponding setting in a bean definition.

Starting with version 5.0.2, the framework automatically detects whether the application context
has a single MetricsFactory bean and, if so, uses it instead of the default metrics factory.

12.1.2. Micrometer Integration

Starting with version 5.0.3, the presence of a Micrometer MeterRegistry in the application context
triggers support for Micrometer metrics in addition to the built-in metrics (note that the legacy
built-in metrics will be removed in a future release).

Micrometer was first supported in version 5.0.2, but changes were made to the
Micrometer Meters in version 5.0.3 to make them more suitable for use in

o dimensional systems. Further changes were made in 5.0.4. If you use Micrometer,
a minimum of version 5.0.4 is recommended, since some of the changes in 5.0.4
were breaking API changes.

To use Micrometer, add one of the MeterRegistry beans to the application context. If the
IntegrationManagementConfigurer detects exactly one MeterRegistry bean, it configures a
MicrometerMetricsCaptor bean with a name of integrationMicrometerMetricsCaptor.

For each MessageHandler and MessageChannel, timers are registered. For each MessageSource, a
counter is registered.

This only applies to objects that extend AbstractMessageHandler, AbstractMessageChannel, and
AbstractMessageSource (which is the case for most framework components).

With Micrometer metrics, the statsEnabled flag has no effect, since statistics capture is delegated to
Micrometer. The countsEnabled flag controls whether the Micrometer Meter instances are updated
when processing each message.

The Timer Meters for send operations on message channels have the following names or tags:

* name: spring.integration.send

* tag: type:channel

* tag: name:<componentName>

* tag: result:(success|failure)

* tag: exception:(none|exception simple class name)

» description: Send processing time
(A failure result with a none exception means the channel’s send() operation returned false.)

The Counter Meters for receive operations on pollable message channels have the following names

287

https://docs.spring.io/spring-integration/api/index.html
./jmx.pdf#jmx
https://micrometer.io/

or tags:

* name: spring.integration.receive

tag: type:channel

* tag: name:<componentName>

* tag: result:(success|failure)

* tag: exception:(none|exception simple class name)

* description: Messages received
The Timer Meters for operations on message handlers have the following names or tags:

* name: spring.integration.send
* tag: type:handler

* tag: name:<componentName>

tag: result:(success|failure)
* tag: exception:(none|exception simple class name)

* description: Send processing time
The Counter meters for message sources have the following names/tags:
* name: spring.integration.receive
» tag: type:source
* tag: name:<componentName>
* tag: result:success
* tag: exception:none

* description: Messages received
In addition, there are three Gauge Meters:

* spring.integration.channels: The number of MessageChannels in the application.
* spring.integration.handlers: The number of MessageHandlers in the application.

* spring.integration.sources: The number of MessageSources in the application.

It is possible to customize the names and tags of Meters created by integration components by
providing a subclass of MicrometerMetricsCaptor. The MicrometerCustomMetricsTests test case
shows a simple example of how to do that. You can also further customize the meters by
overloading the build() methods on builder subclasses.

12.1.3. MessageChannel Metric Features
These legacy metrics will be removed in a future release. See Micrometer Integration.

Message channels report metrics according to their concrete type. If you are looking at a

288

https://github.com/spring-projects/spring-integration/blob/master/spring-integration-core/src/test/java/org/springframework/integration/support/management/micrometer/MicrometerCustomMetricsTests.java

DirectChannel, you see statistics for the send operation. If it is a QueueChannel, you also see statistics
for the receive operation as well as the count of messages that are currently buffered by this
QueueChannel. In both cases, some metrics are simple counters (message count and error count), and
some are estimates of averages of interesting quantities. The algorithms used to calculate these
estimates are described briefly in the following table.

Table 6. MessageChannel Metrics
Metric Type Example Algorithm

Count Send Count Simple incrementer. Increases by one when an
event occurs.

Error Count Send Error Count Simple incrementer. Increases by one when an
send results in an error.

Duration Send Duration (method Exponential moving average with decay factor
execution time in milliseconds) (ten by default). Average of the method
execution time over roughly the last ten (by
default) measurements.

Rate Send Rate (number of Inverse of Exponential moving average of the
operations per second) interval between events with decay in time
(lapsing over 60 seconds by default) and per
measurement (last ten events by default).

Error Rate Send Error Rate (number of Inverse of exponential moving average of the
errors per second) interval between error events with decay in

time (lapsing over 60 seconds by default) and

per measurement (last ten events by default).

Ratio Send Success Ratio (ratio of Estimate the success ratio as the exponential
successful to total sends) moving average of the series composed of values
(1 for success and 0 for failure, decaying as per
the rate measurement over time and events by
default). The error ratio is: 1 - success ratio.

12.1.4. MessageHandler Metric Features
These legacy metrics will be removed in a future release. See Micrometer Integration.

The following table shows the statistics maintained for message handlers. Some metrics are simple
counters (message count and error count), and one is an estimate of averages of send duration. The
algorithms used to calculate these estimates are described briefly in the following table:

Table 7. MessageHandlerMetrics

Metric Type = Example Algorithm

Count Handle Count Simple incrementer. Increases by one when an
event occurs.

Error Count Handler Error Count Simple incrementer. Increases by one when an
invocation results in an error.

289

Metric Type Example Algorithm

Active Count Handler Active Count Indicates the number of currently active threads
currently invoking the handler (or any
downstream synchronous flow).

Duration Handle Duration (method Exponential moving average with decay factor
execution time in milliseconds) (ten by default). Average of the method
execution time over roughly the last ten
(default) measurements.

12.1.5. Time-Based Average Estimates

A feature of the time-based average estimates is that they decay with time if no new measurements
arrive. To help interpret the behavior over time, the time (in seconds) since the last measurement is
also exposed as a metric.

There are two basic exponential models: decay per measurement (appropriate for duration and
anything where the number of measurements is part of the metric) and decay per time unit (more
suitable for rate measurements where the time in between measurements is part of the metric).
Both models depend on the fact that S(n) = sum(i=0,i=n) w(i) x(i) has a special form when w(i) =
rA, with r=constant: S(n) = x(n) + r S(n-1) (so you only have to store S(n-1) (not the whole series
x(1)) to generate a new metric estimate from the last measurement). The algorithms used in the
duration metrics use r=exp(-1/M) with M=10. The net effect is that the estimate, S(n), is more heavily
weighted to recent measurements and is composed roughly of the last M measurements. So M is the
“window” or lapse rate of the estimate. For the vanilla moving average, i is a counter over the
number of measurements. For the rate, we interpret i as the elapsed time or a combination of
elapsed time and a counter (so the metric estimate contains contributions roughly from the last M
measurements and the last T seconds).

12.1.6. Metrics Factory

A strategy interface MetricsFactory has been introduced to let you provide custom channel metrics
for your MessageChannel instances and MessageHandler instances. By default, a DefaultMetricsFactory
provides a default implementation of MessageChannelMetrics and MessageHandlerMetrics, described
earlier. To override the default MetricsFactory, configure it as described earlier, by providing a
reference to your MetricsFactory bean instance. You can either customize the default
implementations, as described in the next section, or provide completely different implementations
by extending AbstractMessageChannelMetrics or AbstractMessageHandlerMetrics.

See also Micrometer Integration.

In addition to the default metrics factory described earlier, the framework provides the
AggregatingMetricsFactory. This factory creates AggregatingMessageChannelMetrics and
AggregatingMessageHandlerMetrics instances. In very high volume scenarios, the cost of capturing
statistics can be prohibitive (the time to make two calls to the system and store the data for each
message). The aggregating metrics aggregate the response time over a sample of messages. This can
save significant CPU time.

290

° The statistics are likely to be skewed if messages arrive in bursts. These metrics are
intended for use with high, constant-volume, message rates.

The following example shows how to define an aggregrating metrics factory:

<bean id="aggregatingMetricsFactory"
class=
"org.springframework.integration.support.management.AggregatingMetricsFactory">
<constructor-arg value="1000" /> <!-- sample size -->
</bean>

The preceding configuration aggregates the duration over 1000 messages. Counts (send and error)
are maintained per-message, but the statistics are per 1000 messages.

Customizing the Default Channel and Handler Statistics

See Time-Based Average Estimates and the Javadoc for the ExponentialMovingAverage* classes for
more information about these values.

By default, the DefaultMessageChannelMetrics and DefaultMessageHandlerMetrics use a “window” of
ten measurements, a rate period of one second (meaning rate per second) and a decay lapse period
of one minute.

If you wish to override these defaults, you can provide a custom MetricsFactory that returns
appropriately configured metrics and provide a reference to it in the MBean exporter, as described
earlier.

The following example shows how to do so:

291

https://docs.spring.io/spring-integration/api/index.html

public static class CustomMetrics implements MetricsFactory {

public AbstractMessageChannelMetrics createChannelMetrics(String name) {
return new DefaultMessageChannelMetrics(name,
new ExponentialMovingAverage(20, 1000000.),
new ExponentialMovingAverageRate(2000, 120000, 30, true),
new ExponentialMovingAverageRatio(130000, 40, true),
new ExponentialMovingAverageRate(3000, 140000, 50, true));

public AbstractMessageHandlerMetrics createHandlerMetrics(String name) {
return new DefaultMessageHandlerMetrics(name, new
ExponentialMovingAverage(20, 1000000.));

}

Advanced Customization

The customizations described earlier are wholesale and apply to all appropriate beans exported by
the MBean exporter. This is the extent of customization available when you use XML configuration.

Individual beans can be provided with different implementations using by Java @Configuration or
programmatically at runtime (after the application context has been refreshed) by invoking the
configureMetrics methods on AbstractMessageChannel and AbstractMessageHandler.

Performance Improvement

Previously, the time-based metrics (see Time-Based Average Estimates) were calculated in real time.
The statistics are now calculated when retrieved instead. This resulted in a significant performance
improvement, at the expense of a small amount of additional memory for each statistic. As
discussed earlier, you can disable the statistics altogether while retaining the MBean that allows the
invocation of Lifecycle methods.

12.2. JMX Support

Spring Integration provides channel Adapters for receiving and publishing JMX Notifications.

You need to include this dependency into your project:

292

Maven

<dependency>
<groupId>org.springframework.integration</groupId>
<artifactId>spring-integration-jmx</artifactId>
<version>5.2.0.RC1</version>

</dependency>

Gradle

compile "org.springframework.integration:spring-integration-jmx:5.2.0.RC1"

An inbound channel adapter allows for polling JMX MBean attribute values, and an outbound
channel adapter allows for invoking JMX MBean operations.

12.2.1. Notification-listening Channel Adapter

The notification-listening channel adapter requires a JMX ObjectName for the MBean that publishes
notifications to which this listener should be registered. A very simple configuration might
resemble the following:

<int-jmx:notification-listening-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=publisher"/>

The notification-listening-channel-adapter registers with an MBeanServer at

(r') startup, and the default bean name is mbeanServer, which happens to be the same

- bean name generated when using Spring’s <context:mbean-server/> element. If you
need to use a different name, be sure to include the mbean-server attribute.

The adapter can also accept a reference to a NotificationFilter and a “handback” object to provide
some context that is passed back with each notification. Both of those attributes are optional.
Extending the preceding example to include those attributes as well as an explicit MBeanServer bean
name produces the following example:

<int-jmx:notification-listening-channel-adapter id="adapter"
channel="channel"
mbean-server="someServer"
object-name="example.domain:name=somePublisher"
notification-filter="notificationFilter"
handback="myHandback" />

293

The _Notification-listening channel adapter is event-driven and registered with the MBeanServer
directly. It does not require any poller configuration.

For this component only, the object-name attribute can contain an object name
pattern (for example, "org.something:type=MyType,name=*"). In that case, the
adapter receives notifications from all MBeans with object names that match the
pattern. In addition, the object-name attribute can contain a SpEL reference to a
<util:list> of object name patterns, as the following example shows:

<jmx:notification-listening-channel-adapter id=
"manyNotificationsAdapter"
o channel="manyNotificationsChannel"
object-name="#{patterns}"/>

<util:list id="patterns">
<value>org.foo:type=Foo,name=*</value>
<value>org.foo:type=Bar,name=*</value>
</util:list>

The names of the located MBean(s) are logged when DEBUG level logging is
enabled.

12.2.2. Notification-publishing Channel Adapter

The notification-publishing channel adapter is relatively simple. It requires only a JMX object name
in its configuration, as the following example shows:

<context:mbean-export/>

<int-jmx:notification-publishing-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=publisher"/>

It also requires that an MBeanExporter be present in the context. That is why the <context:mbean-
export/> element is also shown in the preceding example.

When messages are sent to the channel for this adapter, the notification is created from the
message content. If the payload is a String, it is passed as the message text for the notification. Any
other payload type is passed as the userData of the notification.

JMX notifications also have a type, and it should be a dot-delimited String. There are two ways to
provide the type. Precedence is always given to a message header value associated with the
JmxHeaders.NOTIFICATION_TYPE key. Alternatively, you can provide a fallback default-notification-
type attribute in the configuration, as the following example shows:

294

<context:mbean-export/>

<int-jmx:notification-publishing-channel-adapter id="adapter'
channel="channel"
object-name="example.domain:name=publisher"
default-notification-type="some.default.type"/>

12.2.3. Attribute-polling Channel Adapter

The attribute-polling channel adapter is useful when you need to periodically check on some value
that is available through an MBean as a managed attribute. You can configured the poller in the
same way as any other polling adapter in Spring Integration (or you can rely on the default poller).
The object-name and the attribute-name are required. An MBeanServer reference is also required.
However, by default, it automatically checks for a bean named mbeanServer, same as the
notification-listening channel adapter described earlier. The following example shows how to
configure an attribute-polling channel adapter with XML:

<int-jmx:attribute-polling-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=someService"
attribute-name="InvocationCount">
<int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-jmx:attribute-polling-channel-adapter>

12.2.4. Tree-polling Channel Adapter

The tree-polling channel adapter queries the JMX MBean tree and sends a message with a payload
that is the graph of objects that matches the query. By default, the MBeans are mapped to primitives
and simple objects, such as Map, List, and arrays. Doing so permits simple transformation to (for
example) JSON. An MBeanServer reference is also required. However, by default, it automatically
checks for a bean named mbeanServer, same as the notification-listening channel adapter described
earlier. The following example shows how to configure an tree-polling channel adapter with XML:

<int-jmx:tree-polling-channel-adapter id="adapter"
channel="channel"
query-name="example.domain:type=*">
<int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-jmx:tree-polling-channel-adapter>

The preceding example includes all of the attributes on the selected MBeans. You can filter the
attributes by providing an MBeanObjectConverter that has an appropriate filter configured. You can

295

provide the converter as a reference to a bean definition by using the converter attribute, or you
can use an inner <bean/> definition. Spring Integration provides a DefaultMBeanObjectConverter that
can take a MBeanAttributeFilter in its constructor argument.

Spring Integration provides two standard filters. The NamedFieldsMBeanAttributeFilter lets you
specify a list of attributes to include. The NotNamedFieldsMBeanAttributeFilter lets you specify a list
of attributes to exclude. You can also implement your own filter.

12.2.5. Operation-invoking Channel Adapter

The operation-invoking channel adapter enables message-driven invocation of any managed
operation exposed by an MBean. Each invocation requires the operation name to be invoked and
the object name of the target MBean. Both of these must be explicitly provided by adapter
configuration or via IJImxHeaders.OBJECT_NAME and JmxHeaders.OPERATION_NAME message headers,
respectively:

<int-jmx:operation-invoking-channel-adapter id="adapter"
object-name="example.domain:name=TestBean"
operation-name="ping"/>

Then the adapter only needs to be able to discover the mbeanServer bean. If a different bean name is
required, then provide the mbean-server attribute with a reference.

The payload of the message is mapped to the parameters of the operation, if any. A Map-typed
payload with String keys is treated as name/value pairs, whereas a List or array is passed as a
simple argument list (with no explicit parameter names). If the operation requires a single
parameter value, the payload can represent that single value. Also, if the operation requires no
parameters, the payload would be ignored.

If you want to expose a channel for a single common operation to be invoked by messages that
need not contain headers, that last option works well.

12.2.6. Operation-invoking Outbound Gateway

Similarly to the operation-invoking channel adapter, Spring Integration also provides an operation-
invoking outbound gateway, which you can use when dealing with non-void operations when a
return value is required. The return value is sent as the message payload to the reply-channel
specified by the gateway. The following example shows how to configure an operation-invoking
outbound gateway with XML:

<int-jmx:operation-invoking-outbound-gateway request-channel="requestChannel"
reply-channel="replyChannel"
object-name="0.s.1i.jmx.config:type=TestBean,name=testBeanGateway"
operation-name="testWithReturn"/>

296

If you do not provide the reply-channel attribute, the reply message is sent to the channel identified
by the IntegrationMessageHeaderAccessor.REPLY_CHANNEL header. That header is typically auto-
created by the entry point into a message flow, such as any gateway component. However, if the
message flow was started by manually creating a Spring Integration message and sending it
directly to a channel, you must specify the message header explicitly or use the reply-channel
attribute.

12.2.7. MBean Exporter

Spring Integration components may themselves be exposed as MBeans when the
IntegrationMBeanExporter is configured. To create an instance of the IntegrationMBeanExporter,
define a bean and provide a reference to an MBeanServer and a domain name (if desired). You can
leave out the domain, in which case the default domain is org.springframework.integration. The
following example shows how to declare an instance of an IntegrationMBeanExporter and an
associated MBeanServer instance:

<int-jmx:mbean-export id="integrationMBeanExporter"
default-domain="my.company.domain" server="mbeanServer"/>

<bean id="mbeanServer" class=
"org.springframework.jmx.support.MBeanServerFactoryBean">

<property name="locateExistingServerIfPossible" value="true"/>
</bean>

The MBean exporter is orthogonal to the one provided in Spring core. It registers
message channels and message handlers but does not register itself. You can
expose the exporter itself (and certain other components in Spring Integration) by
using the standard <context:mbean-export/> tag. The exporter has some metrics

o attached to it— for instance, a count of the number of active handlers and the
number of queued messages.

It also has a useful operation, as discussed in Orderly Shutdown Managed
Operation.

Spring Integration 4.0 introduced the @EnableIntegrationMBeanExport annotation to allow for
convenient configuration of a default integrationMbeanExporter —bean of type
IntegrationMBeanExporter with several useful options at the @Configuration class level. The following
example shows how to configure this bean:

297

(server = "mbeanServer", managedComponents = "input")
public class ContextConfiguration {

public MBeanServerFactoryBean mbeanServer() {
return new MBeanServerFactoryBean();

}

If you need to provide more options or have several IntegrationMBeanExporter beans (such as for
different MBean Servers or to avoid conflicts with the standard Spring MBeanExporter —such as
through @EnableMBeanExport), you can configure an IntegrationMBeanExporter as a generic bean.

MBean Object Names

All the MessageChannel, MessageHandler, and MessageSource instances in the application are wrapped
by the MBean exporter to provide management and monitoring features. The generated JMX object
names for each component type are listed in the following table:

Table 8. MBean Object Names

Component Type Object Name

MessageChannel ‘0.s.1:type=MessageChannel, name=<channelName>"
MessageSource ‘0.s.1:type=MessageSource, name=<channelName>, bean=<source>"
MessageHandler ‘0.s.1i:type=MessageSource, name=<channelName>, bean=<source>"

The bean attribute in the object names for sources and handlers takes one of the values in the
following table:

Table 9. bean ObjectName Part

Bean Value Description

endpoint The bean name of the enclosing endpoint (for example <service-
activator>), if there is one

anonymous An indication that the enclosing endpoint did not have a user-specified
bean name, so the JMX name is the input channel name.

internal For well known Spring Integration default components

handler/source None of the above. Fall back to the toString() method of the object being
monitored (handler or source)

You can append custom elements to the object name by providing a reference to a Properties object
in the object-name-static-properties attribute.

298

Also, since Spring Integration 3.0, you can use a custom ObjectNamingStrategy by setting the object-
naming-strateqgy attribute. Doing so permits greater control over the naming of the MBeans, such as
grouping all integration MBeans under an 'Integration' type. The following example shows one
possible custom naming strategy implementation:

public class Namer implements ObjectNamingStrategy {
private final ObjectNamingStrategy realNamer = new KeyNamingStrategy();

public ObjectName getObjectName(Object managedBean, String beanKey) throws
MalformedObjectNameException {
String actualBeanKey = beanKey.replace("type=",
"type=Integration,componentType=");
return realNamer.getObjectName(managedBean, actualBeanKey);

}

The beanKey argument is a String that contain the standard object name, beginning with the
default-domain and including any additional static properties. The preceding example moves the
standard type part to componentType and sets the type to 'Integration’, enabling selection of all
Integration MBeans in one query: my.domain:type=Integration,* . Doing so also groups the beans
under one tree entry under the domain in such tools as VisualVM.

The default naming strategy is a MetadataNamingStrategy. The exporter propagates
the default-domain to that object to let it generate a fallback object name if parsing

o of the bean key fails. If your custom naming strategy is a MetadataNamingStrategy
(or a subclass of it), the exporter does not propagate the default-domain. You must
configure it on your strategy bean.

Starting with version 5.1; any bean names (represented by the name key in the object name) will be
quoted if they contain any characters that are not allowed in a Java identifier (or period .).

JMX Improvements

Version 4.2 introduced some important improvements, representing a fairly major overhaul to the
JMX support in the framework. These resulted in a significant performance improvement of the
JMX statistics collection and much more control thereof. However, it has some implications for user
code in a few specific (uncommon) situations. These changes are detailed below, with a caution
where necessary.

Metrics Capture

Previously, MessageSource, MessageChannel, and MessageHandler metrics were captured by
wrapping the object in a JDK dynamic proxy to intercept appropriate method calls and capture
the statistics. The proxy was added when an integration MBean exporter was declared in the
context.

299

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/ObjectNamingStrategy.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/MetadataNamingStrategy.html

Now, the statistics are captured by the beans themselves. See Metrics and Management for more
information.

This change means that you no longer automatically get an MBean or statistics
for custom MessageHandler implementations, unless those custom handlers
extend AbstractMessageHandler. The simplest way to resolve this is to extend
AbstractMessageHandler. If you cannot do so, another work around is to
implement the MessageHandlerMetrics interface. For convenience, a

A DefaultMessageHandlerMetrics is provided to capture and report statistics. You
should invoke the beforeHandle and afterHandle at the appropriate times. Your
MessageHandlerMetrics methods can then delegate to this object to obtain each
statistic. Similarly, MessageSource implementations must extend
AbstractMessageSource or implement MessageSourceMetrics. Message sources
capture only a count, so there is no provided convenience class. You should
maintain the count in an AtomicLong field.

The removal of the proxy has two additional benefits:

« Stack traces in exceptions are reduced (when JMX is enabled) because the proxy is not on the
stack

* Cases where two MBeans were exported for the same bean now only export a single MBean
with consolidated attributes and operations (see the MBean consolidation bullet, later).

Resolution

System.nanoTime() (rather than System.currentTimeMillis()) is now used to capture times . This
may provide more accuracy on some JVMs, espcially when you expect durations of less than one
millisecond.

Setting Initial Statistics Collection State

Previously, when JMX was enabled, all sources, channels, and handlers captured statistics. You
can now control whether the statistics are enabled on an individual component. Further, you
can capture simple counts on MessageChannel instances and MessageHandler instances instead of
capturing the complete time-based statistics. This can have significant performance
implications, because you can selectively configure where you need detailed statistics and
enable and disable collection at runtime.

See Metrics and Management.

@IntegrationManagedResource

Similar to the @ManagedResource annotation, the @IntegrationManagedResource marks a class as
being eligible to be exported as an MBean. However, it is exported only if the application context
has an IntegrationMBeanExporter.

Certain Spring Integration classes (in the org.springframework.integration) package) that were
previously annotated with" @ManagedResource ™ are now annotated with both @ManagedResource
and @IntegrationManagedResource. This is for backwards compatibility (see the next item). Such
MBeans are exported by any context MBeanServer or by an IntegrationMBeanExporter (but not
both —if both exporters are present, the bean is exported by the integration exporter if the bean

300

./metrics.pdf#metrics-management
./metrics.pdf#metrics-management

matches a managed-components pattern).

Consolidated MBeans

Certain classes within the framework (mapping routers, for example) have additional attributes
and operations over and above those provided by metrics and Lifecycle. We use a Router as an
example here.

Previously, beans of these types were exported as two distinct MBeans:

* The metrics MBean (with an object name such as
intDomain:type=MessageHandler,name=myRouter,bean=endpoint). This MBean had metrics
attributes and metrics/Lifecycle operations.

e A second MBean (with an object name such as
ctxDomain:name=org.springframework.integration.config.
RouterFactoryBean#0,type=MethodInvokingRouter ") was exported with the channel mappings
attribute and operations.

Now the attributes and operations are consolidated into a single MBean. The object name
depends on the exporter. If exported by the integration MBean exporter, the object name is,
for example: intDomain:type=MessageHandler,name=myRouter,bean=endpoint. If exported by
another exporter, the object name is, for example:
ctxDomain:name=org.springframework.integration.config.

RouterFactoryBean#@, type=MethodInvokingRouter. There is no difference between these
MBeans (aside from the object name), except that the statistics are not enabled (the attributes
are 0) by exporters other than the integration exporter. You can enable statistics at runtime
by using the JMX operations. When exported by the integration MBean exporter, the initial
state can be managed as described earlier.

If you currently use the second MBean to change, for example, channel

A mappings and you use the integration MBean exporter, note that the object
name has changed because of the MBean consolidation. There is no change
if you are not using the integration MBean exporter.

MBean Exporter Bean Name Patterns

Previously, the managed-components patterns were inclusive only. If a bean name matched one of
the patterns, it would be included. Now, the pattern can be negated by prefixing it with !. For
example, !thing*, things matches all bean names that do not start with thing except things.
Patterns are evaluated left to right. The first match (positive or negative) wins, and then no
further patterns are applied.

The addition of this syntax to the pattern causes one possible (although perhaps
unlikely) problem. If you have a bean named "!thing" and you included a

A pattern of !thing in your MBean exporter’s managed-components patterns, it no
longer matches; the pattern now matches all beans not named thing. In this
case, you can escape the ! in the pattern with \. The \!thing pattern matches a
bean named !thing.

301

IntegrationMBeanExporter changes

The IntegrationMBeanExporter no longer implements SmartLifecycle. This means that start() and
stop() operations are no longer available to register and unregister MBeans. The MBeans are
now registered during context initialization and unregistered when the context is destroyed.

Orderly Shutdown Managed Operation

The MBean exporter provides a JMX operation to shut down the application in an orderly manner,
intended for use before terminating the JVM. The following example shows how to use it:

public void stopActiveComponents(long howlLong)

Its use and operation are described in Orderly Shutdown.

12.3. Message History

The key benefit of a messaging architecture is loose coupling such that participating components do
not maintain any awareness about one another. This fact alone makes an application extremely
flexible, letting you change components without affecting the rest of the flow, change messaging
routes, change message consuming styles (polling versus event driven), and so on. However, this
unassuming style of architecture could prove to be difficult when things go wrong. When
debugging, you probably want as much information (its origin, the channels it has traversed, and
other details) about the message as you can get.

Message history is one of those patterns that helps by giving you an option to maintain some level
of awareness of a message path either for debugging purposes or for maintaining an audit trail.
Spring integration provides a simple way to configure your message flows to maintain the message
history by adding a header to the message and updating that header every time a message passes
through a tracked component.

12.3.1. Message History Configuration

To enable message history, you need only define the message-history element in your configuration,
as shown in the following example:

<int:message-history/>

Now every named component (component that has an 'id' defined) is tracked. The framework sets
the 'history' header in your message. Its value a List<Properties>.

Consider the following configuration example:

302

./shutdown.pdf#jmx-shutdown

<int:gateway id="sampleGateway"
service-interface=
"org.springframework.integration.history.sample.SampleGateway"
default-request-channel="bridgeInChannel"/>

<int:chain id="sampleChain" input-channel="chainChannel" output-channel=
"filterChannel">
<int:header-enricher>
<int:header name="baz" value="baz"/>
</int:header-enricher>
</int:chain>

The preceding configuration produces a simple message history structure, with output similar to
the following:

[{name=sampleGateway, type=gateway, timestamp=1283281668091},
{name=sampleChain, type=chain, timestamp=1283281668094}]

To get access to message history, you need only access the MessageHistory header. The folloiwng
example shows how to do so:

Iterator<Properties> historyIterator =
message.getHeaders().get(MessageHistory.HEADER_NAME, MessageHistory.class)

.iterator();

assertTrue(historylterator.hasNext());

Properties gatewayHistory = historyIterator.next();

assertEquals("sampleGateway", gatewayHistory.get("name"));

assertTrue(historyIterator.hasNext());

Properties chainHistory = historyIterator.next();

assertEquals("sampleChain", chainHistory.get("name"));

You might not want to track all of the components. To limit the history to certain components based
on their names, you can provide the tracked-components attribute and specify a comma-delimited
list of component names and patterns that match the components you want to track. The following
example shows how to do so:

<int:message-history tracked-components="*Gateway, sample*, aName"/>

In the preceding example, message history is maintained only for the components that end with
'Gateway', start with 'sample’, or match the name, 'aName', exactly.

303

Starting with version 4.0, you can also use the @EnableMessageHistory annotation in a @Configuration
class. In addition, the MessageHistoryConfigurer bean is now exposed as a JMX MBean by the
IntegrationMBeanExporter (see MBean Exporter), letting you change the patterns at runtime. Note,
however, that the bean must be stopped (turning off message history) in order to change the
patterns. This feature might be useful to temporarily turn on history to analyze a system. The
MBean’s object name is <domain>:name=messageHistoryConfigurer, type=MessageHistoryConfigurer.

If multiple beans (declared by @EnableMessageHistory and <message-history/>) exist,
o they must all have identical component name patterns (when trimmed and
sorted). Do not use a generic <bean/> definition for the MessageHistoryConfigurer.

By definition, the message history header is immutable (you cannot re-write
history). Therefore, when writing message history values, the components either
create new messages (When the component is an origin) or they copy the history

o from a request message, modifying it and setting the new list on a reply message.
In either case, the values can be appended even if the message itself is crossing
thread boundaries. That means that the history values can greatly simplify
debugging in an asynchronous message flow.

12.4. Message Store

The Enterprise Integration Patterns (EIP) book identifies several patterns that have the ability to
buffer messages. For example, an aggregator buffers messages until they can be released, and a
QueueChannel buffers messages until consumers explicitly receive those messages from that channel.
Because of the failures that can occur at any point within your message flow, EIP components that
buffer messages also introduce a point where messages could be lost.

To mitigate the risk of losing messages, EIP defines the message store pattern, which lets EIP
components store messages, typically in some type of persistent store (such as an RDBMS).

Spring Integration provides support for the message store pattern by:

* Defining an org.springframework.integration.store.MessageStore strategy interface
 Providing several implementations of this interface

* Exposing a message-store attribute on all components that have the capability to buffer
messages so that you can inject any instance that implements the MessageStore interface.

Details on how to configure a specific message store implementation and how to inject a
MessageStore implementation into a specific buffering component are described throughout the
manual (see the specific component, such as QueueChannel, Aggregator, Delayer, and others). The
following pair of examples show how to add a reference to a message store for a QueueChannel and
for an aggregator:

304

./jmx.pdf#jmx-mbean-exporter
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/MessageStore.html
./channel.pdf#channel-configuration-queuechannel
./aggregator.pdf#aggregator
./delayer.pdf#delayer

Example 4. QueueChannel

<int:channel id="myQueueChannel">
<int:queue message-store="refToMessageStore"/>
<int:channel>

Example 5. Aggregator

<int:aggregator message-store="refToMessageStore"/>

By default, messages are stored in-memory by wusing o.s.i.store.SimpleMessageStore, an
implementation of MessageStore. That might be fine for development or simple low-volume
environments where the potential loss of non-persistent messages is not a concern. However, the
typical production application needs a more robust option, not only to mitigate the risk of message
loss but also to avoid potential out-of-memory errors. Therefore, we also provide MessageStore
implementations for a variety of data-stores. The following is a complete list of supported
implementations:

JDBC Message Store: Uses an RDBMS to store messages
* Redis Message Store: Uses a Redis key/value datastore to store messages

* MongoDB Message Store: Uses a MongoDB document store to store messages

Gemfire Message Store: Uses a Gemfire distributed cache to store messages

305

./jdbc.pdf#jdbc-message-store
./redis.pdf#redis-message-store
./mongodb.pdf#mongodb-message-store
./gemfire.pdf#gemfire-message-store

However, be aware of some limitations while using persistent implementations of
the MessageStore.

The Message data (payload and headers) is serialized and deserialized by using
different serialization strategies, depending on the implementation of the
MessageStore. For example, when using JdbcMessageStore, only Serializable data is
persisted by default. In this case, non-Serializable headers are removed before
serialization occurs. Also, be aware of the protocol-specific headers that are
injected by transport adapters (such as FTP, HTTP, JMS, and others). For example,
<http:inbound-channel-adapter/> maps HTTP headers into message headers, and
one of them is an ArraylList of non-serializable org.springframework.http.MediaType
instances. However, you can inject your own implementation of the Serializer
and Deserializer strategy interfaces into some MessageStore implementations (such
as JdbcMessageStore) to change the behavior of serialization and deserialization.

Pay special attention to the headers that represent certain types of data. For
o example, if one of the headers contains an instance of some Spring bean, upon
deserialization, you may end up with a different instance of that bean, which
directly affects some of the implicit headers created by the framework (such as
REPLY_CHANNEL or ERROR_CHANNEL). Currently, they are not serializable, but, even if
they were, the deserialized channel would not represent the expected instance.

Beginning with Spring Integration version 3.0, you can resolve this issue with a
header enricher configured to replace these headers with a name after registering
the channel with the HeaderChannelRegistry.

Also, consider what happens when you configure a message-flow as follows:
gateway — queue-channel (backed by a persistent Message Store) — service-
activator. That gateway creates a temporary reply channel, which is lost by the
time the service-activator’s poller reads from the queue. Again, you can use the
header enricher to replace the headers with a String representation.

For more information, see Header Enricher.

Spring Integration 4.0 introduced two new interfaces:

* ChannelMessageStore: To implement operations specific for QueueChannel instances
* PriorityCapableChannelMessageStore: To mark MessageStore implementations to be used for

PriorityChannel instances and to provide priority order for persisted messages.

The real behavior depends on the implementation. The framework provides the following
implementations, which can be used as a persistent MessageStore for QueueChannel and
PriorityChannel:

* Redis Channel Message Stores

* MongoDB Channel Message Store

* Backing Message Channels

306

./content-enrichment.pdf#header-enricher
./redis.pdf#redis-cms
./mongodb.pdf#mongodb-priority-channel-message-store
./jdbc.pdf#jdbc-message-store-channels

Caution about SimpleMessageStore

Starting with version 4.1, the SimpleMessageStore no longer copies the message
group when calling getMessageGroup(). For large message groups, this was a
significant performance problem. 4.0.1 introduced a boolean copyOnGet property
that lets you control this behavior. When used internally by the aggregator, this
property was set to false to improve performance. It is now false by default.

A Users accessing the group store outside of components such as aggregators now
get a direct reference to the group being used by the aggregator instead of a copy.
Manipulation of the group outside of the aggregator may cause unpredictable
results.

For this reason, you should either not perform such manipulation or set the
copyOnGet property to true.

12.4.1. Using MessageGroupFactory

Starting with version 4.3, some MessageGroupStore implementations can be injected with a custom
MessageGroupFactory strategy to create and customize the MessageGroup instances used by the
MessageGroupStore. This defaults to a SimpleMessageGroupFactory, which produces SimpleMessageGroup
instances based on the GroupType.HASH_SET (LinkedHashSet) internal collection. Other possible
options are SYNCHRONISED_SET and BLOCKING_QUEUE, where the last one can be used to reinstate the
previous SimpleMessageGroup behavior. Also the PERSISTENT option is available. See the next section
for more information. Starting with version 5.0.1, the LIST option is also available for when the
order and uniqueness of messages in the group does not matter.

12.4.2. Persistent MessageGroupStore and Lazy-load

Starting with version 4.3, all persistent MessageGroupStore instances retrieve MessageGroup instances
and their messages from the store in the lazy-load manner. In most cases, it is useful for the
correlation MessageHandler instances (see Aggregator and Resequencer), when it would add
overhead to load entire the MessageGroup from the store on each correlation operation.

You can use the AbstractMessageGroupStore.setlLazylLoadMessageGroups(false) option to switch off the
lazy-load behavior from the configuration.

Our performance tests for lazy-load on MongoDB MessageStore (MongoDB Message Store) and
<aggregator> (Aggregator) use a custom release-strategy similar to the following:

<int:aggregator input-channel="1inputChannel"
output-channel="outputChannel”
message-store="mongoStore"
release-strategy-expression="size() == 1000"/>

It produces results similar to the following for 1000 simple messages:

307

./aggregator.pdf#aggregator
./resequencer.pdf#resequencer
./mongodb.pdf#mongodb-message-store
./aggregator.pdf#aggregator

StopWatch 'Lazy-Load Performance': running time (millis) = 38918

02652 007% Lazy-Load
36266 093% Eager

12.5. Metadata Store

Many external systems, services, or resources are not transactional (Twitter, RSS, file systems, and
so on), and there is no any ability to mark the data as read. Also, sometimes, you may need to
implement the Enterprise Integration Pattern idempotent receiver in some integration solutions. To
achieve this goal and store some previous state of the endpoint before the next interaction with
external system or to deal with the next message, Spring Integration provides the metadata store
component as an an implementation of the
org.springframework.integration.metadata.MetadataStore interface with a general Kkey-value
contract.

The metadata store is designed to store various types of generic metadata (for example, the
published date of the last feed entry that has been processed) to help components such as the feed
adapter deal with duplicates. If a component is not directly provided with a reference to a
MetadataStore, the algorithm for locating a metadata store is as follows: First, look for a bean with a
metadataStore ID in the application context. If one is found, use it. Otherwise, create a new instance
of SimpleMetadataStore, which is an in-memory implementation that persists only metadata within
the lifecycle of the currently running application context. This means that, upon restart, you may
end up with duplicate entries.

If you nee