Spring Web Services - Reference
Documentation

159

Copyright © 2005-2007 Arjen Poutsma, Rick Evans, Tareq Abed Rabbo

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

(T Lo [FTox i o o PRSPPI 1
1. What iS SPring WED SEIVICES?cooiiiiiiieiiee ettt 2
IS 1 oo (U o T o PRSP 2

1.2. RUNEIME ENVIFONIMENTuiiii e sa s b e aaaasasanasasasnnnnnsnsnsnnnsnnns 2

2. Why CONtraCt First?ooooeieiei e 4
2.1 INrodUCTION ..o, 4

2.2. Object/ XML Impedance MiSMEaLChcooiiiiiiiiie e 4
2.2. 1. XSD EXEENSIONSeeiiiiiiiiieeeiiieee ettt e et e e e s snba e e e e nnaneeas 4

2.2.2. UNPOIBDIE TYPES ..ottt 4

2.2.3. CYCliCGraphs ... 5

2.3. Contract-first versus Contract-lastcccceeeiiiii 6
23 L Fragility oo 6

2.3.2. PEIfOMANCE ... 6

2.3.3. REUSADITILY ..veeieiiiiiiee et e e et e e e st e e e e e e e e e nnnaeeas 7

2.3 4. VEISIONING .ooeeieiiiiiiieiee et e e e e e et e e e e e e st et e e e e e e e s s s b reraaeeeseannrrees 7

3. Writing ContraCt-First WED SENVICESoeiiiiiiiiiee et 8
1300 I g 11 oo (1 1 o o TP 8

Be2. IMIBSSAOESettteeeee e e e ettt e e e e e e e e e e e et e e e e e e bbb r et e e e e e e e annrnres 8

G T2 I o] o = Y 8

S22 EMPIOYEE ...ttt 8

3.2.3. HOlAAYREQUESEoeeieiiieiie et 9

R DL - L @0 11 = o: AP PP PPPPPPPPPP 9

OIS = Yol oo g 11 =i RS 11

3.5. Creating the PrOJECEvviiiiiiiee e e e e e e e e aneeees 13

3.6. Implementing the ENAPOINTuvrieiiiiiieee e 13
3.6.1. Handling the XML MESSA0Eceevvviiiiiiiiieeeeeeeeeeeeeee et eee e e ee e e e e e e e e eeeeee e 14

3.6.2. Routing the Message to the Endpointc.eeveveeeiiiiiciiiieeee e 15

3.7. PUDIIShING tNE WSDL ...ttt e e e e et a e e e nnraaeeeans 16

I = = 0o SRR 17
4. SNAred COMPONENTSeveiieiiiieee ettt e ettt e et e e e ek e e e e e e e e e s b et e e e aabe e e e e asbr e e e e anneeeeaannneeeeans 18
4.1, WED SENVICE MESSAOES ...vvvviiiiieeeiiiiiiiieee e e e e e e e estrr e e e e e e e e s s et b be e e e e e e e e s s starrreeeeaeessennnreens 18

4. 0.1 VEDSEI Vi CEMESSATE wuuueirrruneieruuierertueeseateesettaeeseatnaesetneesetnaeesernaeerernns 18

4. 1.2, SOAPMESSAGE wevvrurererruneeeerunieeeetieeeeatuaeeeanaaaeettaaeettaaerettaasettaaesetaaaaeeranns 18

4.1.3. MESSA0E FACLOMESuviieiiiiie ettt e e e s e e e e e e e e 18

Y YT Yo T=Y 0o o =Y AP 20

R W VY o Jo] A0 1T =0 < A 20

4.3. Handling XML With XPathcccuiiiiiiiiiee e 21

L T I = = 41 = TR = YR 112 R 21

A (= O =Y 10T L =P 22

4.4. Message Logging and TraCiNg ..eeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeseeeeeees 22

5. Creating aWeb service With SPring-WS ... 24
o300 R 1 11 L o1 oo PSP 24

5.2. TR MESSAQgEDI SPAL CHET ..iiiiiiiiietiie e e e e ettt e e e e e s e e et e e e e e e e e e e e b eeeeesseeeabaa e eeeas 24

5.3 TTANSPOITS ..eeieieeiiiitt ettt e e e e s e e e e s e s bbb e et e e e e e s s s nn b e e e e e e e e e e aanrbreeeeeeas 25
5.3.1. MessageDi SPat Cher SEI VI €1 cuuiivueieeeieii e eeie e ee e e e e e e e e e e e e e e aaaes 25

5.3.2. Wiring up Spring-WSin abi spat cher SErvl €t ...cccoccuveeeeiiiieeeniiireeessiieee e 27

5.3.3. IMSHIANSPONT ... 28

5.3.4. EMal tranNSPOITovviiiiiieee ittt e e e e s e e e e r e e e e e 29

5.3.5. Embedded HTTP Server tranSportcceeeeiereeeiriieie et 30

o3 0T | o | €= PR 31
5.4.1. Abst r act DonPayl oadEndpoi nt and other DOM endpointscccccveveeeeenne 31

Spring-WS (1.5.9)

Spring Web Services - Reference Documentation

5.4.2. Abst ract Mar shal | i ngPayl 0adENAPOI N vevvvvveuireeeeereeeiiiiiieeeeeeeeeeeinnseeeeeeeennens 32
5.4.3. Using Spring Val i dat or with Marshalling Endpointsccccccoeeviiiiieeieeeenn, 34

N NG =1 Vo [oY Y 35

5.5. ENdPOINt MaPPINGS «...ccooeeeeee e 37
5.5.1. Payl oadRoot QNAMEENAPOi Nt MBAPPI MO wervurerrrriniereriniereerireeesnneesersneeseesneeeeannn 38
5.5.2. SoapAct i 0NENAPOi Nt MBAPPI MO ceeerrnieeiiiiieeeeieeeeeete e e e eeateeseesteeeeesa e eesnnneeeennns 38
5.5.3. Met hOAENAPOi Nt VBPPI MO cevvrnreeiirtiieeeertieerestieeresseerersesresssesressesessaresresnns 39
5.5.4. WS-AUArESSINGeveieiiiiiieeiiii ettt e et e e s e e e s annn e e e e e 39
5.5.5. Intercepting requests - the Endpoi nt | nt ercept or interfacecccovveeeeeeenns 41

5.6. HaNAIING EXCEPLIONSveiieiiiiiieeeiitee ettt e e e e 43
5.6.1. SoapFaul t Mappi NGEXCEPt i ONRESO! VET ..cviiviiieiiiiiieeeeiteeeeeenieeeeeeni e e e eenaeeeeennns 43
5.6.2. SoapFaul t Annot at i ONEXCEPt i ONRESOI VI ..uuiiiieiiiiiiiiiiiee e e eeeeeeviiie e e e e e e e eneens 44

6. Using Spring Web Servicesonthe CHEentoeeiiiiiiiii e 45
200 R 1 1o o LN o 1 o PR 45
6.2. USING the ClIent-SIdE AP ... 45
6.2.1. VIEDSEr Vi CETEMPI G @ 1evuiiieiiiiiiei et ee et ee e e e e e e e e e e e e e e e e ea e eeaeeanans 45
6.2.2. Sending and receiving aVebSer Vi CEMESSAGE ..uvvreeirurrieeiiiireeeiiireeesaineee e e 47
6.2.3. Sending and receiving POJOs - marshalling and unmarshalling 48
6.2.4. WebSer vi ceMessageCal | DACK ...uviiiieriiiiiiiiiiiei it ieeeerie e e eeaie e s eeai e e eeaa e s eenans 48
6.2.5. WehSer Vi CEMESSAGEEXT I ACT OF wvvvruuiieeerereeeriiuiseeeeerereentnnsseeeeseeesnnnnnnaeeaseeennnns 49

7. Securing your Web services With SPring-WSooiii i 50
7.1 INrodUCTION ... 50
T.2. XWSSECU T 1 Y1 NEEF CEPL OF cevniiiiiieieieeeieee e ee e e e et e e et e e et e e et e e san e e et s esanseaneertnseraneerens 50
720 KEYSEOIES ...ceeiieeeiiittt ettt ettt e e e e et e e e e e s s s bbb e e e e e e e s e s nnbbbneeeeaeeeeanas 51
7.2.2. AUthENtICALIONccooeieeee e, 53
7.2.3. Digital SIQNALUIESovveiiieeeii it e e e e a e e e s s et rraeeeaaaeeaaas 58
7.2.4. Encryption and DECTYPLIONcoiiuiiiiiiiiiiee et 59

T.3. VESA] SECUNT T Y1 NEEI CEPL OF iieruieieueerieeeeteeeteeet e est e e st eeeteeraneeetaersteraneeetseranearens 60
7.3.1. Configuring Vs4j SECUri t Yl NEEI CEPLOT uvvrrrirereeeeeisiinierereeeeesssnnrnneeereeaeesanns 61
7.3.2. Handling Digital CertifiCatesueiiiiiiiiiiiiiiiieece e 62
7.3.3. AUthENtiCAtiONccooeeiieeeeeee e 62
7.3.4. Security TIMESEAMPS ...ccceeeeeeeee e 64
7.3.5. Digital SIGNALUIESovveiiieeei i e e e e s e et rrae e e e aaeeaaas 65
7.3.6. ENCryption and DECTYPLIONcoiiuiriieiiiiiee e 67

8. Marshalling XML using O/X MEPPEY'Sccoiiiiiiiiiiiiee e e e ettt e e e s s st e e e e e e e s s satbaaaeeeaaeeeans 70
.1 INrodUCLION ... 70
8.2. Marshaller and Unmarshaller ... 70
B2L Marshaller ... 70
.2.2.Unmarshaller ... 71
8.2.3. XMIMaPPINGEXCEPLIONccceiiiiiiiiieeiee e e ettt e e e e e e e e e e s s st eeeaae e e 71

8.3. Using Marshaller and Unmarshallerooeoiiiiiiiiiiiiie e 72
8.4. XML Schemarbased Configurationccccuveieiiieii i 73
B . JA X B i et e e e ea e rar e eaaaa 74
8.5.1. JAXDIMArSNAllEruviiiiiiiiei i a e e 74
8.5.2. Jaxb2Marshaller ... 75

S TR = L o 76
8.6.1. CastOrMarshall€rceiiiieiiiiiiiee e 76
8.6.2. MADPING ...eeeeeeeitie ettt e e 76

B.7. XIMLBEANS ...ccoieiiiiiteeee et e e e e e e e e et araans 76
8.7.1. XmIBeansMarshaller ..o 77

B.8. JIBX i e e e e e e e e e e e e ————raaaaeaeaaatrraaaaaans 77
8.8.1. JbxMarshaller ..o 77

Spring-WS (1.5.9)

Spring Web Services - Reference Documentation

Spring-WS (1.5.9)

Preface

In the current age of Service Oriented Architectures, more and more people are using Web Services to connect
previously unconnected systems. Initially, Web services were considered to be just another way to do a Remote
Procedure Call (RPC). Over time however, people found out that there is a big difference between RPCs and
Web services. Especially when interoperability with other platforms is important, it is often better to send
encapsulated XML documents, containing al the data necessary to process the request. Conceptualy,
XML-based Web services are better off being compared to message queues rather than remoting solutions.
Overall, XML should be considered the platform-neutral representation of data, the interlingua of SOA. When
developing or using Web services, the focus should be on this XML, and not on Java.

Spring Web Services focusses on creating these document-driven Web services. Spring Web Services
facilitates contract-first SOAP service development, allowing for the creation of flexible web services using
one of the many ways to manipulate XML payloads. Spring-WS provides a powerful message dispatching
framework, various XML marshalling techniques that can be used outside a Web service environment, a
WS-Security solution that integrates with your existing application security solution, and a Client-side API that
follows the familiar Spring template pattern.

This document provides a reference guide to Spring-WS's features. Since this document is dill a
work-in-progress, if you have any requests or comments, please post them on the support forums at
http://forum.springframework.org/forumdisplay.php?f=39.

Spring-WS (1.5.9) Y

http://forum.springframework.org/forumdisplay.php?f=39

Part |. Introduction

This first part of the reference documentation is an overview of Spring Web Services and the underlying
concepts. Spring-WS is then introduced, and the concepts behind contract-first Web service development are
explained.

Spring-WS (1.5.9) 1

Chapter 1. What is Spring Web Services?

1.1. Introduction

Spring Web Services (Spring-WS) is a product of the Spring community focused on creating document-driven
Web services. Spring Web Services aims to facilitate contract-first SOAP service development, allowing for the
creation of flexible web services using one of the many ways to manipulate XML payloads. The product is
based on Spring itself, which means you can use the Spring concepts such as dependency injection as an
integral part of your Web service.

People use Spring-WS for many reasons, but most are drawn to it after finding alternative SOAP stacks lacking
when it comes to following Web service best practices. Spring-WS makes the best practice an easy practice.
This includes practices such as the WS-| basic profile, Contract-First development, and having aloose coupling
between contract and implementation. The other key features of Spring Web services are:

Powerful mappings. You can distribute incoming XML requests to any object, depending on message
payload, SOAP Action header, or an XPath expression.

XML API support. Incoming XML messages can be handled not only with standard JAXP APIs such as
DOM, SAX, and StAX, but also JDOM, dom4j, XOM, or even marshalling technol ogies.

Flexible XML Marshalling. The Object/XML Mapping module in the Spring Web Services distribution
supports JAXB 1 and 2, Castor, XMLBeans, JiBX, and XStream. And because it is a separate module, you can
use it in non-Web services code as well.

Reuses your Spring expertise. Spring-WS uses Spring application contexts for al configuration, which
should help Spring devel opers get up-to-speed nice and quickly. Also, the architecture of Spring-WS resembles
that of Spring-MVC.

Supports WS-Security. WS-Security allows you to sign SOAP messages, encrypt and decrypt them, or
authenticate against them.

Integrates with Acegi Security. The WS-Security implementation of Spring Web Services provides
integration with Acegi Security. This means you can use your existing Acegi configuration for your SOAP
service aswell.

Built by Maven. This assists you in effectively reusing the Spring Web Services artifacts in your own
Maven-based projects.

Apachelicense. You can confidently use Spring-WSin your project.

1.2. Runtime environment

Spring Web Services runs within a standard Java 1.3 Runtime Environment. It also supports Java 5.0, although
the Java types which are specific to this release are packaged in a separate modules with the suffix "tiger" in
their JAR filename. Note that the security module also requires Java 5.

Spring-WS consists of anumber of modules, which are described in the remainder of this section.

e The XML module (spring-xni . j ar) contains various XML support classes for Spring Web Services. This

Spring-WS (1.5.9) 2

http://acegisecurity.org

What is Spring Web Services?

module is mainly intended for the Spring-WS framework itself, and not a Web service devel opers.

e The Core package (spri ng-ws-core.jar and spring-ws-core-tiger.jar) isthe centra part of the Spring's
Web services functionality. It provides the central webServi ceMessage and SoapMessage interfaces, the
server-side framework, with powerful message dispatching, and the various support classes for implementing
Web service endpoints; and the client-side WebSer vi ceTenpl at e.

e The Security package (spring-ws-security.jar) provides a WS-Security implementation that integrates
with the core Web service package. It alows you to add principal tokens, sign, and decrypt and encrypt
SOAP messages. Addtionally, it allows you to leverage your existing Acegi security implementation for
authentication and authorization.

* The OXM package (spring-oxmjar and spring-oxmtiger.jar) provides integration for popular XML
marshalling APIs, including JAXB 1 and 2. Using the OXM package means that you benefit from a unified
exception hierarchy, and can wire up your favorite XML marshalling technology easily.

The following figure illustrates the Spring-WS modules and the dependencies between them. Arrows indicate
dependencies, i.e. Spring-WS Core depends on Spring-XML and Spring-OXM.

Dependencies between Spring-WS modules

Spring-WS (1.5.9) 3

Chapter 2. Why Contract First?

2.1. Introduction

When creating Web services, there are two development styles. Contract Last and Contract First. When using
a contract-last approach, you start with the Java code, and let the Web service contract (WSDL, see sidebar) be
generated from that. When using contract-first, you start with the WSDL contract, and use Java to implement
said contract.

What is WSDL?

WSDL stands for Web Services Description Language. A WSDL fileis an XML document that describes
aWeb service. It specifies the location of the service and the operations (or methods) the service exposes.
For more information about WSDL, refer to the WSDL specification, or read the WSDL tutoria

Spring-WS only supports the contract-first development style, and this section explains why.

2.2. Object/XML Impedance Mismatch

Similar to the field of ORM, where we have an Object/Relational impedance mismatch, there is a similar
problem when converting Java objects to XML. At first glance, the O/X mapping problem appears simple:
create an XML eement for each Java object, converting al Java properties and fields to sub-elements or
attributes. However, things are not as simple as they appear: there is a fundamental difference between
hierarchical languages such as XML (and especially XSD) and the graph model of Javal,

2.2.1. XSD extensions

In Java, the only way to change the behavior of a class is to subclass it, adding the new behavior to that
subclass. In XSD, you can extend a data type by restricting it: that is, constraining the valid values for the
elements and attributes. For instance, consider the following example:

<si npl eType name="Ai r port Code" >
<restriction base="string">
<pattern value="[A-Z][A-Z][A-Z]"] >
</restriction>
</ si npl eType>

This type restricts a XSD string by ways of a regular expression, allowing only three upper case letters. If this
type is converted to Java, we will end up with an ordinary j ava. | ang. Stri ng; the regular expression islost in
the conversion process, because Java does not alow for these sorts of extensions.

2.2.2. Unportable types

One of the most important goals of a Web service is to be interoperable: to support multiple platforms such as
Java, .NET, Python, etc. Because all of these languages have different class libraries, you must use some
common, interlingual format to communicate between them. That format is XML, which is supported by all of

IMost of the contentsin this section wasi nspired by [alpine] and [effective-enterprise-javal.

Spring-WS (1.5.9) 4

http://www.w3.org/TR/wsdl
http://www.w3schools.com/wsdl/
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch

Why Contract First?

these languages.

Because of this conversion, you must make sure that you use portable types in your service implementation.
Consider, for example, aservice that returnsaj ava. util . TreeMap, like so:

public Map getFlights() {
/] use a tree nap, to make sure it's sorted
TreeMap map = new TreeMap();
map. put ("KL1117", " St ockhol ni');

return map;

}

Undoubtedly, the contents of this map can be converted into some sort of XML, but since there is no standard
way to describe a map in XML, it will be proprietary. Also, even if it can be converted to XML, many
platforms do not have a data structure similar to the Treemap. So when a .NET client accesses your Web
service, it will probably end up with aSyst em Col | ect i ons. Hasht abl e, which has different semantics.

This problem is aso present when working on the client side. Consider the following XSD snippet, which
describes a service contract:

<el enent nanme="Cet Fl i ght sRequest ">
<conpl exType>
<al | >
<el ement nane="departureDate" type="date"/>
<el ement name="fronl' type="string"/>
<el ement nanme="to" type="string"/>
</all>
</ conpl exType>
</ el emrent >

This contract defines arequest that takes an date, which isa X SD datatype representing a year, month, and day.
If we call this service from Java, we will probably use either ajava.util.Date OfF java.util. Cal endar.
However, both of these classes actually describe times, rather than dates. So, we will actually end up sending
data that represents the fourth of April 2007 at midnight (2007- 04- 04T00: 00: 00), which is not the same as
2007- 04- 04.

2.2.3. Cyclic graphs

Imagine we have the following simple class structure:

public class Flight {
private String nunber;
private List<Passenger> passengers;

/] getters and setters omtted

}

public class Passenger {
private String nane;
private Flight flight;

/] getters and setters omitted

}

Thisisacyclic graph: the FI i ght refersto the Passenger, which refersto the Fi i ght again. Cyclic graphs like
these are quite common in Java. If we took a naive approach to converting this to XML, we will end up with
something like:

<flight nunmber="KL1117">
<passenger s>

Spring-WS (1.5.9) 5

Why Contract First?

<passenger >
<nane>Arj en Pout sma</ nane>
<flight nunber="KL1117">
<passenger s>
<passenger >
<nane>Arj en Pout sma</ nane>
<flight nunber="KL1117">
<passenger s>
<passenger >
<nanme>Arj en Pout sma</ nane>

which will take a pretty long time to finish, because there is no stop condition for this loop.

One way to solve this problem isto use references to objects that were already marshalled, like so:

<flight nunber="KL1117">
<passenger s>
<passenger >
<nanme>Arj en Pout sma</ nane>
<flight href="KL1117" />
</ passenger >

</ passenger s>
</flight>

This solves the recursiveness problem, but introduces new ones. For one, you cannot use an XML validator to
validate this structure. Another issue is that the standard way to use these references in SOAP (RPC/encoded)
has been deprecated in favor of document/literal (see WS-1 Basic Profile).

These are just a few of the problems when dealing with O/X mapping. It is important to respect these issues
when writing Web services. The best way to respect them is to focus on the XML completely, while using Java
as an implementation language. Thisiswhat contract-first isall about.

2.3. Contract-first versus Contract-last

Besides the Object/XML Mapping issues mentioned in the previous section, there are other reasons for
preferring a contract-first development style.

2.3.1. Fragility

As mentioned earlier, the contract-last development style results in your web service contract (WSDL and your
XSD) being generated from your Java contract (usually an interface). If you are using this approach, you will
have no guarantee that the contract stays constant over time. Each time you change your Java contract and
redeploy it, there might be subsequent changes to the web service contract.

Aditionally, not all SOAP stacks generate the same web service contract from a Java contract. This means
changing your current SOAP stack for a different one (for whatever reason), might aso change your web
service contract.

When aweb service contract changes, users of the contract will have to be instructed to obtain the new contract
and potentially change their code to accommodate for any changesin the contract.

In order for a contract to be useful, it must remain constant for as long as possible. If a contract changes, you
will haveto contact all of the users of your service, and instruct them to get the new version of the contract.

2.3.2. Performance

Spring-WS (1.5.9) 6

http://www.ws-i.org/Profiles/BasicProfile-1.1.html#SOAP_encodingStyle_Attribute

Why Contract First?

When Javais automatically transformed into XML, there is no way to be sure asto what is sent across the wire.
An object might reference another object, which refers to another, etc. In the end, half of the objects on the
heap in your virtual machine might be converted into XML, which will result in slow response times.

When using contract-first, you explicitly describe what XML is sent where, thus making sure that it is exactly
what you want.

2.3.3. Reusability

Defining your schema in a separate file allows you to reuse that file in different scenarios. If you define an
AirportCodein afilecaled airl i ne. xsd, like so:

<si npl eType nanme="Ai r port Code" >
<restriction base="string">
<pattern value="[A-Z][A-Z][A-Z]"/ >
</restriction>
</ si npl eType>

Y ou can reuse this definition in other schemas, or even WSDL files, using ani nport Statement.

2.3.4. Versioning

Even though a contract must remain constant for as long as possible, they do need to be changed sometimes. In
Java, this typically results in a new Java interface, such as Ai rl i neSer vi ce2, and a (new) implementation of
that interface. Of course, the old service must be kept around, because there might be clients who have not
migrated yet.

If using contract-first, we can have a looser coupling between contract and implementation. Such a looser
coupling allows us to implement both versions of the contract in one class. We could, for instance, use an
XSLT stylesheet to convert any "old-style" messages to the "new-style" messages.

Spring-WS (1.5.9) 7

Chapter 3. Writing Contract-First Web Services

3.1. Introduction

Thistutorial shows you how to write contract-first Web services, that is, devel oping web services that start with
the XML Schema/WSDL contract first followed by the Java code second. Spring-WS focuses on this
development style, and this tutorial will help you get started. Note that the first part of this tutorial contains
amost no Spring-WS specific information: it is mostly about XML, XSD, and WSDL. The second part
focusses on implementing this contract using Spring-WsS .

The most important thing when doing contract-first Web service development is to try and think in terms of
XML. This means that Java-language concepts are of lesser importance. It is the XML that is sent across the
wire, and you should focus on that. The fact that Java is used to implement the Web service is an
implementation detail. An important detail, but a detail nonetheless.

In this tutorial, we will define a Web service that is created by a Human Resources department. Clients can
send holiday request forms to this service to book a holiday.

3.2. Messages

In this section, we will focus on the actual XML messages that are sent to and from the Web service. We will
start out by determining what these messages ook like.

3.2.1. Holiday

In the scenario, we have to deal with holiday requests, so it makes sense to determine what a holiday looks like
in XML:

<Hol i day xm ns="http:// myconpany. conf hr/ schemas" >
<St art Dat e>2006- 07- 03</ St ar t Dat e>
<EndDat e>2006- 07- 07</ EndDat e>

</ Hol i day>

A holiday consists of a start date and an end date. We have also decided to use the standard 1SO 8601 date
format for the dates, because that will save a lot of parsing hassle. We have also added a namespace to the
element, to make sure our € ements can used within other XML documents.

3.2.2. Employee

There is also the notion of an employee in the scenario. Here iswhat it looks like in XML.:

<Enpl oyee xm ns="http://nmyconpany. coni hr/ schemas" >
<Nunber >42</ Nunber >
<Fi r st Name>Ar j en</ Fi r st Nanme>
<Last Name>Pout sma</ Last Nanme>

</ Enpl oyee>

We have used the same namespace as before. If this <Enpl oyee/ > element could be used in other scenarios, it
might make sense to use a different namespace, such asht t p: / / myconpany. coni enpl oyees/ schenas.

Spring-WS (1.5.9) 8

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

Writing Contract-First Web Services

3.2.3. HolidayRequest

Both the holiday and employee element can be put in a<Hol i dayRequest / >:

<Hol i dayRequest xm ns="http:// myconpany. conf hr/ schemas" >
<Hol i day>
<St art Dat €>2006- 07- 03</ St ar t Dat e>
<EndDat e>2006- 07- 07</ EndDat e>
</ Hol i day>
<Enpl oyee>
<Numnber >42</ Nunber >
<Fi r st Name>Ar j en</ Fi r st Nanme>
<Last Name>Pout sma</ Last Name>
</ Enpl oyee>
</ Hol i dayRequest >

The order of the two elements does not matter: <enpl oyee/ > could have been the first element just as well.
What is important is that all of the data is there. In fact, the data is the only thing that is important: we are
taking a data-driven approach.

3.3. Data Contract

Now that we have seen some examples of the XML data that we will use, it makes sense to formalize thisinto a
schema. This data contract defines the message format we accept. There are four different ways of defining
such acontract for XML:

* DTDs

XML Schema (XSD)

RELAX NG
* Schematron

DTDs have limited namespace support, so they are not suitable for Web services. Relax NG and Schematron
certainly are easier than XML Schema. Unfortunately, they are not so widely supported across platforms. We
will use XML Schema.

By far the easiest way to create an XSD is to infer it from sample documents. Any good XML editor or Java
IDE offers this functionality. Basically, these tools use some sample XML documents, and generate a schema
from it that validates them all. The end result certainly needs to be polished up, but it's a great starting point.

Using the sample described above, we end up with the following generated schema:

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
el ement For nDef aul t ="qual i fi ed"
t ar get Nanespace="htt p: // myconpany. coni hr/ schemas"
xm ns: hr="http:// nmyconpany. coni hr/ schenmas" >
<xs: el ement name="Hol i dayRequest ">
<xs: conpl exType>
<xs:sequence>
<xs: el ement ref="hr:Holiday"/>
<xs: el ement ref="hr:Enpl oyee"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement name="Hol i day" >
<xs: conpl exType>
<Xs: sequence>
<xs:element ref="hr:StartDate"/>

Spring-WS (1.5.9) 9

http://www.w3.org/XML/Schema
http://www.relaxng.org/
http://www.schematron.com/

Writing Contract-First Web Services

<xs: el ement ref="hr:EndDate"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="StartDate" type="xs: NMTCKEN'/ >
<xs: el ement nanme="EndDat e" type="xs: NMTOKEN'/ >
<xs: el ement name="Enpl oyee" >
<xs: conpl exType>
<Xs: sequence>
<xs:el ement ref="hr:Nunber"/>
<xs: el ement ref="hr:FirstName"/>
<xs: el ement ref="hr:LastNanme"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="Nunber" type="xs:integer"/>
<xs: el ement name="First Nanme" type="xs: NCNane"/ >
<xs:el ement name="Last Nane" type="xs: NCNane"/>
</ xs: schema>

This generated schema obviously can be improved. The first thing to notice is that every type has a root-level
element declaration. This means that the Web service should be able to accept all of these elements as data.
This is not desirable: we only want to accept a <Hol i dayRequest / >. By removing the wrapping element tags
(thus keeping the types), and inlining the results, we can accomplish this.

<xs:schema xm ns: xs="http://ww.w3. org/ 2001/ XM_Schema"
xm ns: hr="http:// myconpany. com hr/schemas"
el enent For nDef aul t =" qual i fi ed"
t ar get Nanespace="htt p:// myconpany. coni hr/ schenas" >
<xs: el ement name="Hol i dayRequest ">
<xs: conpl exType>
<Xs: sequence>
<xs: el enent nanme="Hol i day" type="hr: HolidayType"/>
<xs: el ement name="Enpl oyee" type="hr: Enpl oyeeType"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: conpl exType name="Hol i dayType" >
<Xxs:sequence>
<xs: el ement name="StartDate" type="xs: NMTCKEN'/ >
<xs: el ement name="EndDat e" type="xs: NMTOKEN'/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nanme="Enpl oyeeType" >
<Xs: sequence>
<xs: el ement nanme="Nunber" type="xs:integer"/>
<xs: el ement name="First Name" type="xs: NCNane"/>
<xs: el enent nanme="Last Nane" type="xs: NCNane"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: schema>

The schema still has one problem: with a schemallike this, you can expect the following messages to validate:

<Hol i dayRequest xm ns="http://nyconpany. conl hr/ schenmas" >
<Hol i day>
<StartDate>this is not a date</StartDate>
<EndDat e>nei t her is this</EndDate>
</ Hol i day>
<l-- ... -->
</ Hol i dayRequest >

Clearly, we must make sure that the start and end date are really dates. XML Schema has an excellent built-in
dat e type which we can use. We also change the NCNanes to st ri ngs. Finally, we change the sequence in
<Hol i dayRequest /> t0 al | . This tells the XML parser that the order of <Hol i day/ > and <Enpl oyee/ > iS not
significant. Our final XSD now looks like this:

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"

Spring-WS (1.5.9) 10

Writing Contract-First Web Services

xm ns: hr="http:// myconpany. con hr/ schemas"

el enent For nDef aul t =" qual i fi ed"

t ar get Nanespace="htt p:// myconpany. coni hr/ schemas" >
<xs: el ement nanme="Hol i dayRequest ">

<xs:conpl exType>

<xs:all>
<xs: el ement name="Hol i day" type="hr:HolidayType"/> O
<xs: el ement nanme="Enpl oyee" type="hr: Enpl oyeeType"/>

</xs:all>

</ xs: conpl exType>
</ xs: el enent >
<xs: conpl exType nanme="Hol i dayType" >
<Xs: sequence>
<xs: el ement nanme="StartDate" type="xs:date"/>
<xs: el ement name="EndDat e" type="xs:date"/> O
</ xs: sequence> O
</ xs: conpl exType>
<xs: conpl exType nanme="Enpl oyeeType" >
<Xs: sequence>
<xs:el ement name="Nunber" type="xs:integer"/>
<xs: el ement nanme="First Name" type="xs:string"/>
<xs:el ement name="Last Nane" type="xs:string"/> O
</ xs: sequence> O
</ xs: conpl exType>
</ xs: schena>

O all tellsthe XML parser that the order of <Hol i day/ > and <Enpl oyee/ > isnot significant.

0 We use the xsd: date data type, which consist of a year, month, and day, for <StartDate/> and
<EndDat e/ >.

O xsd:stringisusedforthefirst and last name.

We store thisfileashr. xsd.

3.4. Service contract

A service contract is generally expressed as a WSDL file. Note that in Spring-WS, writing the WSDL by hand
is not required. Based on the XSD and some conventions, Spring-WS can create the WSDL for you, as
explained in the section entitled Section 3.6, “Implementing the Endpoint”. Y ou can skip to the next section if
you want to; the remainder of this section will show you how to write your own WSDL by hand.

We start our WSDL with the standard preamble, and by importing our existing XSD. To separate the schema
from the definition, we will use a separate namespace for the WSDL definitions:
http://myconpany. com hr/definitions.

<wsdl : definitions xm ns:wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns: schema="htt p: // nyconpany. com hr/schenmas"
xm ns:tns="http://myconpany. con hr/ definitions"
tar get Nanespace="http:// myconpany. coni hr/ defi nitions">
<wsdl : t ypes>
<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >
<xsd: i nport nanmespace="http:// myconpany. conl hr/ schemas" schemaLocati on="hr.xsd"/>
</ xsd: schenma>
</wsdl : types>

Next, we add our messages based on the written schema types. We only have one message: one with the
<Hol i dayRequest / > we put in the schema:

<wsdl| : mressage nane="Hol i dayRequest " >
<wsdl : part el ement ="schema: Hol i dayRequest"” nanme="Hol i dayRequest "/ >
</ wsdl : ressage>

Spring-WS (1.5.9) 11

http://www.w3.org/TR/wsdl

Writing Contract-First Web Services

We add the message to a port type as an operation:

<wsdl : port Type nanme="HumanResource" >
<wsdl : operation name="Hol i day" >
<wsdl : i nput nmessage="t ns: Hol i dayRequest" nane="Hol i dayRequest "/ >
</ wsdl : operati on>
</ wsdl : port Type>

That finished the abstract part of the WSDL (the interface, as it were), and leaves the concrete part. The
concrete part consists of abi ndi ng, which tells the client how to invoke the operations you've just defined; and
aservi ce, which tellsit where to invokeit.

Adding a concrete part is pretty standard: just refer to the abstract part you defined previously, make sure you
use document/literal for the soap: bi ndi ng elements (r pc/ encoded is deprecated), pick a soapActi on for the
operation (in this case http:// nyconpany. coml Request Hol i day, but any URI will do), and determine the
I ocat i on URL where you want request to comein (inthiscase ht t p: / / nyconpany. conf humanr esour ces):

<wsdl : definitions xm ns:wsdl ="http://schemas. xm soap. org/ wsdl /"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns: schema="htt p: // nyconpany. com hr/ schenas"
xm ns:tns="http://myconpany. coni hr/ definitions"
t ar get Nanespace="http:// myconpany. coni hr/ defi nitions">
<wsdl : types>
<xsd: schema xml ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schema" >
<xsd:inmport namespace="http://nyconpany. coni hr/schemas" O
schemaLocati on="hr.xsd"/ >
</ xsd: schema>
</wsdl : types>

<wsdl : ressage nane="Hol i dayRequest " > O
<wsdl : part el ement ="schema: Hol i dayRequest” name="Hol i dayRequest "/ > ad
</ wsdl : ressage>
<wsdl : port Type nane="HumanResource"> O
<wsdl : operati on nanme="Hol i day" >
<wsdl : i nput nmessage="t ns: Hol i dayRequest" nane="Hol i dayRequest"/> O

</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : bi ndi ng nanme="HumanResour ceBi ndi ng" type="tns: HunanResour ce" > aod
<soap: bi ndi ng styl e="docunent" O
transport="http://schemas. xn soap. or g/ soap/ http"/> 0
<wsdl : operati on name="Hol i day" >
<soap: operati on soapAction="http://myconpany. conlf Request Hol i day"/ > 0
<wsdl : i nput name="Hol i dayRequest ">
<soap: body use="literal"/> O

</wsdl : i nput >
</ wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce nane="HunmanResour ceServi ce">
<wsdl : port bi ndi ng="t ns: HumanResour ceBi ndi ng" nanme="HumanResour cePort "> O
<soap: address | ocati on="http://| ocal host: 8080/ hol i dayServi ce/"/> O
</ wsdl : port >
</ wsdl : servi ce>
</wsdl : definitions>

We import the schema defined in Section 3.3, “Data Contract”.

We define the Hol | dayRequest message, which gets used in the por t Type.

The Hol i dayRequest typeis defined in the schema.

We define the HumanResour ce port type, which gets used in the bi ndi ng.

We define the HumanResour ceBi ndi ng binding, which gets used in the port .

We use a document/literal style.

Thelitera htt p: // schemas. xm soap. or g/ soap/ ht t p signifiesa HTTP transport.

The soapAct i on attribute signifies the soapAct i on HTTP header that will be sent with every request.

The http://1ocal host: 8080/ hol i daySer vi ce/ address is the URL where the Web service can be
invoked.

I I O

Spring-WS (1.5.9) 12

Writing Contract-First Web Services

This is the fina WSDL. We will describe how to implement the resulting schema and WSDL in the next
section.

3.5. Creating the project

In this section, we will be using Maven2 to create the initia project structure for us. Doing so is not required,
but gresatly reduces the amount of code we have to write to setup our HolidayService.

The following command creates a Maven2 web application project for us, using the Spring-WS archetype (that
is, project template)

nmvn ar chet ype: create -DarchetypeG oupl d=or g. spri ngframework. ws \
- DarchetypeArtifact! d=spring-ws-archetype \
- Dar chet ypeVersi on=1.5.9 \
- Dgr oupl d=com myconpany. hr \
-Dartifactld=holidayService

This command will create a new directory called holidayService. In this directory, there is a
" src/ mai n/ webapp' directory, which will contain the root of the WAR file. You will find the standard web
application deployment descriptor ' WEB- I NF/web. xni* here, which defines a Spring-WS
MessageDi spat cher Servl et and maps all incoming requests to this servlet:

<web-app xm ns="http://java. sun. coni xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun. com xnl / ns/j 2ee
http://java. sun. com xm / ns/j 2ee/ web- app_2_4. xsd"
versi on="2.4">

<di spl ay- name>MyConpany HR Hol i day Servi ce</di spl ay- name>

<I-- take especial notice of the nane of this servliet -->
<servl et >

<servl et - nane>spri ng- ws</ servl et - nanme>

<servl et -cl ass>org. spri ngfranmewor k. ws. transport. http. MessageDi spat cher Servl et </ servl et - cl ass>
</ servl et >

<servl et - mappi ng>
<servl et - name>spri ng- ws</ servl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

In addition to the above ' VEB- | NF/ web. xmi * file, you will also need another, Spring-WS-specific configuration
file, named ' WEB- | NF/ spri ng-ws-servl et. xn ' . Thisfile contains al of the Spring-WS-specific beans such as
EndPoi nt s, WebSer vi ceMessageRecei ver s, and suchlike, and is used to create a new Spring container. The
name of this file is derived from the name of the attendant servlet (in this case ' spring-ws') with
"-servlet.xm"' appended to it. So if you defined a MessageDi spat cher Servl et with the name ' dynanite',
the name of the Spring-WS-specific configuration file would be* VEB- | NF/ dynani t e-servl et. xm * .

(Y ou can see the contents of the' WEB- | NF/ spri ng-ws-servl et. xm ' filefor thisexamplein ??7?.)

3.6. Implementing the Endpoint

In Spring-WS, you will implement Endpoints to handle incoming XML messages. There are two flavors of
endpoints. message endpoints and payload endpoints. Message endpoints give access to the entire XML
message, including SOAP headers. Typically, the endpoint will only be interested in the payload of the

Spring-WS (1.5.9) 13

http://maven.apache.org/

Writing Contract-First Web Services

message, that is the contents of the SOAP body. In that case, creating a payload endpoint makes more sense.

3.6.1. Handling the XML Message

In this sample application, we are going to use JDom to handle the XML message. We are also using XPath,
because it alows us to select particular parts of the XML JDOM tree, without requiring strict schema
conformance. We extend our endpoint from Abst r act JDonPay| oadEndpoi nt , because that will give usa JDOM
element to execute the XPath queries on.

package com nyconpany. hr.ws;

i mport java.text. Sinpl eDat eFor mat ;
i nport java.util.Date;

i nport com nyconpany. hr. servi ce. HumanResour ceSer vi ce;

i mport org.jdom El enent;

i mport org.jdom JDOVExcepti on;

i mport org.jdom Nanespace;

i nport org.jdom xpat h. XPat h;

i mport org.springframework. ws. server. endpoi nt. Abst ract JDonPayl oadEndpoi nt ;

public class HolidayEndpoi nt extends AbstractJDonPayl oadEndpoi nt {
private XPath start Dat eExpression;
private XPath endDat eExpressi on;
private XPath naneExpressi on;
private final HumanResourceServi ce humanResour ceServi ce;

publ i ¢ Hol i dayEndpoi nt (HumanResour ceServi ce humanResour ceServi ce) throws JDOVExcepti olln {
t hi s. hunanResour ceSer vi ce = humanResour ceSer vi ce;
Nanespace nanespace = Nanespace. get Nanespace("hr", "http://nyconpany. conl hr/schenmas");
st art Dat eExpressi on = XPat h. new nstance("//hr: StartDate");
st art Dat eExpr essi on. addNanespace(nanespace) ;
endDat eExpr essi on = XPat h. new nstance("//hr: EndDate");
endDat eExpr essi on. addNanespace(nanespace) ;
nanmeExpressi on = XPat h. newl nst ance("concat (//hr: FirstName,' ',//hr:Last Nanme)");
nanmeExpr essi on. addNanmespace(nanespace) ;

}
protected El ement invokel nternal (El ement hol i dayRequest) throws Exception { 0
Si npl eDat eFor mat dat eFor mat = new Si npl eDat eFor nat ("yyyy- Mt dd") ;
Date startDate = dat eFornat. parse(start Dat eExpression. val ued (hol i dayRequest));
Dat e endDat e = dat eFor mat . par se(endDat eExpr essi on. val ueX (hol i dayRequest));
String nane = naneExpression. val uek (hol i dayRequest);
humanResour ceSer vi ce. bookHol i day(start Date, endDate, nane);
return null;
}

0 The Hol i dayEndpoi nt requires the HumanResour ceSer vi ce business service to operate, so we inject the
dependency via the constructor. Next, we set up XPath expressions using the JDOM API. There are three
expressions: / / hr: St art Dat e for extracting the <St ar t Dat e> text value, / / hr : EndDat e for extracting the
end date and concat (// hr: FirstNare,' ',//hr:Last Nane) for extracting and concatenating the names
of the employee.

O Theinvokel nternal (..) method is a template method, which gets passed with the <Hol i dayRequest / >
element from the incoming XML message. We use the X Path expressions to extract the string values from
the XML messages, and convert these values to Dat e objects using a Si npl eDat eFor mat . With these
values, we invoke a method on the business service. Typicaly, this will result in a database transaction
being started, and some records being altered in the database. Finally, we return nul |, which indicates to
Spring-WS that we do not want to send a response message. |f we wanted a response message, we could
have returned a JDOM Element that represents the payload of the response message.

Spring-WS (1.5.9) 14

http://www.jdom.org
http://www.w3schools.com/xpath/

Writing Contract-First Web Services

Using JDOM s just one of the options to handle the XML.: other options include DOM, domd4j, XOM, SAX,
and StAX, but also marshalling techniques like JAXB, Castor, XMLBeans, JBX, and XStream. We chose
JDOM because it gives us access to the raw XML, and because it is based on classes (not interfaces and factory
methods as with W3C DOM and dom4j), which makes the code less verbose. We use X Path because it is less
fragile than marshalling technologies: we don't care for strict schema conformance, as long as we can find the
dates and the name.

Because we use JDOM, we must add some dependencies to the Maven pom xni , which is in the root of our
project directory. Here is the relevant section of the POM:

<dependenci es>

<dependency>
<gr oupl d>or g. spri ngf r anewor k. ws</ gr oupl d>
<artifactld>spring-ws-core</artifactld>
<versi on>1. 5. 9</ ver si on>

</ dependency>

<dependency>
<gr oupl d>j donx/ gr oupl d>
<artifactld>jdonx/artifactld>
<ver si on>1. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>j axen</ gr oupl d>
<artifactld>jaxen</artifactld>
<versi on>1. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>j avax. xm . soap</ gr oupl d>
<artifactld>saaj-api</artifactld>
<versi on>1. 3</ ver si on>
<scope>runti me</ scope>

</ dependency>

<dependency>
<gr oupl d>com sun. xm . messagi ng. saaj </ gr oupl d>
<artifactld>saaj-inpl</artifactld>
<ver si on>1. 3</ver si on>
<scope>runti me</ scope>

</ dependency>

</ dependenci es>

Here is how we would configure these classesin our spri ng-ws-servl et . xni Spring XML configuration file:

<beans xm ns="http://ww. springframework. or g/ schema/ beans" >

<bean i d="hol i dayEndpoi nt" cl ass="com nyconpany. hr. ws. Hol i dayEndpoi nt ">
<constructor-arg ref="hrService"/>
</ bean>

<bean i d="hr Service" class="com myconpany. hr. servi ce. St ubHumanResour ceSer vi ce"/ >

</ beans>

3.6.2. Routing the Message to the Endpoint

Now that we have written an endpoint that handles the message, we must define how incoming messages are
routed to that endpaint. In Spring-WS, this is the responsibility of an Endpoi nt Mappi ng. In this tutorial, we will
route messages based on their content, by using a Payl oadRoot QNaneEndpoi nt Mappi ng. Here is how we
configure a Payl oadRoot QNaneEndpoi nt Mappi ng iNspri ng-ws-servl et. xm :

<bean cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot QNaneEndpoi nt Mappi ng" >
<property nanme="nmappi ngs">
<pr ops>
<prop key="{http://myconpany.coni hr/schemas} Hol i dayRequest " >hol i dayEndpoi nt </ pr op>
</ props>

Spring-WS (1.5.9) 15

Writing Contract-First Web Services

</ property>
<property nanme="interceptors">
<bean cl ass="org. spri ngframework. ws. server. endpoi nt.interceptor.Payl oadLoggi ngl nt erceptor"/>
</ property>
</ bean>

This means that whenever an XML message is received with the namespace
http://myconpany. conf hr/ schemas and the Hol i dayRequest local name, it will be routed to the
hol i dayEndpoi nt . (It also adds a Payl oadLoggi ngl nt er cept or, that dumps incoming and outgoing messages
tothelog.)

3.7. Publishing the WSDL

Finally, we need to publish the WSDL. As stated in Section 3.4, “Service contract”, we don't need to write a
WSDL ourselves; Spring-WS can generate one for us based on some conventions. Here is how we define the
generation:

<bean id="hol i day" class="org. springfranmework.ws.wsdl.wsdl 11. Def aul t Wsdl 11Def i ni ti on"> 0
<property name="schem" ref="schem"/> O
<property name="port TypeNanme" val ue="HumanResource"/> g
<property name="locationUri" val ue="/holidayService/"/> O
<property name="t ar get Nanmespace" val ue="http://myconmpany. con hr/definitions"/> O

</ bean>

<bean i d="schema" cl ass="org. spri ngframework. xm . xsd. Si npl eXsdSchema" > O
<property name="xsd" val ue="/WEB- | NF/ hr. xsd"/>

</ bean>

00 The bean id determines the URL where the WSDL can be retrieved. In this case, the bean id is hol i day,
which means that the WSDL can be retrieved as hol i day. wsdl in the servlet context. The full URL will
typically behttp: //1 ocal host : 8080/ hol i daySer vi ce/ hol i day. wsdl .

O The scherma property refers to the human resource schema we defined in Section 3.3, “Data Contract”,
wrapped in asi npl exsdSchema. We simply placed the schemain the Wes- | NF directory of the application.

0 Next, we define the WSDL port type to be HumanResour ce.

We set the location where the service can be reached: / hol i daySer vi ce/ . We use aardative URI and we

instruct the framework to transform it dynamically to an absolute URI. Hence, if the service is deployed to

different contexts we don't have to change the URI manually. For more information, please refer to

Section 5.3.1.1, “Automatic WSDL exposure”

O Finaly, we define the target namespace for the WSDL definition itself. Setting these is not required. If not
set, we give the WSDL the same namespace as the schema.

|

You can create a WAR file using mvn install. If you deploy the application (to Tomcat, Jetty, etc.), and point
your browser at this location, you will see the generated WSDL. This WSDL is ready to be used by clients,
such as soapUl, or other SOAP frameworks.

That concludes this tutorial. The tutorial code can be found in the full distribution of Spring-WS. The next step
would be to look at the echo sample application that is part of the distribution. After that, look at the airline
sample, which is a bit more complicated, because it uses JAXB, WS-Security, Hibernate, and a transactional
service layer. Finally, you can read the rest of the reference documentation.

Spring-WS (1.5.9) 16

http://localhost:8080/holidayService/holiday.wsdl
http://www.soapui.org/

Part Il. Reference

This part of the reference documentation details the various components that comprise Spring Web Services.
This includes a chapter that discusses the parts common to both client- and server-side WS, a chapter devoted
to the specifics of writing server-side Web services, a chapter about using Web services on the client-side, and
chapters on using WS-Security and Object/XML mapping.

Spring-WS (1.5.9) 17

Chapter 4. Shared components

In this chapter, we will explore the components which are shared between client- and server-side Spring-WS
development. These interfaces and classes represent the building blocks of Spring-WS, so it is important to
understand what they do, even if you do not use them directly.

4.1. Web service messages

4.1.1. WebSer vi ceMessage

One of the core interfaces of Spring Web Services is the wbServi ceMessage. This interface represents a
protocol-agnostic XML message. The interface contains methods that provide access to the payload of the
message, in the form of a javax. xni . transform Source Or a javax.xn .transform Result. Source and
Result are tagging interfaces that represent an abstraction over XML input and output. Concrete
implementations wrap various XML representations, as indicated in the following table.

Sour ce/Result implementation Wraps XML representation

javax. xm . transf orm dom DOVSour ce or g. w3c. dom Node

javax. xm . transf orm dom DOVResul t or g. w3c. dom Node

javax. xm .t ransf or m sax. SAXSour ce org. xm . sax. | nput Sour ce and

org. xm . sax. XM_Reader
javax. xm . transform sax. SAXResul t org. xm . sax. Cont ent Handl er

javax. xm . transform stream StreanSource java.io.File, java.io.lnputStream or
java.i o. Reader

javax. xm . transform stream StreanResul t java.io.File, java.io. Qut put St ream or
java.io. Witer

In addition to reading from and writing to the payload, a Web service message can write itself to an output
stream.

4.1.2. SoapMessage

The SoapMessage is a subclass of webSer vi ceMessage. It contains SOAP-specific methods, such as getting
SOAP Headers, SOAP Faullts, etc. Generally, your code should not be dependent on SoapMessage, because the
content of the SOAP Body can be obtained via get Payl oadSource() and get Payl oadResul t () in the
WebSer vi ceMessage. Only when it is necessary to perform SOAP-specific actions, such as adding a header, get
an attachment, etc., should you need to cast WebSer vi ceMessage t0 SoapMessage.

4.1.3. Message Factories

Concrete message implementations are created by a WebSer vi ceMessageFact ory. This factory can create an
empty message, or read a message based on an input stream. There are two concrete implementations of
WebSer vi ceMessageFact ory; one is based on SAAJ, the SOAP with Attachments API for Java, the other based
on Axis 2's AXIOM, the AXis Object Model.

Spring-WS (1.5.9) 18

Shared components

4.1.3.1. Saaj SoapMessageFact ory

The Saaj SoapMessageFactory uses the SOAP with Attachments APl for Java to create SoapMessage
implementations. SAAJ is part of J2EE 1.4, so it should be supported under most modern application servers.
Hereisan overview of the SAAJ versions supplied by common application servers:

Application Server SAAJ Version
BEA WebLogic 8 11

BEA WebL ogic 9 1.1/1.22

IBM WebSphere 6 12

SUN Glassfish 1 13

2 Weblogic 9 has a known bug in the SAAJ 1.2 implementation: it implement al the 1.2 interfaces, but throws a
Unsuppor t edOper at i onExcept i on when called. Spring Web Services has aworkaround: it uses SAAJ 1.1 when operating on WebLogic 9.

Additionally, Java SE 6 includes SAAJ 1.3. Y ou wire up a Saaj SoapMessageFact ory like so:

<bean i d="nessageFactory" cl ass="org. springframework. ws. soap. saaj . Saaj SoapMessageFact ory" />

Note

SAAJ is based on DOM, the Document Object Model. This means that all SOAP messages are
stored in memory. For larger SOAP messages, this may not be very performant. In that case, the
Axi omBoapMessageFact ory might be more applicable.

4.1.3.2. Axi onSoapMessageFact ory

The Axi onSoapMessageFact ory uses the AXis 2 Object Model to create SoapMessage implementations.
AXIOM is based on StAX, the Streaming API for XML. StAX provides a pull-based mechanism for reading
XML messages, which can be more efficient for larger messages.

To increase reading performance on the Axi onSoapMessageFact ory, You can set the payloadCaching property
to false (default is true). This will read the contents of the SOAP body directly from the stream. When this
setting is enabled, the payload can only be read once. This means that you have to make sure that any
preprocessing of the message does not consume it.

Y ou use the Axi onSoapMessageFact ory as follows:

<bean i d="nessageFactory" cl ass="org. springfranmework. ws. soap. axi om Axi onSoapMessageFact ory" >
<property nanme="payl oadCachi ng" val ue="true"/>
</ bean>

41.3.3.SOAP 1.10r1.2

Both the Saaj SoapMessageFact ory and the Axi onSoapMessageFact ory have a soapVersion property, where
you can inject a SoapVer si on constant. By default, the version is 1.1, but you can set it to 1.2 like so:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns:util="http://wwm.springframework. org/schema/util"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schema/ beans

Spring-WS (1.5.9) 19

Shared components

htt p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. org/ schenma/ uti |
http://ww. springframework. org/ schema/util/spring-util-2.0.xsd">

<bean i d="nessageFactory" cl ass="org. springfranmework. ws. soap. saaj . Saaj SoapMessageFact ory" >
<property nanme="soapVersion">
<util:constant static-field="org.springfranmework.ws. soap. SoapVer si on. SOAP_12"/ >
</ property>
</ bean>

</ beans>

In the example above, we define a Saaj SoapMessageFact ory that only accepts SOAP 1.2 messages.
Caution

Even though both versions of SOAP are quite similar in format, the 1.2 version is not backwards
compatible with 1.1 because it uses a different XML namespace. Other major differences between
SOAP 1.1 and 1.2 include the different structure of a Fault, and the fact that soapActi on HTTP
headers are effectively deprecated, thought they still work.

One important thing to note with SOAP version numbers, or WS-* specification version numbers
in general, is that the latest version of a specification is generaly not the most popular version. For
SOAP, this means that currently, the best version to use is 1.1. Version 1.2 might become more
popular in the future, but currently 1.1 is the safest bet.

4.1.4. MessageCont ext

Typically, messages come in pairs. a request and a response. A request is created on the client-side, which is
sent over some transport to the server-side, where a response is generated. This response gets sent back to the
client, whereit isread.

In Spring Web Services, such a conversation is contained in a MessageCont ext , which has properties to get
request and response messages. On the client-side, the message context is created by the webSer vi ceTenpl at e.
On the server-side, the message context is read from the transport-specific input stream. For example, in HTTP,
itisread fromthe Ht t pSer vl et Request and the response is written back to the Ht t pSer vl et Response.

4.2. Transport Cont ext

One of the key properties of the SOAP protocol is that it tries to be transport-agnostic. This is why, for
instance, Spring-WS does not support mapping messages to endpoints by HTTP request URL, but rather by
mesage content.

However, sometimes it is necessary to get access to the underlying transport, either on the client or server side.
For this, Spring Web Services has the Tr anspor t Cont ext . The transport context allows access to the underlying
WebSer vi ceConnection, which typically is a HitpServletConnection on the server side; or a
Ht t pUr | Connect i on OF ConmonsHt t pConnect i on 0N the client side. For example, you can obtain the | P address
of the current request in a server-side endpoint or interceptor like so:

Transport Cont ext context = Transport Cont ext Hol der. get Transport Cont ext () ;

Ht t pSer vl et Connecti on connection = (HttpServl et Connecti on)context. get Connection();
Ht t pSer vl et Request request = connection. get Htt pServl et Request () ;

String i pAddress = request. get Renot eAddr () ;

Spring-WS (1.5.9) 20

Shared components

4.3. Handling XML With XPath

One of the best ways to handle XML isto use XPath. Quoting [effective-xml], item 35:

XPath is a fourth generation declarative language that allows you to specify which nodes you
want to process without specifying exactly how the processor is supposed to navigate to those
nodes. XPath's data model is very well designed to support exactly what ailmost all developers
want from XML. For instance, it merges all adjacent text including that in CDATA sections,
allows values to be calculated that skip over comments and processing instructions’ and
include text from child and descendant elements, and requires all external entity references to
be resolved. In practice, XPath expressions tend to be much more robust against unexpected
but perhapsinsignificant changesin the input document.

—Elliotte Rusty Harold

Spring Web Services has two ways to use XPath within your application: the faster XPat hExpr essi on or the
more flexible XPat hTenpl at e.

4.3.1. XPat hExpr essi on

The XpPat hExpression is an abstraction over a compiled XPath expression, such as the Java 5
j avax. xnl . xpat h. XPat hExpr essi on, Or the Jaxen xPat h class. To construct an expression in an application
context, there is the xPat hExpr essi onFact or yBean. Here is an example which uses this factory bean:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngframework. or g/ scherma/ beans/ spri ng- beans- 2. 0. xsd" >

<bean i d="nameExpressi on" cl ass="org. spri ngframewor k. xnl . xpat h. XPat hExpr essi onFact or yBean" >
<property name="expression" val ue="/Contacts/ Contact/Nane"/>
</ bean>

<bean i d="nyEndpoi nt" cl ass="sanpl e. MyXPat hCl ass" >
<constructor-arg ref="nameExpression"/>
</ bean>

</ beans>

The expression above does not use hamespaces, but we could set those using the namespaces property of the
factory bean. The expression can be used in the code as follows:

package sanpl e;
public class MyXPat hC ass {
private final XPathExpression naneExpression;
publ i c MyXPat hCl ass(XPat hExpr essi on naneExpr essi on) {

t hi s. naneExpr essi on = naneExpr essi on;
}

public void doXPat h(Docunment document) {

String nane = naneExpressi on. eval uat eAsStri ng(docunent. get Docunent El enent ());
System out. println("Nane: " + nane);

For a more flexible approach, you can use a NodeMapper , which is similar to the Rowvapper in Spring's JDBC

Spring-WS (1.5.9) 21

Shared components

support. The following example shows how we can use it:

package sanpl e;
public class MyXPat hC ass {
private final XPathExpression contact Expression;

publ i c MyXPat hC ass(XPat hExpr essi on cont act Expr essi on) {
t hi s. cont act Expressi on = cont act Expr essi on;
}

public void doXPat h(Docunment docunent) {
Li st contacts = contact Expressi on. eval uat e(docunent,
new NodeMapper () {
public nject mapNode(Node node, int nodeNun) throws DOVException {
El ement contactEl enent = (El ement) node;
El ement naneEl enent = (El enent) contact El enent . get El ement sByTagNane("Nange").iten(0);
El ement phoneEl ement = (El ement) contact El ement . get El ement sBy TagNanme(" Phone") .iten(0);
return new Cont act (naneEl enent . get Text Cont ent (), phoneEl enent. get Text Content());

}
55

/! do something with |ist of Contact objects
}
}

Similar to mapping rows in Spring JDBC's RowMapper , €ach result node is mapped using an anonymous inner
class. In this case, we create a Cont act object, which we use later on.

4.3.2. XPat hTenpl at e

The xPat hExpr essi on only allows you to evaluate a single, pre-compiled expression. A more flexible, though
slower, aternative is the Xpat hTenpl ate. This class follows the common template pattern used throughout
Spring (JdbcTemplate, InsTemplate, etc.). Hereis an example:
package sanpl e;
public class MyXPat hCl ass {
private XPat hOperations tenplate = new Jaxpl3XPat hTenpl ate();
public void doXPat h(Source source) {

String nane = tenpl ate. eval uateAsString("/ Cont acts/ Contact/Nane", request);
// do sonething with name

4.4. Message Logging and Tracing

When developing or debugging a Web service, it can be quite useful to look at the content of a (SOAP)
message when it arrives, or just before it is sent. Spring Web Services offer this functionality, via the standard
Commons Logging interface.

Caution

Make sure to use Commons Logging version 1.1 or higher. Earlier versions have class loading
issues, and do not integrate with the Log4J TRACE level.

To log al server-side messages, simply set the or g. spri ngf ranewor k. ws. ser ver . MessageTr aci ng logger to
level DEBUG or TRACE. On the debug level, only the payload root element is logged; on the TRACE level,

Spring-WS (1.5.9) 22

Shared components

the entire message content. If you only want to log sent messages, use the
org. springframework. ws. server. MessageTr aci ng. sent Iogger; or
org. springframewor k. ws. server. MessageTr aci ng. r ecei ved t0 log received messages.

On the client-side, similar loggers exist: org. springframework. ws. cli ent. MessageTraci ng. sent and
org. springframewor k. ws. client. MessageTraci ng. recei ved.

Here is an example | og4j . properties configuration, logging the full content of sent messages on the client
side, and only the payload root element for client-side received messages. On the server-side, the payload root
islogged for both sent and received messages.

| 0g4j . r oot Cat egor y=I NFO, st dout
| og4j . | ogger. org. springframewor k. ws. client. MessageTraci ng. sent =TRACE
| 0g4j . | ogger. org. spri ngframewor k. ws. cl i ent. MessageTr aci ng. r ecei ved=DEBUG

| 0g4j . | ogger. org. spri ngfranmewor k. ws. server. MessageTr aci ng=DEBUG

| 0g4j . appender . st dout =or g. apache. | og4j . Consol eAppender
| og4j . appender . st dout . | ayout =or g. apache. | og4j . Patt er nLayout
| 0g4j . appender . st dout . | ayout. Conversi onPattern=% [%{3}] % ¥n

With this configuration, atypical output will be:

TRACE [client. MessageTraci ng. sent] Sent request [<SCOAP-ENV: Envel ope xm ns: SOAP- ENV=". ..

DEBUG [server. MessageTr aci ng. recei ved] Recei ved request [Saaj SoapMessage {http://exanpl e. con}request]
DEBUG [server. MessageTraci ng. sent] Sent response [Saaj SoapMessage {http://exanpl e. con}response]

DEBUG [cl i ent. MessageTraci ng. recei ved] Received response [Saaj SoapMessage {http://exanpl e.con}response]

Spring-WS (1.5.9) 23

Chapter 5. Creating a Web service with Spring-WS

5.1. Introduction

Spring-WS's server-side support is designed around a MessageDi spat cher that dispatches incoming messages
to endpoints, with configurable endpoint mappings, response generation, and endpoint interception. The
simplest endpoint is a Payl oadEndpoi nt , which just offers the Sour ce i nvoke(Source request) method. You
are of course free to implement this interface directly, but you will probably prefer to extend one of the
included abstract implementations such as Abst r act DonPay| oadEndpoi nt , Abst r act SaxPayl oadEndpoi nt , and
Abst ract Mar shal | i ngPayl oadEndpoi nt . Alternatively, there is a endpoint development that uses Java 5
annotations, such as @ndpoi nt for marking a POJO as endpoint, and marking a method with @ayl oadRoot or
@soapAct i on.

Spring-WS's XML handling is extremely flexible. An endpoint can choose from a large amount of XML
handling libraries supported by Spring-WS, including the DOM family (W3C DOM, JDOM, dom4j, and
XOM), SAX or StAX for faster performance, XPath to extract information from the message, or even
marshalling techniques (JAXB, Castor, XMLBeans, JBX, or XStream) to convert the XML to objects and
vice-versa.

5.2. The MessageDi spat cher

The server-side of Spring-WS is designed around a central class that dispatches incoming XML messages to
endpoints. Spring-WS's MessageDbi spat cher is extremely flexible, allowing you to use any sort of class as an
endpoint, as long as it can be configured in the Spring 10C container. In a way, the message dispatcher
resembles Spring's Di spat cher Ser vl et , the “Front Controller” used in Spring Web MV C.

The processing and dispatching flow of the MessageDi spat cher is illustrated in the following sequence
diagram.

The request processing workflow in Spring Web Services

When a MessageDi spat cher is set up for use and a request comes in for that specific dispatcher, said
MessageDi spat cher starts processing the request. The list below describes the complete process a request goes
through when handled by a MessageDi spat cher :

1. An appropriate endpoint is searched for using the configured Endpoi nt Mappi ng(s) . If an endpoint is found,
the invocation chain associated with the endpoint (preprocessors, postprocessors, and endpoints) will be
executed in order to create aresponse.

2. An appropriate adapter is searched for the endpoint. The MessageDi spat cher delegates to this adapter to
invoke the endpoint.

3. If aresponse is returned, it is sent on its way. If no response is returned (which could be due to a pre- or
post-processor intercepting the request, for example, for security reasons), no response is sent.

Exceptions that are thrown during handling of the request get picked up by any of the endpoint exception
resolvers that are declared in the application context. Using these exception resolvers alows you to define
custom behaviors (such as returning a SOAP Fault) in case such exceptions get thrown.

The MessageDi spat cher has several properties, for setting endpoint adapters, mappings, exception resolvers.

Spring-WS (1.5.9) 24

Creating a Web service with Spring-WS

However, setting these properties is not required, since the dispatcher will automatically detect al of these
types that are registered in the application context. Only when detection needs to be overriden, should these
properties be set.

The message dispatcher operates on a message context, and not transport-specific input stream and output
stream. As aresult, transport specific requests need to read into a MessageCont ext . For HTTP, thisis done with
a WebSer vi ceMessageRecei ver Handl er Adapt er, which is a Spring Web Handl er I nt ercept or, SO that the
MessageDi spat cher can bewired in astandard Di spat cher Ser vl et . Thereis amore convenient way to do this,
however, which is shown in Section 5.3.1, “MessageDi spat cher Servl et ”.

5.3. Transports

Spring Web Services supports multiple transport protocols. The most common is the HTTP transport, for which
acustom servlet is supplied, but it is aso possible to send messages over IMS, and even email.

5.3.1. MessageDi spat cher Ser vl et

The MessageDi spat cher Servl et is a standard Ser vl et which conveniently extends from the standard Spring
Web bi spat cher Ser vl et , and wraps a MessagebDi spat cher . AS such, it combines the attributes of these into
one: as a MessageDi spat cher, it follows the same request handling flow as described in the previous section.
As a servlet, the MessageDi spat cher Servl et is configured in the web. xmi of your web application. Requests
that you want the MessageDi spat cher Ser vl et to handle will have to be mapped using a URL mapping in the
same web.xnml file. This is standard Java EE servlet configuration; an example of such a
MessageDi spat cher Servl et declaration and mapping can be found below.

<web- app>

<servl et >
<servl et - nane>spri ng- ws</ servl et - nane>
<servl et -cl ass>org. spri ngfranmewor k. ws. transport. http. MessageDi spat cher Ser vl et </ servl et - cl ass>
<l oad- on- st art up>1</1 oad-on-start up>

</ servlet>

<servl et - mappi ng>
<servl et - nane>spri ng- ws</ servl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

In the example above, al requests will be handled by the * spri ng-ws' MessageDi spat cher Servl et. Thisis
only the first step in setting up Spring Web Services, because the various component beans used by the
Spring-WS framework also need to be configured; this configuration consists of standard Spring XML <bean/ >
definitions. Because the MessageDi spat cher Ser vl et IS a standard Spring Di spat cher Ser vl et , it will look for
a file named [servl et - nane] - servl et . xn in the WEB- | NF directory of your web application and create the
beans defined there in a Spring container. In the example above, that means that it looks for
'/ \EB- | NF/ spri ng-ws-servl et.xn . This file will contain al of the SWS-specific beans such as endpoints,
marshallers and suchlike.

5.3.1.1. Automatic WSDL exposure

The MessageDi spat cher Servl et will automatically detect any Wdl Defi niti on beans defined in it's Spring
container. All such wsdiDefinition beans that are detected will aso be exposed via a
wedl Defi ni ti onHandl er Adapt er ; thisisavery convenient way to expose your WSDL to clients ssimply by just
defining some beans.

Spring-WS (1.5.9) 25

Creating a Web service with Spring-WS

By way of an example, consider the following bean definition, defined in the Spring-WS framework's
configuration file (/ WEB- | NF/ [servl et - nane] -servl et. xnl). Take notice of the value of the bean's 'i d'
attribute, because this will be used when exposing the WSDL.

<bean i d="orders" class="org.springframework.ws.wsdl.wsdl 11. Si npl eWsdl 11Defi ni ti on">
<constructor-arg val ue="/WEB- | NF/ wsdl / Or ders. wsdl "/ >
</ bean>

The WSDL defined in the 'or der s. wsdl ' file can then be accessed via GET requests to a URL of the following
form (substitute the host, port and servlet context path as appropriate).

http:/ /| ocal host: 8080/ spri ng-ws/ or ders. wsd

Note

All wsdl Definition bean definitions are exposed by the MessageDi spat cher Servl et under their
bean id (or bean name) with the suffix . wsdl . So if the bean id is echo, the host name is "server",
and the Servlet context (war name) is "spring-ws', the WSDL can be obtained via
http://server/spring-ws/echo.wsd

Another cool feature of the MessageDi spatcher Servl et (or more correctly the
Wdl Def i ni ti onHandl er Adapt er) isthat it is able to transform the value of the 'l ocat i on' of al the WSDL that
it exposes to reflect the URL of the incoming request.

Please note that this 'l ocat i on' transformation feature is off by default.To switch this feature on, you just need
to specify an initialization parameter to the MessageDi spat cher Ser vl et , like So:

<web- app>

<servl et >
<servl et - nanme>spri ng- ws</ servl et - nane>
<servl et -cl ass>org. spri ngfranmework. ws.transport. http. MessageDi spat cher Servl et </ servl et - cl ass>
<i nit-paranr
<par am nane>t r ansf or MAédl Locat i ons</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paranr
</servl et>

<servl et - mappi ng>
<servl et - nane>spri ng- ws</ servl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

Consult the classlevel Javadoc on the wdl Definiti onHandl er Adapter class which explains the whole
transformation process in more detail.

As an alternative to writing the WSDL by hand, and exposing it with the Si npl ewsdl 11Def i ni ti on, Spring
Web Services can also generate a WSDL from an XSD schema. This is the approach shown in Section 3.7,
“Publishing the WSDL". The next application context snippet shows how to create such a dynamic WSDL file:

<bean i d="orders" class="org.springframework.ws.wsdl .wsdl 11. Def aul t Wdl 11Defi ni ti on">
<property nanme="schema" ref="schem"/>
<property name="port TypeNanme" val ue="Orders"/>
<property nanme="locationUi" value="http://| ocal host: 8080/ ordersService/"/>

</ bean>

<bean i d="schema" cl ass="org. spri ngframework. xm . xsd. Si npl eXsdSchema" >
<property name="xsd" val ue="/WEB- | NF/ xsd/ Orders. xsd"/ >

Spring-WS (1.5.9) 26

Creating a Web service with Spring-WS

</ bean>

The Def aul t Wsdl 11Def i ni ti on which builds a WSDL from a XSD schema. This definition iterates over all
el enent €lements found in the schema, and creates a nessage for all elements. Next, it creates WSDL
operat i on for al messages that end with the defined request or response suffix. The default request suffix is
Request ; the default response suffix is Response, though these can be changed by setting the requestSuffix and

responseSuffix properties, respectively. It also builds a port Type, binding, and service based on the
operations.

For instance, if our O ders. xsd schema defines the Get O der sRequest and Get Or der sResponse elements, the
XsdBasedSoapl1Védl 4j Def i ni ti onBui | der Will create aGet Or der sRequest and Get Or der sResponse message,
and a Get Or der s operation, which isput in aor der s port type.

If you want to use multiple schemas, either by includes or imports, you might want to use the
CommonsXsdSchemaCol | ect i on, and refer to that from the Def aul t Wsdl 11Def i ni ti on, like so:

<bean i d="schenmaCol | ection" class="org.springfranmework.xm . xsd. commons. CormonsXsdSchenmaCol | ecti on" >
<descri ption>

This bean wrap the nessages. xsd (which inports types.xsd), and inlines themas a one.
</ description>

<property nanme="xsds">
<list>
<val ue>/ WEB- | NF/ xsds/ Or der s. xsd</ val ue>
<val ue>/ WEB- | NF/ xsds/ Cust onmer s. xsd</ val ue>
</list>
</ property>
<property name="inline" value="true"/>
</ bean>

When the inline property is enabled, it follows all XSD imports and includes, and inlines them in the WSDL.
This greatly simplifies the deloyment of the schemas, which still making it possible to edit them separately.

The Def aul t Wedl 11Def i ni ti on uses WSDL providers in the org.springframework.ws.wsdl.wsdl11.provider
package and the Provi der Based\Wdl 4j Defi niti on to generate a WSDL the first time it is requested. Refer to
the class-level Javadoc of these classes to see how you can extend this mechanism, if necessary.

5.3.2. Wiring up Spring-WS in a Di spat cher Ser vl et

As an dternative to the MessageDi spat cher Servl et, YOU Can wire Up a MessageDi spat cher in a standard,
Spring-Web MV C Di spat cher Ser vl et . By default, the Di spat cher Ser vl et can only delegateto Control l ers,
buu we can instruct it to delegate to a MessageDi spatcher by adding a
WebSer vi ceMessageRecei ver Handl er Adapt er to the servlet's web application context:

<beans>

<bean cl ass="org. springfranmework.ws.transport. http. WbServi ceMessageRecei ver Handl er Adapter"/ >

<bean cl ass="org. spri ngfranmewor k. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property name="defaul t Handl er" ref="nmessageDi spatcher"/>
</ bean

<bean i d="nessageDi spatcher" cl ass="org. spri ngfranework.ws. soap. server. SoapMessageDi spat cher"/>

<bean cl ass="org. spri ngfranmewor k. web. servl et. mvc. Si npl eControl | er Handl er Adapter"/ >

</ beans>

Note that by explicitly adding the webSer vi ceMessageRecei ver Handl er Adapt er , the dispatcher servliet does

Spring-WS (1.5.9) 27

Creating a Web service with Spring-WS

not load the default adapters, and is unable to handle standard Spring-MVC cControl | ers. Therefore, we add
the Si npl eCont rol | er Handl er Adapt er at the end. L

In asimilar fashion, you can wire up awsdl Def i ni ti onHandl er Adapt er t0 make sure the Di spat cher Ser vl et
can handle implementations of the wedI Def i ni ti on interface:

<beans>
<bean cl ass="org. springframework.ws.transport. http. WbServi ceMessageRecei ver Handl er Adapt er"/ >
<bean cl ass="org. springframework.ws.transport. http.Wdl DefinitionHandl er Adapter"/>

<bean cl ass="org. spri ngframewor k. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="mappi ngs">
<pr ops>
<prop key="*.wsdl ">nyServi ceDefinition</prop>
</ props>
</ property>
<property name="defaul t Handl er" ref="nessageD spatcher"/>
</ bean>

<bean i d="nessageDi spatcher" cl ass="org. spri ngfranmework.ws. soap. server. SoapMessageDi spat cher"/>

<bean i d="nyServiceDefinition" class="org.springframework.ws.wsdl.wsdl 11. Si npl eWsdl 11Defi ni ti on">
<prop nanme="wsdl " val ue="/WEB-| NF/ nmyServi ceDefintion. wsdl"/>
</ bean>

</ beans>

5.3.3. JMS transport

Spring Web Services supports server-side IMS handling through the IM S functionality provided in the Spring
framework. Spring Web Services provides the webServiceMessageListener to plug in to a
MessagelLi st ener Contai ner. ThisS message listener requires a WebServi ceMessageFactory to and
MessageDi spat cher to operate. The following piece of configuration showsthis:

<beans>

<bean i d="connecti onFactory" cl ass="org. apache. acti venqg. Acti veMConnecti onFact ory">
<property name="broker URL" val ue="vm//| ocal host ?br oker. persi st ent =f al se"/>
</ bean>

<bean i d="nessageFactory" class="org. springfranmework. ws. soap. saaj . Saaj SoapMessageFactory"/ >

<bean cl ass="org. springframework.jns.|istener. Def aul t Messageli st ener Cont ai ner" >
<property nanme="connectionFactory" ref="connecti onFactory"/>
<property name="destinati onNane" val ue="Request Queue"/>
<property name="nessagelLi stener">
<bean cl ass="org. springframework. ws. transport.jmnms. WbServi ceMessageli st ener">
<property name="nessageFactory" ref="nmessageFactory"/>
<property name="nessageReceiver" ref="messageD spatcher"/>
</ bean>
</ property>
</ bean>

<bean i d="nessageDi spat cher" cl ass="org. spri ngfranmewor k. ws. soap. server. SoapMessageDi spat cher">
<property nanme="endpoi nt Mappi ngs" >

! By default, the Spring MV C bi spat cher Ser vl et configures the following handler adaptersin version 2.5:

® org.springfranmework. web. servl et. m/c. Ht t pRequest Handl er Adapt er
* org.springfranmework. web. servl et. m/c. Si npl eCont rol | er Handl er Adapt er
® org.springframework. web. servl et. mvc. t hronaway. Thr owawayCont r ol | er Handl er Adapt er

* org.springfranmework. web. servl et. m/c. annot ati on. Annot at i onMet hodHandl er Adapt er

Spring-WS (1.5.9) 28

Creating a Web service with Spring-WS

<bean
cl ass="org. springframewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot QNanmeEndpoi nt Mappi ng" >
<property name="def aul t Endpoi nt">
<bean cl ass="com exanpl e. \yEndpoi nt"/ >

</ property>

</ bean>

</ property>
</ bean>
</ beans>

As an dternative to the \WebServiceMessagelistener, Spring Web Services provides a
VebSer vi ceMessageDr i venBean, an EJB MessageDri venBean. For more information on EJB, refer to the class
level Javadocs of the webSer vi ceMessageDr i venBean.

5.3.4. Email transport

In addition to HTTP and JMS, Spring Web Services also provides server-side email handling. This
functionality is provided through the Mai | MessageRecei ver class. This class monitors a POP3 or IMAP folder,
converts the email to a WebServi ceMessage, sends any response using SMTP. The host names can be
configured through the storeUri, which indicates the mail folder to monitor for requests (typically a POP3 or
IMAP folder), and a transportUri, which indicates the server to use for sending responses (typicaly a SMTP
server).

How the mai | MessageRecei ver monitors incoming messages can be configured with a pluggable strategy: the
Moni tori ngStrat egy. By default, a polling strategy is used, where the incoming folder is polled for new
messages every five minutes. This interval can be changed by setting the pollinginterval property on the
strategy. By default, all MonitoringStrategy implementations delete the handled messages; this can be
changed by setting the deleteM essages property.

As an dternative to the polling approaches, which are quite inefficient, there is a monitoring strategy that uses
IMAP IDLE. The IDLE command is an optional expansion of the IMAP email protocol that allows the mail
server to send new message updates to the mai | MessageRecei ver asynchronously. If you use a IMAP server
that supports the IDLE command, you can plug in the |nmapldieMnitoringStrategy into the
monitoringStrategy property. In addition to a supporting server, you will need to use JavaMail version 1.4.1 or
higher.

The following piece of configuration shows how to use the server-side email support, overiding the default
polling interval to a value which checks every 30 seconds (30.000 milliseconds):

<beans>
<bean i d="nessageFactory" cl ass="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<bean i d="nessagi ngRecei ver" cl ass="org. springfranework.ws.transport. mail.Mi | MessageRecei ver">
<property nanme="nessageFactory" ref="nessageFactory"/>
<property name="from' val ue="Spring-W5 SCAP Server &l t;server@xanple.comigt;"/>
<property nanme="storeUri" val ue="imap://server: s04p@ map. exanpl e. conf | NBOX"/ >
<property name="transportUri" val ue="sntp://sntp.exanple.conm/>
<property name="nessageReceiver" ref="messageD spatcher"/>
<property name="nonitoringStrategy">
<bean cl ass="org. springframework.ws.transport. mail.nonitor.PollingMnitoringStrategy">
<property name="pol linglnterval" val ue="30000"/>
</ bean>
</ property>
</ bean>

<bean i d="nessageDi spatcher" cl ass="org. spri ngfranework.ws. soap. server. SoapMessageDi spat cher">
<property nanme="endpoi nt Mappi ngs" >
<bean
cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot QNaneEndpoi nt Mappi ng" >
<property nanme="defaul t Endpoi nt">
<bean cl ass="com exanpl e. \y/Endpoi nt"/ >
</ property>

Spring-WS (1.5.9) 29

Creating a Web service with Spring-WS

</ bean>
</ property>
</ bean>
</ beans>

5.3.5. Embedded HTTP Server transport

Spring Web Services provides a transport based on Sun's JRE 1.6 HTTP server. The embedded HTTP Server is
a standalone server that is simple to configure. It lends itself to a lighter aternative to conventional servlet
containers.

When using the embedded HTTP server, no external deployment descriptor is needed (web. xni). You only
need to define an instance of the server and configure it to handle incoming requests. The remoting module in
the Core Spring Framework contains a convenient factory bean for the HTTP server: the
Si npl eHt t pSer ver Fact oryBean. The most important property is contexts, which maps context paths to
corresponding Ht t pHandl er S.

Spring Web Services provides 2 implementations of the Ht t pHandl er interface: Wsdl Def i ni ti onHt t pHandl er
and WebServi ceMessageRecei ver Hi t pHandl er. The former maps an incoming GET request to a
wédl Definiti on. The latter is responsible for handling POST requests for web services messages and thus
needs a WebSer vi ceMessageFact ory (typically a Saaj SoapMessageFact ory) and a
WebSer vi ceMessageRecei ver (typicaly the SoapMessageDi spat cher) to accomplish its task.

To draw parallels with the servlet world, the contexts property plays the role of servliet mappings in web. xm
and the WebSer vi ceMessageRecei ver Ht t pHandl er iSthe equivalent of a MessageDi spat cher Servl et .

The following snippet shows a simple configuration example of the HTTP server transport:

<beans>
<bean i d="nessageFactory" cl ass="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<bean i d="nessageRecei ver" cl ass="org. spri ngframework.ws. soap. server. SoapMessageDi spat cher" >
<property nanme="endpoi nt Mappi ngs" ref ="endpoi nt Mappi ng"/ >
</ bean>

<bean i d="endpoi nt Mappi ng" cl ass="org. spri ngframewor k. ws. server . endpoi nt. mappi ng. Payl oadRoot QNaneEndpoi nt Mar
<property nanme="def aul t Endpoi nt" ref="stockEndpoi nt"
</ bean>

<bean id="httpServer" class="org.springfranmework.renoting. support.Sinpl eH tpServer Fact oryBean">
<property name="contexts">
<map>
<entry key="/StockService.wsdl" val ue-ref="wsdl Handl er"/>
<entry key="/StockService" val ue-ref="soapHandl er"/>
</ map>
</ property>
</ bean>

<bean i d="soapHandl er" cl ass="org. springframework.ws.transport. http. WbServi ceMessageRecei ver Ht t pHandl er" >
<property nanme="nessageFactory" ref="nessageFactory"/>
<property name="messageRecei ver" ref="nmessageReceiver"/>

</ bean>

<bean i d="wsdl Handl er" cl ass="org. spri ngframework.ws.transport. http. Wdl DefinitionHttpHandl er">
<property name="definition" ref="wsdl Definition"/>
</ bean>
</ beans>

For more information on the Si npl eHt t pSer ver Fact or yBean, refer to the Javadoc.

Spring-WS (1.5.9) 30

http://java.sun.com/javase/6/docs/jre/api/net/httpserver/spec/index.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/remoting/support/SimpleHttpServerFactoryBean.html

Creating a Web service with Spring-WS

5.4. Endpoints

Endpoints are the central concept in Spring-WS's server-side support. Endpoints provide access to the
application behavior which is typically defined by a business service interface. An endpoint interprets the XML
request message and uses that input to invoke a method on the business service (typically). The result of that
service invocation is represented as a response message. Spring-WS has a wide variety of endpoints, using
various waysto handle the XML message, and to create a response.

The basis for most endpoints in Spring Web Services is the
org. springframewor k. ws. server . endpoi nt. Payl oadEndpoi nt interface, the source code of which is listed
below.

public interface Payl oadEndpoi nt {

/**

* | nvokes an operation.
&/
Sour ce i nvoke(Source request) throws Exception;

Asyou can see, the Payl oadEndpoi nt interface defines a single method that is invoked with the XML payload
of a request (typically the contents of the SOAP Body, see Section 4.1.2, “SoapMessage”). The returned
Sour ce, if any, is stored in the response XML message. While the Payl oadEndpoi nt interface is quite abstract,
Spring-WS offers alot of endpoint implementations out of the box that already contain alot of the functionality
you might need. The Payl oadEndpoi nt interface just defines the most basic responsibility required of every
endpoint; namely handling a request and returning a response.

Alternatively, there is the MessageEndpoi nt, which operates on a whole MessageCont ext rather than just the
payload. Typically, your code should not be dependent on messages, because the payload should contain the
information of interest. Only when it is necessary to perform actions on the message as a whole, such as adding
a SOAP header, get an attachment, and so forth, should you need to implement MessageEndpoi nt , though these
actions are usually performed in an endpoint interceptor.

Note

Endpoints, like any other Spring Bean, are scoped as a singleton by default, i.e. one instance of the
bean definition is created per container. Being a singleton implies that more than one thread can
use it at the same time, so the endpoint has to be thread safe. If you want to use a different scope,
such as prototype, refer to the Spring Reference documentation.

Note that all abstract base classes provided in Spring-WS (like AbstractDomPayloadEndpoint etc)
are thread safe.

5.4.1. Abst r act DonPay| oadEndpoi nt and other DOM endpoints

One of the most basic ways to handle the incoming XML payload is by using a DOM (Document Object
Model) API. By extending from Abst r act DonPayl oadEndpoi nt, you can use the org.w3c.dom.Element and
related classes to handle the request and create the response. When using the Abst r act DonPayl oadEndpoi nt as
the baseclass for your endpoints you only have to override the i nvokel nt er nal (El ement, Docunent) method,
implement your logic, and return an El enent if aresponse is hecessary. Here is a short example consisting of a
class and a declaration in the application context.

package sanpl es;

Spring-WS (1.5.9) 31

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes

Creating a Web service with Spring-WS

public cl ass Sanpl eEndpoi nt ext ends Abstract DonPayl oadEndpoi nt {
private String responseText;

publ i c Sanpl eEndpoi nt (String responseText) {
t hi s. responseText = responseText;

}

protected El ement invokel nternal (
El ement request El enent,
Docunment docunent) throws Exception {
String request Text = requestEl enent. get Text Content();
System out. println("Request text: " + requestText);

El ement responseEl enent = docunent. creat eEl enent NS("http://sanples", "response");
r esponseEl enent . set Text Cont ent (r esponseText);
return responseEl enent;

<bean i d="sanpl eEndpoi nt" cl ass="sanpl es. Sanpl eEndpoi nt " >
<constructor-arg value="Hello World!"/>
</ bean>

The above class and the declaration in the application context are all you need besides setting up an endpoint
mapping (see the section entitled Section 5.5, “Endpoint mappings’) to get this very simple endpoint working.
The SOAP message handled by this endpoint will look something like:

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: / / schemas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body>
<request xm ns="http://sanples">
Hel I o
</request >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Though it could also handle the following Plain Old XML (POX) message, since we are only working on the
payload of the message, and do not care whether it is SOAP or POX.

<request xm ns="http://sanples">
Hel | o
</ request >

The SOAP response looks like:

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: // schemas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body>
<response xm ns="http://sanpl es">
Hel l o Worl d!
</ response>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Besides the Abst ract DonPayl oadEndpoi nt, which uses W3C DOM, there are other base classes which use
aternative DOM APIs. Spring Web Services supports most DOM APIs, so that you can use the one you are
familiar with. For instance, the AbstractJDonPayl oadEndpoint alows you to use JDOM, and the
Abst r act XorrPay| oadEndpoi nt uses XOM to handle the XML. All of these endpoints have ani nvokel nt er nal
method similar to above. Also, consider using Spring-WS's XPath support to extract the information you need
out of the payload. (See the section entitled Section 4.3, “Handling XML With XPath” for details.)

5.4.2. Abst ract Mar shal | i ngPayl oadEndpoi nt

Spring-WS (1.5.9) 32

Creating a Web service with Spring-WS

Rather than handling XML directly using DOM, you can use marshalling to convert the payload of the XML
message into a Java Object. Spring Web Services offers the Abst r act Mar shal | i ngPayl oadEndpoi nt for this
purpose, which is built on the marshalling abstraction described in Chapter 8, Marshalling XML using O/X
Mappers. The Abstract Mar shal | i ngPayl oadEndpoi nt has two properties. marshaller and unmarshaller, in
which you can inject in the constructor or by setters.

When extending from Abstract Marshal | i ngPayl oadEndpoint, Yyou have to override the
i nvokel nt er nal (bj ect) method, where the passed Obj ect represents the unmarshalled request payload, and
return an obj ect that will be marshalled into the response payload. Here is an example:

package sanpl es;

i mport org.springframewor k. oxm Marshal | er;
i nport org. springfranewor k. oxm Unnar shal | er;

public class Marshal |l ingO der Endpoi nt extends Abstract Marshal | i ngPayl oadEndpoi nt {
private final OrderService order Service;

publ i c Marshal | i ngOr der Endpoi nt (Or der Servi ce orderServi ce, Marshaller marshaller) {
super (marshal l er);
thi s. order Service = order Servi ce;

}

protected Object invokelnternal (Ooject request) throws Exception {
Or der Request order Request = (Order Request) request;
Order order = order Service. get Order(orderRequest.getld());
return order;

<beans>
<bean i d="order Endpoi nt" cl ass="sanpl es. Marshal | i ngOr der Endpoi nt " >
<constructor-arg ref="orderService"/>
<constructor-arg ref="narshal l er"/>
</ bean>

<bean id="marshal l er" cl ass="org. springfranmework. oxm j axb. Jaxb2Mar shal | er" >
<property name="cl assesToBeBound" >
<list>
<val ue>sanpl es. Or der Request </ val ue>
<val ue>sanpl es. Or der </ val ue>
</list>
</ property>
</ bean>

<bean i d="order Servi ce" cl ass="sanpl es. Def aul t O der Ser vi ce"/ >

<l-- Oher beans, such as the endpoint napping -->
</ beans>

In this sample, we configure a Jaxb2Marshaller for the o der Request and Oorder classes, and inject that
marshaller together with the Def aul t Or der Ser vi ce into our endpoint. This business service is not shown, but it
isanormal transactional service, probably using DAOs to obtain data from a database. In the i nvokel nt er nal

method, we cast the request object to an O der Request object, which is the JAXB object representing the
payload of the request. Using the identifier of that request, we obtain an order from our business service and
return it. The returned object is marshalled into XML, and used as the payload of the response message. The
SOAP request handled by this endpoint will look like:

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: // schemas. xm soap. or g/ soap/ envel ope/ " >
<SQAP- ENV: Body>
<order Request xm ns="http://sanpl es" id="42"/>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Spring-WS (1.5.9) 33

Creating a Web service with Spring-WS

The resulting response will be something like:

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: // schemas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body>
<order xm ns="http://sanples" id="42">
<itemid="100">
<quantity>1</quantity>
<price>20.0</price>
</itemr
<itemid="101">
<quantity>1</quantity>
<price>10. 0</ pri ce>
</itemr
</ or der >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Instead of JAXB 2, we could have used any of the other marshallers described in Chapter 8, Marshalling XML
using O/X Mappers. The only thing that would change in the above example is the configuration of the
mar shal | er bean.

5.4.3. Using Spring Vval i dat or with Marshalling Endpoints

It is possible to use validator objects in conjunction with marshalling endpoints in order to validate the
unmarshalled payloads. Spring-WS provides 2 extensions of Abst ract Mar shal | i ngPayl oadEndpoi nt for that
purpose: Abstract Val i dati nghvar shal | i ngPayl oadEndpoi nt and
Abst ract Faul t Cr eat i ngVal i dat i ngMar shal | i ngPayl oadEndpoi nt . The former is the most general whereas
the latter specializesin creating SOAP faults in response to validation errors.

Both classes support setting one or more val i dat or objects via the validator and validators properties
respectively. Note that al of the injected validators must support the request object (through the supports
method) or elsean | 1 | egal Ar gurent Except i on will be thrown.

Note

The default request object name used in the validator isrequest . The error codes are generated in
consequence. For instance, assuming a POJO with a "name" property of typej ava.lang. String,
caling errors. reject Val ue("name", "i nval i dval ue") in the val i date method of a val i dat or
generates the following error codes. invalidval ue.request.nanme, invalidval ue. nane,

i nval i dVal ue. j ava.l ang. String and i nval i dval ue. Similarly, calling
errors.reject("invalidval ue") generates i nval i dval ue. request and i nval i dval ue as error
codes.

5.4.3.1. Abstract Val i dati ngMar shal | i ngPay| oadEndpoi nt

Subclasses of Abstract Val i dati nghar shal | i ngPayl oadEndpoi nt implement the validation error handling
logic by overriding the onval i dat i onEr r or s method. This method is called when a validation error occurs and
its return value indicates whether the endpoint should continue processing the request or not.

In the following example, a custom error POJO is marshalled and sent as a response:

public class MyMarshal | i ngEndpoi nt extends Abstract Validati nghvarshal | i ngPayl oadEndpoi nt {
private MessageSource nessageSour ce;

protected Object invokelnternal (Object requestObject) throws Exception {
/'l process the payl oad

}

Spring-WS (1.5.9) 34

http://static.springframework.org/spring/docs/2.5.x/reference/validation.html#validator

Creating a Web service with Spring-WS

protect ed bool ean onVal i dati onErrors(MessageCont ext nmessageContext, Cbject requestObject, Errors errors)

Fi el dError error = errors.getFiel dError("nane");

CustonError custonError = new CustonError();

String nmessage = nessageSour ce. get Message(error, Local e. ENGLI SH);
cust onError. set Message(nessage) ;

try {
get Marshal | er (). mar shal (cust onError, nessageCont ext.get Response(). get Payl oadResul t());

} catch (Xm Mappi ngException ex) {
/1 handl e the exception

} catch (1 OException ex) {
/1 handl e the exception

}

return fal se;

5.4.3.2. Abstract Faul t Creat i ngVal i dat i ngMar shal | i ngPayl oadEndpoi nt

Endpoints of this type generate a SOAP fault whenever a validation error occurs. By default, a fault detail
element is generated for each validation error. The error codes are resolved using the application context
message source.

The properties of Abstract Faul t Cr eat i ngVal i dati ngMar shal | i ngPayl oadEndpoi nt have sensible defaults,
which makes its subclasses quite ssmple to configure as in the following example:

<bean i d="nessageSour ce" cl ass="org. spri ngframework. context. support.ResourceBundl eMessageSour ce" >
<property nanme="basenane" val ue="nessage"/>
</ bean>

<bean i d="orderValidator" class="sanpl es. OrderValidator"/>

<bean i d="marshal | i ngOr der Endpoi nt" cl ass="sanpl es. Marshal | i ngOr der Endpoi nt " >
<property name="marshal ler" ref="marshaller"/>
<property name="unmarshal l er" ref="narshaller"/>
<property name="validator" ref="orderValidator"/>

</ bean>

In case of validation error, hereis how the response might look like:

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: // schemas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Header / >
<SOAP- ENV: Body>
<SCOAP- ENV: Faul t >
<faul t code>SOAP- ENV: Cl i ent </ f aul t code>
<faultstring xm: |l ang="en">Validation error</faultstring>
<detai | >
<spring-ws: ValidationError xm ns:spring-ws="http://springfranmework.org/spring-ws">
invalid user id: Ernie
</spring-ws: Val i dati onError>
<spring-ws: ValidationError xml ns:spring-ws="http://springfranmework. org/spring-ws">
invalid order
</ spring-ws: Val i dati onError>
</detail >
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

It is possible though to customize various aspects of the generated SOAP faults, such as the fault string and the
soap detail. Please refer to the Javadoc for the full list of available options.

5.4.4. @ndpoi nt

The previous two programming models were based on inheritance, and handled individual XML messages.

Spring-WS (1.5.9) 35

{

http://static.springframework.org/spring-ws/site/apidocs/org/springframework/ws/soap/server/endpoint/AbstractFaultCreatingValidatingMarshallingPayloadEndpoint.html

Creating a Web service with Spring-WS

Spring Web Services offer another endpoint with which you can aggregate multiple handling into one
controller, thus grouping functionality together. This model is based on annotations, so you can use it only with
Java 5 and higher. Here is an example that uses the same marshalled objects as above:

package sanpl es;

i nport org.springfranework.ws. server. endpoi nt. annot ati on. Endpoi nt;
i mport org.springframework. ws. server. endpoi nt. annot ati on. Payl oadRoot ;

@ndpoi nt
public class AnnotationOrder Endpoint {
private final OrderService orderService

publ i ¢ Annot ati onOr der Endpoi nt (Or der Servi ce order Servi ce) {
this.orderService = orderService
}

@rayl oadRoot (|1 ocal Part = "orderRequest", nanespace = "http://sanples")
public Order get Order (O der Request order Request) {

return orderService. get Order(order Request.getld());
}

@rayl oadRoot (| ocal Part = "order", nanespace = "http://sanples")
public void order(Order order) {

or der Servi ce. creat eOr der (order);
}

By annotating the class with @ndpoi nt, you mark it as a Spring-WS endpoint. Because the endpoint class can
have multiple request handling methods, we need to instruct Spring-WS which method to invoke for which
request. This is done using the @ayl oadRoot annotation: the get o der method will be invoked for requests
with aor der Request local name and ahtt p: / / sanpl es namespace URI; the or der method for requests with a
order loca name. For more information about these annotations, refer to Section 5.5.3,
“Met hodEndpoi nt Mappi ng”. We also need to configure Spring-WS to support the JAXB objects O der Request

and o der by defining aJaxb2Mar shal | er:

<beans>

<bean i d="order Endpoi nt" cl ass="sanpl es. Annot ati onOr der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>

<bean i d="order Servi ce" cl ass="sanpl es. Def aul t Or der Ser vi ce"/ >

<bean cl ass="org. springframework. ws. server. endpoi nt. adapt er. Generi cMar shal | i ngMet hodEndpoi nt Adapt er " >
<constructor-arg ref="nmarshal l er"/>
</ bean>

<bean id="marshal |l er" class="org. springframework. oxm jaxb.Jaxb2Marshal | er">
<property nanme="cl assesToBeBound" >
<list>
<val ue>sanpl es. Or der Request </ val ue>
<val ue>sanpl es. Or der </ val ue>
</list>
</ property>
</ bean>

<bean cl ass="org. springframework. ws. server. endpoi nt. mappi ng. Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng"/ >

</ beans>

The Generi cMarshal | i ngMet hodEndpoi nt Adapt er converts the incoming XML messages to marshalled
objects used as parameters and return value; the Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng iS the
mapping that detects and handles the @ay| oadRoot annotations.

5.4.4.1. @Pat hPar am

Spring-WS (1.5.9) 36

Creating a Web service with Spring-WS

As an alternative to using marshalling, we could have used XPath to extract the information out of the
incoming XML request. Spring-WS offers another annotation for this purpose: @Pat hParam You simply
annotate one or more method parameter with this annotation (each), and each such annotated parameter will be
bound to the evaluation of that annotation. Here is an example:

package sanpl es;
i mport javax.xmnl .transform Source

i mport org.springframework. ws. server. endpoi nt. annot ati on. Endpoi nt;
i mport org. springframework. ws. server. endpoi nt. annot ati on. Payl oadRoot ;
i mport org.springframework. ws. server. endpoi nt. annot at i on. XPat hPar am

@ndpoi nt
public class AnnotationOrder Endpoi nt {

private final O derService orderService

publ i ¢ Annot ati onOr der Endpoi nt (Or der Servi ce order Servi ce) {
this. orderService = orderService
}

@rayl oadRoot (| ocal Part = "orderRequest"”, nanespace = "http://sanples")
publ i c Source get O der (@XPat hParan("/s: order Request/ @d") double orderld) {
Order order = orderService.getOder((int) orderld);
/'l create source fromorder and return it

Since we use the prefix 's' in our XPath expression, we must bind it to the ht t p: / / sanpl es namespace:

<beans>
<bean i d="order Endpoi nt" cl ass="sanpl es. Annot ati onOr der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>

<bean i d="order Servi ce" cl ass="sanpl es. Def aul t O der Servi ce"/ >
<bean cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng"/ >
<bean cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. adapt er. XPat hPar amAnnot at i onMet hodEndpoi nt Adapt er " >
<property name="nanmespaces">
<pr ops>
<prop key="s">http://sanpl es</prop>
</ props>
</ property>
</ bean>

</ beans>

Using the @Pat hPar am you can bind to all the data types supported by XPath:

* boolean or Bool ean

double or Doubl e
* String
* Node

* NodelLi st

5.5. Endpoint mappings

Spring-WS (1.5.9) 37

Creating a Web service with Spring-WS

The endpoint mapping is responsible for mapping incoming messages to appropriate endpoints. There are some
endpoint mappings you can use out of the box, for example, the Payl oadRoot QNanmeEndpoi nt Mappi ng Or the
SoapAct i onEndpoi nt Mappi ng, but let's first examine the general concept of an Endpoi nt Mappi ng.

An Endpoi nt Mappi ng delivers a Endpoi nt I nvocat i onChai n, which contains the endpoint that matches the
incoming request, and may aso contain a list of endpoint interceptors that will be applied to the request and
response. When a request comes in, the MessagebDi spat cher will hand it over to the endpoint mapping to let it
inspect the request and come up with an appropriate Endpoi nt | nvocat i onChai n. Then the MessageDi spat cher
will invoke the endpoint and any interceptorsin the chain.

The concept of configurable endpoint mappings that can optionally contain interceptors (which can manipulate
the request or the response, or both) is extremely powerful. A lot of supporting functionality can be built into
custom Endpoi nt Mappi ngs. For example, there could be a custom endpoint mapping that chooses an endpoint
not only based on the contents of a message, but also on a specific SOAP header (or indeed multiple SOAP
headers).

Most endpoint mappings inherit from the Abst r act Endpoi nt Mappi ng, which offers an 'interceptors property,
which is the list of interceptors to use. Endpoi nt | nt ercept ors are discussed in Section 5.5.5, “Intercepting
requests - the Endpoi nt I nt er cept or interface”. Additionaly, thereis the 'defaultEndpoint’, which is the default
endpoint to use, when this endpoint mapping does not result in a matching endpaint.

5.5.1. Payl oadRoot QNanmeEndpoi nt Mappi ng

The Payl oadRoot QNamreEndpoi nt Mappi ng Will use the qualified name of the root element of the request payload
to determine the endpoint that handles it. A qualified name consists of a namespace URI and a local part, the
combination of which should be unique within the mapping. Here is an example:

<beans>

<l-- no 'id required, EndpointMpping beans are automatically detected by the MssageDi spatcher -->
<bean i d="endpoi nt Mappi ng" cl ass="org. spri ngframewor k. ws. server . endpoi nt. mappi ng. Payl oadRoot QNaneEndpoi nt Maf
<property nanme="nmappi ngs" >
<pr ops>
<prop key="{http://sanpl es}order Request" >get Or der Endpoi nt </ pr op>
<prop key="{http://sanpl es}order">creat eO der Endpoi nt </ pr op>
</ props>
</ property>
</ bean>

<bean i d="get O der Endpoi nt" cl ass="sanpl es. Get O der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>

<bean i d="creat eOr der Endpoi nt" cl ass="sanpl es. Cr eat eO der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>
<beans>

The qualified name is expressed as { + namespace URI +} + local part. Thus, the endpoint mapping above
routes requests for which have a payload root element with namespace http://sanples and local part
order Request to the ' get Order Endpoi nt' . Requests with a loca part order will be routed to the
' creat eOrder Endpoi nt' .

5.5.2. SoapAct i onEndpoi nt Mappi ng

Rather than base the routing on the contents of the message with the Payl oadRoot QNaneEndpoi nt Mappi ng, you
can use the soAPAct i on HTTP header to route messages. Every client sends this header when making a SOAP
request, and the header value used for arequest is defined in the WSDL. By making the SoaPAct i on unique per

Spring-WS (1.5.9) 38

Creating a Web service with Spring-WS

operation, you can use it as adiscriminator. Here is an example:

<beans>
<bean i d="endpoi nt Mappi ng" cl ass="org. spri ngf ramewor k. ws. soap. server. endpoi nt. mappi ng. SoapAct i onEndpoi nt Mapg
<property nanme="nmappi ngs" >
<pr ops>
<prop key="http://sanpl es/ Request Or der " >get Or der Endpoi nt </ pr op>
<prop key="http://sanpl es/ Creat eO der">creat eO der Endpoi nt </ pr op>
</ props>
</ property>
</ bean>

<bean i d="get Order Endpoi nt" cl ass="sanpl es. Get O der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>

<bean i d="creat eOr der Endpoi nt" cl ass="sanpl es. Cr eat eO der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>
</ beans>

The mapping above routes requests which have a soAPAction Of http://sanpl es/ Request Order to the
"getOrderEndpoint’'. Requests with http://sanples/ Createarder Will be routed to the
' creat eOr der Endpoint' .

Caution

Note that using SOAP Action headers is SOAP 1.1-specific, so it cannot be used when using Plain
Old XML, nor with SOAP 1.2.

5.5.3. Met hodEndpoi nt Mappi ng

As explained in Section 5.4.4, “ @ndpoi nt ”, the @ndpoi nt style allows you to handle multiple requests in one
endpoint class. This is the responsibility of the Met hodEndpoi nt Mappi ng. Similar to the endpoint mapping
described above, this mapping determines which method is to be invoked for an incoming request message.

There ae two endpoint mappings that can direct requests to methods. the
Pay| oadRoot Annot at i onMet hodEndpoi nt Mappi ng and the SoapActi onAnnot at i onMet hodEndpoi nt Mappi ng,
both of which are very similar to their non-method counterparts described above.

The Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng USeS the @ay! oadRoot annotation, with the I ocal Part
and nanespace elements, to mark methods with a particular qualified name. Whenever a message comes in
which has this qualified name for the payload root element, the method will be invoked. For an example, see
above.

Alternatively, the SoapActi onAnnot at i onMet hodEndpoi nt Mappi ng USes the @oapAct i on annotation to mark
methods with a particular SOAP Action. Whenever a message comes in which has this soAPAct i on header, the
method will be invoked.

5.5.4. WS-Addressing

WS-Addressing specifies a transport-neutral routing mechanism. It is based on a To and Act i on SOAP header,
which indicate the destination and intent of the SOAP message, respectively. Additionally, WS-Addressing
allows you to define a return address (for normal messages and for faults), and a unique message identifier
which can be used for correlation 2. Hereisan example of aWS-Addressing message:

2For more information on WS-Addressi ng, see http://en.wikipedia.org/wiki/\WS-Addressing.

Spring-WS (1.5.9) 39

http://en.wikipedia.org/wiki/WS-Addressing

Creating a Web service with Spring-WS

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: / / ww. w3. or g/ 2003/ 05/ soap- envel ope"
xm ns: wsa="http://ww. w3. or g/ 2005/ 08/ addr essi ng" >
<SOAP- ENV: : Header >
<wsa: Messagel D>ur n: uui d: 21363e0d- 2645- 4eb7- 8af d- 2f 5eelbb25cf </ wsa: Messagel D>
<wsa: Repl yTo>
<wsa: Addr ess>ht t p: / / exanpl e. conl busi ness/ cl i ent 1</ wsa: Addr ess>
</ wsa: Repl yTo>
<wsa: To S: nust Understand="true">http://exanpl e/ com fabri kanx/ wsa: To>
<wsa: Acti on>http://exanpl e. com fabri kan mai | / Del et e</ wsa: Acti on>
</ SOAP- ENV: Header >
<SQAP- ENV: Body>
<f:Delete xm ns:f="http://exanpl e. coni fabrikant'>
<f: maxCount >42</ f : maxCount >
</f:Del ete>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

In this example, the destination is set to http://exanpl e/ conl fabri kam Wwhile the action is set to
http://exanpl e. com fabri kanf mai | / Del ete. Additionally, there is a message identifier, and an reply-to
address. By default, this address is the "anonymous" address, indicating that a response should be sent using the
same channel as the request (i.e. the HTTP response), but it can also be another address, as indicated in this
example.

In Spring Web Services, WS-Addressing is implemented as an endpoint mapping. Using this mapping, you
associate WS-Addressing actions with endpoints, similar to the SoapAct i onEndpoi nt Mappi ng described above.

5.5.4.1. Si npl eAct i onEndpoi nt Mappi ng

The si npl eAct i onEndpoi nt Mappi ng iS meant to be used in a standard Spring application context. It maps
actions to endpoints via an exposed mappings property. Here is an example:

<beans>
<bean i d="endpoi nt Mappi ng" cl ass="org. spri ngf ramewor k. ws. soap. addr essi ng. server. Si npl eAct i onEndpoi nt Mappi ng"
<property name="mappi ngs">
<pr ops>
<prop key="http://sanpl es/ Request O der" >get Or der Endpoi nt </ pr op>
<prop key="http://sanpl es/ Creat eO der">creat eO der Endpoi nt </ pr op>
</ props>
</ property>
</ bean>

<bean i d="get O der Endpoi nt" cl ass="sanpl es. Get O der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>

<bean i d="creat eOr der Endpoi nt" cl ass="sanpl es. Cr eat eOr der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>
</ beans>

The mapping above routes requests which have a WS-Addressing Act i on Of ht t p: // sanpl es/ Request Or der tO
the 'getOrderEndpoint’. Requests with http://sanples/Createarder Wwill be routed to the
' creat eOr der Endpoi nt' .

By default, the si npl eActi onEndpoi nt Mappi ng supports both the 1.0 (May 2006), and the August 2004
editions of WS-Addressing. These two versions are most popular, and are interoperably with Axis 1 and 2,
JAX-WS, XFire, Windows Communication Foundation (WCF), and Windows Services Enhancemenets (WSE)
3.0. If necessary, specific versions of the spec can be injected into the versions property.

Besides the mappings property, the endpoint mapping also has an address property. If set, value of this property
is compared to the To header property of the incominging message.

Finally, there is the messageSenders property, which is required for sending response messages to
non-anonymous, out-of-bound addresses. You can set MessageSender implementations in this property, the

Spring-WS (1.5.9) 40

Creating a Web service with Spring-WS

same as you would on the webSer vi ceTenpl at e. See Section 6.2.1.1, “URIs and Transports”.

5.5.4.2. Annot at i onAct i onEndpoi nt Mappi ng

The Annot at i onAct i onEndpoi nt Mappi ng iS quite similar to the Si npl eAct i onEndpoi nt Mappi ng. It has the
same versions and messageSenders properties, but uses Java 5 annotations.

To use the Annot at i onAct i onEndpoi nt Mappi ng, annotate the handling methods with the @ct i on annotation,
similar to the @ayl oadRoot and @soapActi on annotations described in Section 5.4.4, “@ndpoint” and
Section 5.5.3, “Met hodEndpoi nt Mappi ng”. Here is an example:

package sanpl es;

i nport org.springfranework.ws. server. endpoi nt. annot ati on. Endpoi nt;
i mport org.springframework. ws. soap. addr essi ng. server. annotati on. Acti on

@ndpoi nt
public class Annotati onO der Endpoi nt {
private final OrderService orderService;

publ i ¢ Annot ati onOr der Endpoi nt (Or der Servi ce order Servi ce) {
this.orderService = order Service;
}

@\ction("http://sanpl es/ Request Order")

public O der getOder (O derRequest orderRequest) {
return orderService. get Order (orderRequest.getld());

}

@\ction("http://sanpl es/ CreateCOrder")
public void order(Order order) {

or der Servi ce. creat eO der (order);
}

In addition to the @ct i on annotation, you can annotate the class with the @ddr ess annotation. If set, the value
is compared to the To header property of the incominging message.

5.5.5. Intercepting requests - the Endpoi nt I nt er cept or interface

The endpoint mapping mechanism has the notion of endpoint interceptors. These can be extremely useful when
you want to apply specific functionality to certain requests, for example, dealing with security-related SOAP
headers, or the logging of request and response message.

Interceptors located in the endpoint mapping must implement the Endpoi nt | nt er cept or interface from the
org.springframework.ws.server package. This interface defines three methods, one that can be used for
handling the request message before the actual endpoint will be executed, one that can be used for handling a
normal response message, and one that can be used for handling fault messages, both of which will be called
after the endpoint is executed. These three methods should provide enough flexibility to do al kinds of pre- and
post-processing.

The handl eRequest (..) method on the interceptor returns a boolean value. You can use this method to
interrupt or continue the processing of the invocation chain. When this method returns t r ue, the endpoint
execution chain will continue, when it returns f al se, the MessageDi spat cher interprets this to mean that the
interceptor itself has taken care of things and does not continue executing the other interceptors and the actual
endpoint in the invocation chain. The handl eResponse(..) and handl eFaul t (..) methods also have aboolean
return value. When these methods return f al se, the response will not be sent back to the client.

There are a number of standard Endpoi nt I nt er cept or implementations you can use in your Web service.

Spring-WS (1.5.9) 41

Creating a Web service with Spring-WS

Additionally, there is the XxwsSecuritylnterceptor, which is described in Section 7.2,

XwsSecurityl nterceptor

5.5.5.1. Payl oadLoggi ngl nt er cept or and SoapEnvel opeLoggi ngl nt er cept or

When developing a Web service, it can be useful to log the incoming and outgoing XML messages. SWS
facilitates this with the Payl oadLoggi ngl nt erceptor and SoapEnvel opeLoggi ngl nterceptor classes. The
former logs just the payload of the message to the Commons Logging Log; the latter logs the entire SOAP
envelope, including SOAP headers. The following example shows you how to define them in an endpoint

mapping:

<beans>
<bean i d="endpoi nt Mappi ng"
cl ass="org. spri ngframewor k. ws. server . endpoi nt. mappi ng. Payl oadRoot QNaneEndpoi nt Mappi ng" >
<property nanme="interceptors">

<list>
<ref bean="|oggi ngl nterceptor"/>
</list>

</ property>
<property nanme="nmappi ngs" >
<pr ops>
<prop key="{http://sanpl es}order Request" >get O der Endpoi nt </ pr op>
<prop key="{http://sanpl es}order">creat eO der Endpoi nt </ pr op>
</ props>
</ property>
</ bean>

<bean i d="1o0ggi ngl nterceptor"”
cl ass="org. spri ngframewor k. ws. server. endpoi nt.interceptor. Payl oadLoggi ngl nt erceptor"/>
</ beans>

Both of these interceptors have two properties. 'logRequest’ and 'logResponse’, which can be set to f al se to
disable logging for either request or response messages.

5.5.5.2. Payl oadVal i dat i ngl nt er cept or

One of the benefits of using a contract-first development style is that we can use the schema to validate
incoming and outgoing XML messages. Spring-WS facilitates this with the Payl oadVval i dat i ngl nt er cept or .
This interceptor requires a reference to one or more W3C XML or RELAX NG schemas, and can be set to
validate requests or responses, or both.

Note

Note that request validation may sound like a good idea, but makes the resulting Web service very
strict. Usually, it is not really important whether the request validates, only if the endpoint can get
sufficient information to fullfill a request. Validating the response is a good idea, because the
endpoint should adhere to its schema. Remember Postel's Law: “Be conservative in what you do;
be liberal in what you accept from others.”

Here is an example that uses the Payl oadVval i dati ngl nt ercept or; in this example, we use the schema in
/VWEB- I NF/ orders.xsd to validate the response, but not the request. Note that the
Payl oadVal i dati ngl nt er cept or can aso accept multiple schemas using the schemas property.

<bean id="validatinglnterceptor"
cl ass="org. spri ngframewor k. ws. soap. server. endpoi nt. i nterceptor. Payl oadVal i dati ngl nt er ceptor">
<property name="schema" val ue="/WEB-I| NF/ orders. xsd"/ >
<property nanme="val i dat eRequest"” val ue="fal se"/>
<property nanme="val i dat eResponse" val ue="true"/>
</ bean>

Spring-WS (1.5.9) 42

Creating a Web service with Spring-WS

5.5.5.3. Payl oadTr ansf or i ngl nt er cept or

To transform the payload to another XML format, Spring Web Services offers the
Pay| oadTr ansf or mi ngl nt er cept or . This endpoint interceptor is based on XSLT stylesheets, and is especially
useful when supporting multiple versions of a Web service: you can transform the older message format to the
newer format. Here is an example to use the Payl oadTr ansf or mi ngl nt er cept or :

<bean id="transform ngl nterceptor"
cl ass="org. spri ngframewor k. ws. server. endpoi nt.interceptor.Payl oadTr ansf or m ngl nt ercept or ">
<property name="request Xslt" val ue="/WEB- | NF/ ol dRequests. xslt"/>
<property nanme="responseXslt" val ue="/WEB- | NF/ ol dResponses. xslt"/>
</ bean>

We are simply transforming requests using /WEB- | NF/ ol dRequests. xsl t, and response messages using
/ VEB- | NF/ ol dResponses. xsl t . Note that, since endpoint interceptors are registered at the endpoint mapping
level, you can simply create a endpoint mapping that applies to the "old style" messages, and add the
interceptor to that mapping. Hence, the transformation will apply only to these "old style" message.

5.6. Handling Exceptions

Spring-WS provides Endpoi nt Except i onResol ver s t0 ease the pain of unexpected exceptions occurring while
your message is being processed by an endpoint which matched the request. Endpoint exception resolvers
somewhat resemble the exception mappings that can be defined in the web application descriptor web. xni .
However, they provide a more flexible way to handle exceptions. They provide information about what
endpoint was invoked when the exception was thrown. Furthermore, a programmatic way of handling
exceptions gives you many more options for how to respond appropriately. Rather than expose the innards of
your application by giving an exception and stack trace, you can handle the exception any way you want, for
example by returning a SOAP fault with a specific fault code and string.

Endpoint exception resolvers are automatically picked up by the MessageDi spatcher, SO no explicit
configuration is necessary.

Besides implementing the Endpoi nt Except i onResol ver interface, which is only a matter of implementing the
resol veExcept i on(MessageCont ext, endpoi nt, Exception) method, you may also use one of the provided
implementations. The simplest implementation is the Si npl eSoapExcept i onResol ver, Which just creates a
SOAP 1.1 Server or SOAP 1.2 Receiver Fault, and uses the exception message as the fault string. The
Si npl eSoapExcept i onResol ver isthe default, but it can be overriden by explicitly adding another resolver.

5.6.1. SoapFaul t Mappi ngExcept i onResol ver

The SoapFaul t Mappi ngExcept i onResol ver IS amore sophisticated implementation. This resolver enables you
to take the class name of any exception that might be thrown and map it to a SOAP Fault, like so:

<beans>
<bean i d="excepti onResol ver"
cl ass="org. spri ngframewor k. ws. soap. server. endpoi nt. SoapFaul t Mappi ngExcepti onResol ver" >
<property name="defaul t Fault" val ue="SERVER"'/ >
<property name="excepti onMappi ngs" >
<val ue>
org. springframewor k. oxm Val i dati onFai | ur eExcepti on=CLI ENT, | nval i d r equest
</ val ue>
</ property>
</ bean>
</ beans>

Spring-WS (1.5.9) 43

Creating a Web service with Spring-WS

The key values and default endpoint use the format f aul t Code, faul t Stri ng, | ocal e, where only the fault
code isrequired. If the fault string is not set, it will default to the exception message. If the language is not set,
it will default to English. The above configuration will map exceptions of type Val i dat i onFai | ur eExcepti on
to aclient-side SOAP Fault with afault string " I nval i d request ", as can be seen in the following response:

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body>
<SOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Cl i ent </ f aul t code>
<faultstring>lnvalid request</faultstring>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

If any other exception occurs, it will return the default fault: a server-side fault with the exception message as
fault string.

5.6.2. SoapFaul t Annot at i onExcept i onResol ver

Finally, it is also possible to annotate exception classes with the @oapFaul t annotation, to indicate the SOAP
Fault that should be returned whenever that exception is thrown. In order for these annotations to be picked up,
you need to add the SoapFaul t Annot at i onExcept i onResol ver to your application context. The elements of the
annotation include afault code enumeration, fault string or reason, and language. Here is an example exception:

package sanpl es;

i mport org.springframework. ws. soap. server. endpoi nt. annot ati on. Faul t Code;
i mport org. springframework. ws. soap. server. endpoi nt. annot ati on. SoapFaul t;

@oapFaul t (faul t Code = Faul t Code. SERVER)
public class MyBusi nessException extends Exception {

public Mydient Exception(String nessage) {
super (nessage) ;
}

Whenever the MyBusi nessExcept i on isthrown with the constructor string " cops! " during endpoint invocation,
it will result in the following response:

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body>
<SOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Ser ver </ f aul t code>
<faul tstring>Cops! </faultstring>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Spring-WS (1.5.9) 44

Chapter 6. Using Spring Web Services on the Client

6.1. Introduction

Spring-WS provides a client-side Web service API that alows for consistent, XML-driven access to Web
services. It also caters for the use of marshallers and unmarshallers so that your service tier code can deal
exclusively with Java objects.

The org.springframework.ws.client.core package provides the core functionality for using the client-side access
APl. It contains template classes that simplify the use of Web services, much like the core Spring
JdbcTenpl at e does for JIDBC. The design principle common to Spring template classes is to provide helper
methods to perform common operations, and for more sophisticated usage, delegate to user implemented
callback interfaces. The Web service template follows the same design. The classes offer various convenience
methods for the sending and receiving of XML messages, marshalling objects to XML before sending, and
allows for multiple transport options.

6.2. Using the client-side API

6.2.1. WebSer vi ceTenpl at e

The websServi ceTenpl at e iS the core class for client-side Web service access in Spring-WS. It contains
methods for sending Sour ce objects, and receiving response messages as either Sour ce or Resul t . Additionally,
it can marshal objects to XML before sending them across a transport, and unmarshal any response XML into
an object again.

6.2.1.1. URIs and Transports

The webServi ceTenpl ate class uses an URI as the message destination. You can either set a defaultUri
property on the template itself, or supply an URI explicitly when calling a method on the template. The URI
will be resolved into a webSer vi ceMessageSender , Which is responsible for sending the XML message across a
transport layer. You can set one or more message senders using the messageSender or messageSenders
properties of the webSer vi ceTenpl at e class.

6.2.1.1.1. HTTP transports

There are two implementations of the WwebSer vi ceMessageSender interface for sending messages via HTTP.
The default implementation is the H: t pur | Connect i onMessageSender , Which uses the facilities provided by
Java itsdlf. The aternative is the CommonsH: t pMessageSender , which uses the Jakarta Commons HttpClient.
Use the latter if you need more advanced and easy-to-use functionality (such as authentication, HTTP
connection pooling, and so forth).

To use the HTTP transport, either set the defaultUri to something like http: // exanpl e. cont servi ces, Of
supply theuri parameter for one of the methods.

The following example shows how the default configuration can be used for HTTP transports:

<beans>
<bean i d="nessageFactory" cl ass="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<bean i d="webServi ceTenpl ate" cl ass="org. spri ngfranmework.ws. client.core. WbServi ceTenpl ate" >

Spring-WS (1.5.9) 45

http://jakarta.apache.org/commons/httpclient/

Using Spring Web Services on the Client

<constructor-arg ref="nmessageFactory"/>
<property name="defaultUri" val ue="http://exanple.conl WebService"/>
</ bean>

</ beans>

The folowing example shows how override the default configuration, and to use Commons Http to authenticate
using HTTP authentication:

<bean i d="webServi ceTenpl at e" cl ass="org. spri ngfranmework.ws. client.core. WebServi ceTenpl ate" >
<constructor-arg ref="nmessageFactory"/>
<property name="nessageSender">
<bean cl ass="org. springframework.ws. transport. http. ConmonsHt t pMessageSender " >
<property nanme="credential s">
<bean cl ass="org. apache. commons. htt pcl i ent. User nanePasswor dCr edenti al s" >
<constructor-arg val ue="john"/>
<constructor-arg val ue="secret"/>
</ bean>
</ property>
</ bean>
</ property>
<property nanme="defaul tUri" val ue="http://exanpl e. coni WebServi ce"/ >
</ bean>

6.2.1.1.2. JMS transport

For sending messages over IMS, Spring Web Services provides the JnsMessageSender . This class uses the
facilities of the Spring framework to transform the webSer vi ceMessage into a IMS Message, send it on its way
on aQueue Or Topi ¢, and receive aresponse (if any).

To use the JnsMessageSender, you need to set the defaultUri or uri parameter to a IMS URI, which - at a
minimum - consists of the jms: prefix and a destination name. Some examples of JMS URIs are:
j ms: SoneQueue, j ms: SonmeTopi c?priority=3&del i ver yMode=NON_PERSI STENT, and
j ms: Request Queue?r epl yToName=ResponseNane. For more information on this URI syntax, refer to the class
level Javadocs of the JnsMessageSender .

By default, the JnsMessageSender send JMS Byt esMessage, but this can be overriden to use Text Messages by
using the nessageType parameter on the IMS URI. For example: j ns: Queue?messageType=TEXT_MESSAGE.
Note that Byt esMessages are the prefered type, because Text Messages do not support attachments and
charactering encodings reliably.

The following example shows how to use the JMS transport in combination with an ActiceMQ connection
factory:

<beans>
<bean i d="nmessageFactory" class="org. springfranmewor k. ws. soap. saaj . Saaj SoapMessageFactory"/ >

<bean i d="connectionFactory" cl ass="org. apache. acti veng. Acti veMXonnecti onFact ory">
<property name="broker URL" val ue="vm//| ocal host ?br oker. persi st ent =f al se"/>
</ bean>

<bean i d="webServi ceTenpl ate" cl ass="org. spri ngframework.ws. client.core. WbServi ceTenpl ate" >
<constructor-arg ref="nessageFactory"/>
<property name="nessageSender">
<bean cl ass="org. springfranmework.ws.transport.jns. JnsMessageSender " >
<property name="connectionFactory" ref="connectionFactory"/>
</ bean>
</ property>
<property nanme="defaul tUri" val ue="j ns: Request Queue?del i ver yMode=NON_PERSI| STENT"/ >
</ bean>

</ beans>

Spring-WS (1.5.9) 46

Using Spring Web Services on the Client

6.2.1.1.3. Email transport

Spring Web Services also provides an email transport, which can be used to send web service messages via
SMTP, and retrieve them via either POP3 or IMAP. The client-side email functionality is contained in the
Mai | MessageSender class. This class creates an email message from the request webSer vi ceMessage, and sends
it via SMTP. It then waits for a response message to arrive in the incoming POP3 or IMAP server.

To use the Mai | MessageSender, set the defaultUri or uri parameter to a mai 1 to URI. Here are some URI
examples: mai | t o: j ohn@xanpl e. com and i | t o: ser ver @ ocal host ?subj ect =S0AP%20Test . Make sure that
the message sender is properly configured with a transportUri, which indicates the server to use for sending
requests (typically a SMTP server), and a storeUri, which indicates the server to poll for responses (typically a
POP3 or IMAP server).

The following example shows how to use the email transport:

<beans>
<bean i d="nessageFactory" cl ass="org. springfranmework. ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<bean i d="webServi ceTenpl ate" cl ass="org. spri ngframework.ws. client.core. WbServi ceTenpl ate" >
<constructor-arg ref="nessageFactory"/>
<property name="nessageSender">
<bean cl ass="org. springfranmework.ws. transport. nail . Mil| MessageSender" >
<property nanme="from' val ue="Spring-W5s SCAP Client & t;client@xanple.comigt;"/>
<property name="transportUi" value="sntp://client:s04p@ntp. exanpl e. cont'/ >
<property name="storeUri" value="imap://client:s04p@ map. exanpl e. com | NBOX"/ >
</ bean>
</ property>
<property name="defaul tUri" val ue="mailto: server @xanpl e. con?subj ect =SOAP%20Test "/ >
</ bean>

</ beans>

6.2.1.2. Message factories

In addition to a message sender, the webSer vi ceTenpl at e requires a Web service message factory. There are
two message factories for SOAP: Saaj SoapMessageFact ory and Axi onSoapMessageFact ory. If N0 message
factory is specified (via the messageFactory property), Spring-WS will use the Saaj SoapMessageFact ory by
default.

6.2.2. Sending and receiving a WbSer vi ceMessage

The WebSer vi ceTenpl at e contains many convenience methods to send and receive web service messages.
There are methods that accept and return a Source and those that return a Resul t. Additionaly, there are
methods which marshal and unmarshal objectsto XML. Here is an example that sends a simple XML message
to aWeb service.

i nport java.io.StringReader;
i mport javax.xm .transform stream StreanResul t;
i nport javax.xm .transform stream StreanfSour ce;

i mport org.springframework. ws. WbSer vi ceMessageFact ory;
i nport org.springfranework.ws.client.core. WbServi ceTenpl at e;
i mport org.springframework. ws. transport. WbServi ceMessageSender ;

public class WebServicedient {

private static final String MESSAGE =
"<message xm ns=\"http://tenpuri.org\">Hell o Web Servi ce Wrl d</ nessage>";

private final WebServi ceTenpl ate webServi ceTenpl ate = new WebServi ceTenpl ate();

Spring-WS (1.5.9) 47

Using Spring Web Services on the Client

public void setDefaultUri(String defaultUri) {
webServi ceTenpl ate. set Defaul t Uri (defaul t Uri);
}

// send to the configured default URI

public void sinpl eSendAndRecei ve() {
St reanSour ce source = new StreanSource(new StringReader (MESSAGE)) ;
StreanResult result = new StreanmResult (System out);
webSer vi ceTenpl at e. sendSour ceAndRecei veToResul t (source, result);

}

// send to an explicit UR
public void custonSendAndRecei ve() {
St reanSour ce source = new StreanSource(new StringReader (MESSAGE)) ;
StreanResult result = new StreanResul t (System out);
webSer vi ceTenpl at e. sendSour ceAndRecei veToResul t ("http://1 ocal host: 8080/ Anot her WebSer vi ce",
source, result);

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans" >

<bean i d="webServiceCient" class="WbServiceCient">
<property name="defaul tUri" value="http://I|ocal host: 8080/ WebServi ce"/>
</ bean>

</ beans>

The above example uses the webSer vi ceTenpl at e to send a hello world message to the web service located at
http://1 ocal host: 8080/ WebServi ce (in the case of the si npl eSendAndRecei ve() method), and writes the
result to the console. The webSer vi ceTenpl at e is injected with the default URI, which is used because no URI
was supplied explicitly in the Java code.

Please note that the webServi ceTenpl ate class is threadsafe once configured (assuming that al of it's
dependencies are threadsafe too, which is the case for all of the dependencies that ship with Spring-WS), and so
multiple objects can use the same shared WebSer vi ceTenpl at e instance if so desired. The webSer vi ceTenpl at e
eXposes a zero argument constructor and messageFactory/messageSender bean properties which can be used
for constructing the instance (using a Spring container or plain Java code). Alternatively, consider deriving
from Spring-WS's webSer vi ceGat ewaySupport convenience base class, which exposes convenient bean
properties to enable easy configuration. (You do not have to extend this base class... it is provided as a
convenience class only.)

6.2.3. Sending and receiving POJOs - marshalling and unmarshalling

In order to facilitate the sending of plain Java objects, the webSer vi ceTenpl at e has a number of send(. .)
methods that take an Object as an agument for a message's data content. The method
mar shal SendAndRecei ve(..) inthe webServi ceTenpl at e class delegates the conversion of the request object
to XML to amarshal | er, and the conversion of the response XML to an object to an unnar shal | er . (For more
information about marshalling and unmarshaller, refer to Chapter 8, Marshalling XML using O/X Mappers.) By
using the marshallers, your application code can focus on the business object that is being sent or received and
not be concerned with the details of how it is represented as XML. In order to use the marshalling functionality,
you have to set a marshaler and unmarshaler with the marshaler/unmarshaller properties of the
WebSer vi ceTenpl at e Class.

6.2.4. WebServi ceMessageCal | back

Spring-WS (1.5.9) 48

Using Spring Web Services on the Client

To accommodate the setting of SOAP headers and other settings on the message, the
WebSer vi ceMessageCal | back interface gives you access to the message after it has been created, but before it
is sent. The example below demonstrates how to set the SOAP Action header on a message that is created by
marshalling an object.

public void marshal Wt hSoapActi onHeader (MyObj ect 0) {
webSer vi ceTenpl at e. nar shal SendAndRecei ve(o, new WebSer vi ceMessageCal | back() {

public void doWthMessage(WebServi ceMessage nessage) {
((SoapMessage) message) . set SoapAction("http://tenpuri.org/Action");
}

1)

Note
Note that you can aso use the
org. springframewor k. ws. soap. cl i ent. core. SoapActionCal | back to set the SOAP Action
header.

6.2.4.1. WS-Addressing

In addition to the server-side WS-Addressing support, Spring Web Services aso has support for this
specification on the client-side.

For setting WS-Addressing headers on the client, you can use the
org. springframewor k. ws. soap. addr essi ng. cl i ent. Acti onCal | back. This callback takes the desired Action
header as a parameter. It also has constructors for specifying the WS-Addressing version, and a To header. If
not specified, the To header will default to the URL of the connection being made.

Hereis an example of setting the Act i on header to ht t p: / / sanpl es/ Request Or der :

webSer vi ceTenpl at e. mar shal SendAndRecei ve(o, new ActionCal | back("http://sanpl es/ Request Order"));

6.2.5. WebServi ceMessageExt ract or

The webSer vi ceMessageExt ract or interface is a low-level callback interface that alows you to have full
control over the process to extract an tj ect from a received WebSer vi ceMessage. The WebSer vi ceTenpl at e
will invoke the extractData(..) method on a supplied WbSer vi ceMessageExt ract or while the underlying
connection to the serving resource is dill open. The following example illustrates the
VebSer vi ceMessageExt ract or in action:

public void marshal Wt hSoapActi onHeader (final Source s) {
final Transfornmer transfornmer = transfornerFactory. newlransforner();
webSer vi ceTenpl at e. sendAndRecei ve(new WebSer vi ceMessageCal | back() {
public void doWthMessage(WebServi ceMessage nessage) {
transforner.transforn(s, nmessage.getPayl oadResult());

new WebServi ceMessageExtractor () {
public Object extractData(WbServi ceMessage nessage) throws | OException
/1 do your own transforms with nmessage. get Payl oadResul t ()
11 or nessage. get Payl oadSour ce()

});

Spring-WS (1.5.9) 49

Chapter 7. Securing your Web services with
Spring-WS

7.1. Introduction

This chapter explains how to add WS-Security aspects to your Web services. We will focus on the three
different areas of WS-Security, namely:

Authentication. Thisisthe process of determining whether a principal iswho they claim to be. In this context,
a "principal" generally means a user, device or some other system which can perform an action in your
application.

Digital signatures. The digital signature of a message is a piece of information based on both the document
and the signer's private key. It is created through the use of a hash function and a private signing function
(encrypting with the signer's private key).

Encryption and Decryption. Encryption is the process of transforming data into a form that is impossible to
read without the appropriate key. It is mainly used to keep information hidden from anyone for whom it is not
intended. Decryption is the reverse of encryption; it is the process of transforming of encrypted data back into
an readable form.

All of these three areas are implemented using the xwsSecuri tyl nt er cept or OF Wss4j Securi tyl nterceptor,
which we will describe in Section 7.2, “ XwsSecuritylnterceptor " and Section 7.3, *“
Ws4j Securityl nterceptor ", respectively

Note

Note that WS-Security (especially encryption and signing) requires substantial amounts of
memory, and will also decrease performance. If performance is important to you, you might want
to consider not using WS-Security, or simply use HTTP-based security.

7.2. XwsSecuritylnterceptor

The xwsSecuritylnterceptor iS an Endpointlnterceptor (See Section 55.5, “Intercepting requests - the
Endpoi nt I nt er cept or interface”) that is based on SUN's XML and Web Services Security package (XWSS).
This WS-Security implementation is part of the Java Web Services Developer Pack (Java WSDP).

Like any other endpoint interceptor, it is defined in the endpoint mapping (see Section 5.5, “Endpoint
mappings’). This means that you can be selective about adding WS-Security support: some endpoint mappings
requireit, while others do not.

Note

Note that XWSS requires both a SUN 1.5 JDK and the SUN SAAJ reference implementation. The
WSSAJ interceptor does not have these requirements (see Section 7.3,
Ws4j Securitylnterceptor).

The xwsSecurityl nterceptor requires a security policy file to operate. This XML file tells the interceptor

Spring-WS (1.5.9) 50

http://java.sun.com/webservices/

Securing your Web services with Spring-WS

what security aspects to require from incoming SOAP messages, and what aspects to add to outgoing messages.
The basic format of the policy file will be explained in the following sections, but you can find a more in-depth
tutorial here . You can set the policy with the policyConfiguration property, which requires a Spring resource.
The policy file can contain multiple elements, e.g. require a username token on incoming messages, and sign all
outgoing messages. It contains a Securi t yConf i gur ati on €lement as root (not a JAXRPCSecuri ty €lement).

Additionally, the security interceptor requires one or morecal | backHandl er S to operate. These handlers are
used to retrieve certificates, private keys, validate user credentials, etc. Spring-WS offers handlers for most
common security concerns, e.g. authenticating against a Spring Security authentication manager, signing
outgoing messages based on a X509 certificate. The following sections will indicate what callback handler to
use for which security concern. You can set the callback handlers using the callbackHandler or
callbackHandlers property.

Here is an example that shows how to wire the xwsSecuri t yl nt er cept or Up:

<beans>
<bean i d="wsSecuritylnterceptor"”
cl ass="org. spri ngfranmewor k. ws. soap. security.xwss. XwsSecurityl nterceptor">
<property name="policyConfiguration" val ue="cl asspath: securityPolicy.xm"/>
<property name="cal | backHandl ers" >
<list>
<ref bean="certificateHandl er"/>
<ref bean="authenticati onHandl er"/>
</list>
</ property>
</ bean>

</ beans>

This interceptor is configured using the securitypPolicy.xm file on the classpath. It uses two callback
handlers which are defined further on in thefile.

7.2.1. Keystores

For most cryptographic operations, you will use the standard j ava.security. KeyStore objects. These
operations include certificate verification, message signing, signature verification, and encryption, but excludes
username and time-stamp verification. This section aims to give you some background knowledge on
keystores, and the Java tools that you can use to store keys and certificates in a keystore file. This information
is mostly not related to Spring-WS, but to the general cryptographic features of Java.

Thejava. security. KeySt ore class represents a storage facility for cryptographic keys and certificates. It can
contain three different sort of elements:

Private Keys. These keys are used for self-authentication. The private key is accompanied by certificate chain
for the corresponding public key. Within the field of WS-Security, this accounts to message signing and
message decryption.

Symmetric Keys. Symmetric (or secret) keys are used for message encryption and decryption as well. The
difference being that both sides (sender and recipient) share the same, secret key.

Trusted certificates. These X509 certificates are called a trusted certificate because the keystore owner trusts
that the public key in the certificates indeed belong to the owner of the certificate. Within WS-Security, these
certificates are used for certificate validation, signature verification, and encryption.

7.2.1.1. KeyTool

Supplied with your Java Virtual Machine is the keytool program, akey and certificate management utility. You

Spring-WS (1.5.9) 51

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp564887

Securing your Web services with Spring-WS

can use this tool to create new keystores, add new private keys and certificates to them, etc. It is beyond the
scope of this document to provide afull reference of the keytool command, but you can find a reference here ,
or by giving the command keyt ool - hel p on the command line.

7.2.1.2. KeyStoreFactoryBean

To easily load a keystore using Spring configuration, you can use the Key St or eFact or yBean. It has a resource
location property, which you can set to point to the path of the keystore to load. A password may be given to
check the integrity of the keystore data. If a password is not given, integrity checking is not performed.

<bean i d="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">

<property name="password" val ue="password"/>

<property name="l|ocati on" val ue="cl asspat h: or g/ spri ngf ranewor k/ ws/ soap/ security/ xwss/test-keystore.jks"/>
</ bean>

Caution

If you don't specify the location property, a new, empty keystore will be created, which is most
likely not what you want.

7.2.1.3. KeyStoreCallbackHandler

To use the keystores within a xwsSecuri tyl nt er cept or , you will need to define a Key St or eCal | backHandl er .
This callback has three properties with type keystore: (keySt or et rust St or e, and symmet ri cSt ore). The exact
stores used by the handler depend on the cryptographic operations that are to be performed by this handler. For
private key operation, the keyStore is used, for symmetric key operations the symmetricStore, and for
determining trust relationships, thet r ust St or e. The following table indicates this:

Cryptographic operation Keystore used

Certificate validation first thekeySt or e, thenthetrust Store
Decryption based on private key keySt ore

Decryption based on symmetric key symmetricStore

Encryption based on public key certificate trustStore

Encryption based on symmetric key symmetricStore

Signing keyStore

Signature verification trustStore

Additionally, the KeySt oreCal | backHandl er has a pri vat ekeyPassword property, which should be set to
unlock the private key(s) contained in thekeySt or e.

If the symetricStore isnot set, it will default to the keySt or e. If the key or trust store is not set, the callback
handler will use the standard Java mechanism to load or create it. Refer to the JavaDoc of the
KeySt or eCal | backHandl er to know how this mechanism works.

For instance, if you want to use the KeySt or eCal | backHandl er to validate incoming certificates or signatures,
you would use atrust store, like so:

<beans>
<bean i d="keySt oreHandl er" cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. KeySt or eCal | backHandl er

Spring-WS (1.5.9) 52

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html

Securing your Web services with Spring-WS

<property name="trustStore" ref="trustStore"/>
</ bean>

<bean id="trustStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="l|ocati on" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

If you want to use it to decrypt incoming certificates or sign outgoing messages, you would use akey store, like
SO:

<beans>
<bean i d="keyStoreHandl er" cl ass="org. spri ngframework.ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er
<property nanme="keyStore" ref="keyStore"/>
<property nanme="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean i d="keyStore" class="org.springfranmework.ws. soap. security. support.KeyStoreFact oryBean">
<property name="|ocati on" val ue="cl asspat h: keystore. jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

The following sections will indicate where the Key St or eCal | backHandl er can be used, and which properties to
set for particular cryptographic operations.

7.2.2. Authentication

As stated in the introduction, authentication is the task of determining whether a principal is who they claim to
be. Within WS-Security, authentication can take two forms: using a username and password token (using either
aplain text password or a password digest), or using a X509 certificate.

7.2.2.1. Plain Text Username Authentication

The simplest form of username authentication usesplain text passwords. In this scenario, the SOAP message
will contain a User naneToken element, which itself contains a User name element and a Password eement
which contains the plain text password. Plain text authentication can be compared to the Basic Authentication
provided by HTTP servers.

Warning

Note that plain text passwords are not very secure. Therefore, you should aways add additional
security measures to your transport layer if you are using them (using HTTPS instead of plain
HTTP, for instance).

To require that every incoming message contains a User nameToken with a plain text password, the security
policy file should contain a Requi r eUser naneToken element, with the passwor dDi gest Requi red attribute set
tof al se. You can find areference of possible child elements here.

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi r eUser naneToken passwor dDi gest Requi red="f al se" nonceRequi red="f al se"/>

</ xwss: SecurityConfigurati on>

If the username token is not present, the xwsSecuri tyl nt er cept or Will return a SOAP Fault to the sender. If it

Spring-WS (1.5.9) 53

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

Securing your Web services with Spring-WS

is present, it will fire a Passwor dval i dati onCal | back with a Pl ai nText Passwor dRequest t0 the registered
handlers. Within Spring-WS, there are three classes which handle this particul ar callback.

7.2.2.1.1. SimplePasswordValidationCallbackHandler

The ssimplest password validation handler is the Si npl ePasswor dVval i dat i onCal | backHandl er. This handler
validates passwords against an in-memory Properti es object, which you can specify using the user s property,
like so:

<bean i d="passwordVal i dati onHandl er"
cl ass="org. spri ngfranmewor k. ws. soap. security.xwss. cal | back. Si npl ePasswor dVal i dati onCal | backHandl er ">
<property nanme="users">
<pr ops>
<prop key="Bert">Erni e</prop>
</ props>
</ property>
</ bean>

In this case, we are only allowing the user "Bert" to log in using the password "Ernie".

7.2.2.1.2. SpringPlainTextPasswordValidationCallbackHandler

The Spri ngPl ai nText Passwor dVal i dat i onCal | backHandl er uses Spring Security to authenticate users. It is
beyond the scope of this document to describe Spring Security, but suffice it to say that it is a full-fledged
security framework. Y ou can read more about it in the Spring Security reference documentation .

The Spri ngPl ai nText Passwor dVal i dat i onCal | backHandl er requires an Aut henti cat i onManager to operate.
It uses this manager to authenticate against a User namePasswor dAut henti cati onToken that it creates. If
authentication is successful, the token is stored in the Securi t yCont ext Hol der . You can set the authentication
manager using the aut hent i cat i onManager property:

<beans>
<bean id="springSecurityHandl er"
cl ass="org. springframewor k. ws. soap. security. xwss. cal | back. Spri ngPl ai nText Passwor dVal i dati onCal | backHandl er
<property nanme="aut henticati onManager" ref="authenticati onManager"/>
</ bean>

<bean id="aut henticati onManager" cl ass="org. springfranmework. security.providers. Provi der Manager ">
<property name="providers">
<bean cl ass="org. springfranmework. security. provi ders. dao. DaoAut henti cati onProvi der">
<property name="user Detail sService" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

7.2.2.1.3. JaasPlainTextPasswordValidationCallbackHandler

The JaasPl ai nText Passwor dVal i dat i onCal | backHandl er is based on the standard Java Authentication and
Authorization Service . It is beyond the scope of this document to provide a full introduction into JAAS, but
thereisagood tutorial available.

The JaasPl ai nText Passwor dVval i dat i onCal | backHandl er requires only a | ogi nCont ext Nane to operate. It
creates a new JAAS Logi nContext using this name, and handles the standard JAAS NanecCal | back and
Passwor dCal | back using the username and password provided in the SOAP message. This means that this
callback handler integrates with any JAAS Logi nModul e that fires these callbacks during the | ogi n() phase,

Spring-WS (1.5.9) 54

http://www.springframework.org/security
http://www.springframework.org/security
http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/
http://www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html

Securing your Web services with Spring-WS

which is standard behavior.

Y ou can wire up aJaasPl ai nText Passwor dVal i dat i onCal | backHandl er asfollows:

<bean i d="j aasVal i dati onHandl er"
cl ass="org. spri ngframewor k. ws. soap. security. xwss. cal | back. j aas. JaasPl ai nText Passwor dVal i dati onCal | backHandl e
<property name="I| ogi nCont ext Nane" val ue="M/Logi nModul e" />

</ bean>

In this case, the callback handler uses the Logi nCont ext hamed "MyLoginModule'. This module should be
defined inyour j aas. confi g file, as explained in the abovementioned tutorial.

7.2.2.2. Digest Username Authentication

When using password digests, the SOAP message also contains a User naneToken element, which itself
contains a User nane element and a Passwor d element. The difference is that the password is not sent as plain
text, but as a digest. The recipient compares this digest to the digest he calculated from the known password of
the user, and if they are the same, the user is authenticated. It can be compared to the Digest Authentication
provided by HTTP servers.

To require that every incoming message contains a User naneToken €lement with a password digest, the security
policy file should contain a Requi r eUser naneToken element, with the passwor dDi gest Requi red attribute set
tot rue. Additionally, the nonceRequi red should be set totrue: You can find a reference of possible child
elements here .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi r eUser nameToken passwor dDi gest Requi red="t rue" nonceRequired="true"/>

</ xwss: SecurityConfiguration>

If the username token is not present, the xwsSecuri t yl nt er cept or Will return a SOAP Fault to the sender. If it
is present, it will fire a PasswordvalidationCal | back with a Di gest Passwor dRequest t0 the registered
handlers. Within Spring-WS, there are two classes which handle this particular callback.

7.2.2.2.1. SimplePasswordValidationCallbackHandler

The si npl ePasswor dVval i dat i onCal | backHandl er can handle both plain text passwords as well as password
digests. It is described inSection 7.2.2.1.1, “ SimplePasswordV alidationCallbackHandler”.

7.2.2.2.2. SpringDigestPasswordValidationCallbackHandler

The Spri ngDi gest Passwor dVal i dat i onCal | backHandl er requires an Spring Security User Det ai | Servi ce tO
operate. It uses this service to retrieve the password of the user specified in the token. The digest of the
password contained in this details object is then compared with the digest in the message. If they are equal, the
user has successfully authenticated, and a UsernamePasswor dAut henti cati onToken iS stored in the
Securi t yCont ext Hol der . You can set the service using the user Det ai | sSer vi ce. Additionally, you can set a
user Cache property, to cache loaded user details.

<beans>
<bean cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. Spri ngDi gest Passwor dVal i dati onCal | backHandl e
<property name="userDetail sService" ref="userDetail sService"/>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

Spring-WS (1.5.9) 55

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

Securing your Web services with Spring-WS

7.2.2.3. Certificate Authentication

A more secure way of authentication uses X509 certificates. In this scenerario, the SOAP message contains
aBi narySecuri t yToken, which contains a Base 64-encoded version of a X509 certificate. The certificate is
used by the recipient to authenticate. The certificate stored in the message is also used to sign the message
(seeSection 7.2.3.1, “Verifying Signatures”).

To make sure that al incoming SOAP messages carry aBi nar ySecuri t yToken, the security policy file should
contain a Requi reSi gnat ure element. This element can further carry other elements, which will be covered
inSection 7.2.3.1, “Verifying Signatures’. Y ou can find areference of possible child elements here .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi reSi gnature requireTi nestanp="fal se">

</ xwss: SecurityConfi guration>

When a message arrives that carries no certificate, the xwsSecuri tyl nt ercept or Will return a SOAP Fault to
the sender. If it is present, it will fire a CertificateVvalidationCall back. There are three handlers within
Spring-WS which handle this callback for authentication purposes.

Note

In most cases, certificate authentication should be preceded by certificate validation, since you
only want to authenticate against valid certificates. Invalid certificates such as certificates for
which the expiration date has passed, or which are not in your store of trusted certificates, should
beignored.

In Spring-WS terms, this means that the SpringCertificateValidationCal | backHandl er Or
JaasCertificateValidationCal | backHandl er should be preceded by
KeySt or eCal | backHandl er. This can be accomplished by setting the order of the
cal | backHandl er s property in the configuration of the xwsSecuri tyl nter cept or:

<bean i d="wsSecuritylnterceptor"
cl ass="org. spri ngfranmewor k. ws. soap. security.xwss. XwsSecuritylnterceptor">
<property name="policyConfiguration" val ue="cl asspat h: securityPolicy.xm"/>
<property name="cal | backHandl ers" >
<list>
<ref bean="keyStoreHandl er"/>
<ref bean="springSecurityHandler"/>
</list>
</ property>
</ bean>

Using this setup, the interceptor will first determine if the certificate in the message is valid using
the keystore, and then authenticate against it.
7.2.2.3.1. KeyStoreCallbackHandler

The KeySt or eCal | backHandl er uses a standard Java keystore to validate certificates. This certificate validation
process consists of the following steps:

1. First, the handler will check whether the certificate isin the private keySt ore. If itis, it isvalid.

2. If the certificate is not in the private keystore, the handler will check whether the current date and time are

Spring-WS (1.5.9) 56

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

Securing your Web services with Spring-WS

within the validity period given in the certificate. If they are not, the certificate is invalid; if it is, it will
continue with the final step.

3. Finaly, acertification path for the certificate is created. This basically means that the handler will determine
whether the certificate has been issued by any of the certificate authorities in thetrustStore. If a
certification path can be built successfully, the certificate is valid. Otherwise, the certificate is not.

To use the KeySt or eCal | backHandl er for certificate validation purposes, you will most likely set only the
trust St or e property:

<beans>
<bean i d="keySt oreHandl er" cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. KeySt or eCal | backHandl er
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean i d="trustStore" class="org.springfranework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="l|ocati on" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

Using this setup, the certificate that is to be validated must either be in the trust store itself, or the trust store
must contain a certificate authority that issued the certificate.

7.2.2.3.2. SpringCertificateValidationCallbackHandler

The SpringCertificatevalidationCal | backHandl er requires an Spring Security Aut hent i cat i onManager tO
operate. It uses this manager to authenticate against a X509Aut hent i cat i onToken that it creates. The configured
authentication manager is expected to supply a provider which can handle this token (usually an instance of
X509Aut henti cationProvider). |If authentication is succesful, the token is stored in the
Securi t yCont ext Hol der . You can set the authentication manager using the authenticationManager property:

<beans>
<bean i d="springSecurityCertificateHandl er"
cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. SpringCertificateValidationCallbackHandl er">
<property name="aut henticati onManager" ref="authenticati onManager"/>
</ bean>

<bean i d="aut henti cati onManager"
cl ass="org. springfranmework. security. provi ders. Provi der Manager " >
<property name="providers">
<bean cl ass="org. springfranmework. security. provi ders. x509. X509Aut henti cati onProvi der" >
<property name="x509Aut horiti esPopul at or">
<bean cl ass="org. springfranmework. security. provi ders. x509. popul at or. DaoX509Aut hori ti esPopul at
<property name="user Detail sService" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

In this case, we are using a custom user details service to obtain authentication details based on the certificate.
Refer to the Soring Security reference documentation for more information about authentication against X509
certificates.

7.2.2.3.3. JaasCertificateValidationCallbackHandler

The JaasCertificateVal i dati onCal | backHandl er requires al ogi nCont ext Nare t0o operate. It creates a new

Spring-WS (1.5.9) 57

http://www.springframework.org/security

Securing your Web services with Spring-WS

JAAS Logi nCont ext using this name and with the x500Pri nci pal of the certificate. This means that this
callback handler integrates with any JAAS Logi nMbdul e that handles X500 principals.

You canwireup aJaasCertificateValidationCal | backHandl er asfollows:

<bean i d="j aasVal i dati onHandl er"
cl ass="org. spri ngfranmewor k. ws. soap. security.xwss. cal | back. jaas. JaasCertificateValidationCallbackHandl er">
<property name="| ogi nCont ext Nane" >MyLogi nModul e</ property>

</ bean>

In this case, the callback handler uses the Logi nCont ext hamed "MyLoginModule". This module should be
defined inyour j aas. confi g file, and should be able to authenticate against X500 principals.

7.2.3. Digital Signatures

The digital signature of amessage is a piece of information based on both the document and the signer's private
key. There are two main tasks related to signatures in WS-Security: verifying signatures and signing messages.

7.2.3.1. Verifying Signatures

Just likecertificate-based authentication, a signed message contains a Bi nar ySecuri t yToken, which contains
the certificate used to sign the message. Additionally, it contains a Si gned! nf o block, which indicates what part
of the message was signed.

To make sure that all incoming SOAP messages carry aBi nar ySecur i t yToken, the security policy file should
contain a Requi reSi gnature element. It can also contain a Si gnat ureTarget element, which specifies the
target message part which was expected to be signed, and various other subelements. You can aso define the
private key dias to use, whether to use a symmetric instead of a private key, and many other properties. You
can find areference of possible child elements here .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi reSi gnature requireTi mestanp="fal se"/>
</ xwss: SecurityConfi guration>

If the signature is not present, the XxwsSecurityl nterceptor Will return a SOAP Fault to the sender. If it is
present, it will fire asi gnat ureVeri ficati onkeyCal | back to the registered handlers. Within Spring-WS, there
are is one class which handles this particular callback: the Key St or eCal | backHandl er .

7.2.3.1.1. KeyStoreCallbackHandler

As described inSection 7.2.1.3, “KeyStoreCallbackHandler”, the KeyStoreCallbackHandl er USES a
java. security. KeyStore for handling various cryptographic callbacks, including signature verification. For
signature verification, the handler usesthet r ust St or e property:

<beans>
<bean i d="keyStoreHandl er" cl ass="org. springframework.ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean id="trustStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="| ocati on" val ue="cl asspat h: or g/ spri ngf ranewor k/ ws/ soap/ security/ xwss/test-truststore.jks
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

Spring-WS (1.5.9) 58

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

Securing your Web services with Spring-WS

7.2.3.2. Signing Messages

When signing a message, the XwsSecuri tyl nt er cept or adds the Bi nar ySecuri t yToken to the message, and a
Si gnedl nf o block, which indicates what part of the message was signed.

To sign all outgoing SOAP messages, the security policy file should contain a si gn element. It can also contain
a Si gnat ureTar get €lement, which specifies the target message part which was expected to be signed, and
various other subelements. Y ou can also define the private key alias to use, whether to use a symmetric instead
of aprivate key, and many other properties. Y ou can find areference of possible child elements here.

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Si gn incl udeTi nest anp="fal se" />
</ xwss: SecurityConfi guration>

The xwsSecuritylnterceptor Will fire a SignaturekeyCallback to the registered handlers. Within
Spring-WS, there are is one class which handles this particular callback: the Keyst or eCal | backHandl er .

7.2.3.2.1. KeyStoreCallbackHandler

As described inSection 7.2.1.3, “KeyStoreCallbackHandler”, the KeyStoreCallbackHandl er uUses a
java.security. KeyStore for handling various cryptographic callbacks, including signing messages. For
adding signatures, the handler uses the key St or e property. Additionally, you must set the pri vat eKeyPasswor d
property to unlock the private key used for signing.

<beans>
<bean i d="keyStoreHandl er" cl ass="org.springframework.ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er
<property nanme="keyStore" ref="keyStore"/>
<property nanme="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean i d="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="| ocati on" val ue="cl asspat h: keystore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

7.2.4. Encryption and Decryption

When encrypting, the message is transformed into a form that can only be read with the appropriate key. The
message can be decrypted to reveal the original, readable message.

7.2.4.1. Decryption

To decrypt incoming SOAP messages, the security policy file should contain a Requi r eEncrypti on element.
This element can further carry aEncrypti onTar get element which indicates which part of the message should
be encrypted, and a symet ri ckey to indicate that a shared secret instead of the regular private key should be
used to decrypt the message. Y ou can read a description of the other elements here .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi reEncryption />
</ xwss: SecurityConfi guration>

If an incoming message is not encrypted, the XwsSecuri t yl nt er cept or will return a SOAP Fault to the sender.
If it ispresent, it will fire aDecrypti onKeyCal | back to the registered handlers. Within Spring-WS, there is one

Spring-WS (1.5.9) 59

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565497
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

Securing your Web services with Spring-WS

class which handled this particular callback: thexey st or eCal | backHandl er .

7.2.4.1.1. KeyStoreCallbackHandler

As described inSection 7.2.1.3, “KeyStoreCallbackHandler”, the KeyStoreCallbackHandl er uUses a
java. security. KeyStore for handling various cryptographic callbacks, including decryption. For decryption,
the handler uses the key St or e property. Additionally, you must set the pri vat eKeyPasswor d property to unlock
the private key used for decryption. For decryption based on symmetric keys, it will usethesymetricStore.

<beans>
<bean i d="keyStoreHandl er" cl ass="org. springframework.ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er
<property nanme="keyStore" ref="keyStore"/>
<property name="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean i d="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="|ocati on" val ue="cl asspat h: keystore. jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

7.2.4.2. Encryption

To encrypt outgoing SOAP messages, the security policy file should contain a Encrypt element. This element
can further carry aEncrypti onTar get element which indicates which part of the message should be encrypted,
and a symmet ri cKey to indicate that a shared secret instead of the regular public key should be used to encrypt
the message. Y ou can read a description of the other elements here .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Encrypt />
</ xwss: SecurityConfi guration>

The XwsSecuritylnterceptor Will fire a EncryptionKeyCal | back to the registered handlers in order to
retrieve the encryption information. Within Spring-WS, there is one class which handled this particular
callback: the KeySt or eCal | backHandl er .

7.2.4.2.1. KeyStoreCallbackHandler

As described inSection 7.2.1.3, “KeyStoreCalbackHandler”, the KeyStoreCallbackHandl er USeS a
java.security. KeyStore for handling various cryptographic callbacks, including encryption. For encryption
based on public keys, the handler uses the trust St or e property. For encryption based on symmetric keys, it
will usethesymretri cStore.

<beans>
<bean i d="keySt oreHandl er" cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. KeySt or eCal | backHandl er
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean i d="trustStore" class="org.springfranework.ws. soap.security.support.KeyStoreFactoryBean">
<property name="l|ocati on" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

7.3. Ws4j Securityl nterceptor

The Ws4j Securityl nterceptor iS an Endpoint | nterceptor (seeSection 5.5.5, “Intercepting requests - the

Spring-WS (1.5.9) 60

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

Securing your Web services with Spring-WS

Endpoi nt I nt er cept or interface”) that is based on Apache's WS4J.

WSSAJ implements the following standards:

* OASIS Web Serives Security: SOAP Message Security 1.0 Standard 200401, March 2004
* Username Token profile V1.0

¢ X.509 Token ProfileV1.0

This inteceptor supports messages created by the AxionSoapMessageFactory and the
Saaj SoapMessageFactory.

7.3.1. Configuring Ws4j Securityl ntercept or

WSS4J uses no external configuration file; the interceptor is entirely configured by properties. The validation
and securement actions executed by this interceptor are specified via validationActions and securementActions
properties, respectively. Actions are passed as a space-separated strings. Here is an example configuration:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dati onActions" val ue="User naneToken Encrypt"/>

<property nanme="securenent Actions" val ue="Encrypt"/>

</ bean>

Validation actions are:

Validation action

User naneToken

Description

Validates username token

Ti mest anp Validates the timestamp
Encrypt Decrypts the message
Signature Validates the signature
NoSecurity No action performed

Securement actions are:

Securement action
User naneToken

User naneTokenSi gnat ur e

Description
Adds a username token

Adds a username token and a signature username
token secret key

Ti nest anp
Encrypt
Si gnature

NoSecurity

Adds atimestamp
Encrypts the response
Signs the response

No action performed

Spring-WS (1.5.9) 61

http://ws.apache.org/wss4j/

Securing your Web services with Spring-WS

The order of the actionsis significant and is enforced by the interceptor. The interceptor will regject an incoming
SOAP message if its security actions were performed in a different order than the one specified
byval i dati onActi ons.

7.3.2. Handling Digital Certificates

For cryptographic operations requiring interaction with a keystore or certificate handling (signature, encryption
and decryption operations), WSAJ requires an instance
ofor g. apache. ws. securi ty. conponents. crypto. Crypto.

Crypto instances can be obtained from WSSAJs CryptoFactory Or more conveniently with the
Spring-WSCr ypt oFact or yBean.

7.3.2.1. CryptoFactoryBean

Spring-WS provides a convenient factory bean, Crypt oFact oryBean that constructs and configures Crypt o
instances via strong-typed properties (prefered) or through aProperti es object.

By default, Crypt oFact or yBean returns instances of org. apache. ws. security. conponents. crypto. Merlin.
This can be changed by setting the cryptoProvider property (or its equivaent
org. apache. ws. security.crypto. provider string property).

Here is a simple example configuration:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property nanme="keySt orePassword" val ue="nypassword"/>
<property nanme="keyStoreLocati on" value="file:/path_to_keystore/keystore.jks"/>
</ bean>

7.3.3. Authentication

7.3.3.1. Validating Username Token

Spring-WS provides a set of callback handlers to integrate with Spring Security. Additionally, a simple
callback handler si npl ePasswor dVal i dat i onCal | backHandl er is provided to configure users and passwords
with an in-memory Properti es object.

Callback handlers are configured viawss4j Securi t yl nt er cept or 's vaidationCallbackHandler property.

7.3.3.1.1. SimplePasswordValidationCallbackHandler

Si npl ePasswor dVal i dati onCal | backHandl er validates plain text and digest username tokens against an
in-memory Properti es object. It is configured as follows:

<bean i d="cal | backHandl er"
cl ass="org. springfranmewor k. ws. soap. security.wss4j. cal | back. Si npl ePasswor dVal i dati onCal | backHandl er" >
<property name="users">
<pr ops>
<prop key="Bert">Erni e</prop>
</ props>
</ property>
</ bean>

Spring-WS (1.5.9) 62

Securing your Web services with Spring-WS

7.3.3.1.2. SpringPlainTextPasswordValidationCallbackHandler

The Spri ngPl ai nText Passwor dVal i dat i onCal | backHand| er requires an Spring Security
Aut henti cati onManager to operate. It uses this manager to authenticate againgt a
User namePasswor dAut hent i cat i onToken that it creates. If authentication is successful, the token is stored in
the SecurityContextHol der. You can set the authentication manager using the authenticationManager

property:

<beans>
<bean id="springSecurityHandl er"
cl ass="org. spri ngframewor k. ws. soap. security.wss4j.call back. Spri ngPl ai nText Passwor dVal i dati onCal | backHandl ¢
<property nanme="aut henticati onManager" ref="authenticati onManager"/>
</ bean>

<bean id="aut henticati onManager" class="org. springfranmework. security.providers. Provi der Manager ">
<property name="providers">
<bean cl ass="org. spri ngfranmework. security. provi ders. dao. DaoAut henti cati onProvi der">
<property name="user Detail sService" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

7.3.3.1.3. SpringDigestPasswordValidationCallbackHandler

The spri ngDi gest Passwor dVal i dati onCal | backHandl er requires an Spring Security User Det ai | Ser vi ce tO
operate. It uses this service to retrieve the password of the user specified in the token. The digest of the
password contained in this details object is then compared with the digest in the message. If they are equal, the
user has successfully authenticated, and a UsernanePasswordAut henticationToken is stored in
theSecuri t yCont ext Hol der. You can set the service using the userDetailsService. Additionally, you can set a
userCache property, to cache loaded user details.

<beans>
<bean cl ass="org. spri ngfranmework. ws. soap. security.wss4j.cal |l back. Spri ngDi gest Passwor dVal i dati onCal | backHand
<property name="user Detail sService" ref="userDetail sService"/>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

7.3.3.2. Adding Username Token

Adding a username token to an outgoing message is as simple as adding UsernameToken to the
securementActions property of the Wss4j Securitylnterceptor and specifying securementUsername
andsecurementPassword.

The password type can be set via the securementPasswordType property. Possible values are Passwor dText for
plain text passwords or Passwor dDi gest for digest passwords, which is the default.

The following example generates a username token with a digest password:

<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="securenent Acti ons" val ue="User naneToken"/ >
<property name="securenent User nane" val ue="Ernie"/>
<property nanme="secur enent Password" val ue="Bert"/>

</ bean>

Spring-WS (1.5.9) 63

Securing your Web services with Spring-WS

If plain text password type is chosen, it is possible to instruct the interceptor to add Nonce and/or Cr eat ed
elements using the securementUsernameTokenElements property. The value must be a list containing the
desired elements names separated by spaces (case sensitive).

The next example generates a username token with a plain text password, aNonce and a Cr eat ed €lement:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Actions" val ue="User nameToken"/>
<property nanme="secur enent User nane" val ue="Ernie"/>
<property name="securenent Password" val ue="Bert"/>
<property name="secur enent Passwor dType" val ue="PasswordText"/>
<property name="secur enment User naneTokenEl ement s" val ue="Nonce Created"/>
</ bean>

7.3.3.3. Certificate Authentication

As certificate authentication is akin to digital signatures, WSS4J handles it as part of the signature validation
and securement. Specifically, the securementSignatureKeyldentifier property must be set to Di r ect Ref er ence
in order to instruct WSSAJ to generate a Bi narySecuri t yToken element containing the X509 certificate and to
include it in the outgoing message. The certificate's name and password are passed through the
securementUsername and securementPassword properties respectively. See the next example:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Actions" val ue="Signature"/>
<property name="securenent Si gnat ur eKeyl dentifier" val ue="DirectReference"/>
<property nanme="securenent User nane" val ue="nycert"/>
<property nanme="secur enent Password" val ue="certpass"/>
<property nanme="securenent Si gnat ureCrypt 0" >
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property name="keySt orePassword" val ue="123456"/>
<property nanme="keyStoreLocati on" val ue="cl asspat h: / keystore.jks"/>
</ bean>
</ property>
</ bean>

For the certificate validation, regular signature validation applies:

<bean cl ass="org. spri ngframework. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dati onActi ons" val ue="Si gnature"/>
<property nanme="val i dationSi gnat ureCrypto">
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property nanme="keySt orePassword" val ue="123456"/>
<property nanme="keyStoreLocati on" val ue="cl asspat h: / keystore.jks"/>
</ bean>
</ property>
</ bean>

At the end of the validation, the interceptor will automatically verify the validity of the certificate by delegating
to the default WSSAJ implementation. If needed, this behavior can be changed by redefining the
verifyCertificateTrust method.

For more details, please refer toSection 7.3.5, “Digital Signatures’.

7.3.4. Security Timestamps

This section describes the various timestamp options available in the Wss4j Securi tyl nterceptor.

7.3.4.1. Validating Timestamps

Spring-WS (1.5.9) 64

Securing your Web services with Spring-WS

To validate timestamps add Ti nest anp to the validationActions property. It is possible to override timestamp
semantics specified by the initiator of the SOAP message by setting timestampStrict to t rue and specifying a
server-side time to live in seconds (defaults to 300) via the timeToLive property * .

In the following example, the interceptor will limit the timestamp validity window to 10 seconds, rejecting any
valid timestamp token outside that window:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dationActions" val ue="Ti nmestanp"/>
<property name="tinmestanpStrict" val ue="true"/>
<property name="tinmeToLive" val ue="10"/>

</ bean>

7.3.4.2. Adding Timestamps

Adding Ti nest anp to the securementActions property generates a timestamp header in outgoing messages. The
timestampPrecisionInMilliseconds property specifies whether the precision of the generated timestamp is in
milliseconds. The default valueist r ue.

<bean cl ass="org. springfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="securenent Actions" val ue="Ti nestanp"/>
<property name="ti mestanpPrecisionlnMIliseconds" val ue="true"/>

</ bean>

7.3.5. Digital Signatures

This section describes the various signature options available in the Wss4j Securi tyl nterceptor.

7.3.5.1. Verifying Signatures

To instruct thewss4j Securitylnterceptor, vaidationActions must contain the Signature action.
Additionally, the validationSignatureCrypto property must point to the keystore containing the public
certificates of the initiator:

<bean i d="wsSecuritylnterceptor" class="org.springframework.ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dati onActi ons" val ue="Si gnature"/>
<property name="validationSi gnat ureCrypto">
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property name="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" val ue="cl asspat h:/keystore.jks"/>
</ bean>
</ property>
</ bean>

7.3.5.2. Signing Messages

Signing outgoing messages is enabled by adding Si gnat ur e action to thesecurementActions. The aias and the
password of the private key to use are specified by the securementUsername and securementPassword
properties respectively. securementSignatureCrypto must point to the keystore containing the private key:

<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Actions" val ue="Signature"/>
<property name="securenent User nane" val ue="nykey"/>
<property name="securenent Password" val ue="123456"/>

1 Thei nterceptor will always reject aready expired timestamps whatever the value of timeToLiveis.

Spring-WS (1.5.9) 65

Securing your Web services with Spring-WS

<property nanme="secur enent Si gnat ur eCrypt 0" >
<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.support.Crypt oFact oryBean">
<property name="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" val ue="cl asspat h:/keystore.jks"/>
</ bean>
</ property>
</ bean>

Furthermore, the signature algorithm can be defined via the securementSignatureAlgorithm.

The key identifier type to use can be customized via the securementSignatureKeyldentifier property. Only
I ssuer Seri al and Di rect Ref er ence are valid for signature.

securementSignatureParts property controls which part of the message shall be signed. The value of this
property is alist of semi-colon separated element names that identify the elements to sign. The general form of
asignature part is{} { nanespace} El enent 2 The default behavior isto sign the SOAP body.

Asan example, here is how to sign the echoResponse element in the Spring Web Services echo sample:

<property name="securenent Si gnat ureParts"
val ue="{}{http://ww:. spri ngframework. org/ spri ng- ws/ sanpl es/ echo} echoResponse"/ >

The WS Security specifications define several formats to transfer the signature tokens (certificates) or
references to these tokens. Thus, the plain element name Token signs the token and takes care of the different
formats. To sign the SOAP body and the signature token the value of securementSignatureParts must contain:

<property name="securenent Si gnat ureParts">
<val ue>
{}{http://schemas. xm soap. or g/ soap/ envel ope/ } Body;
Token
</val ue>
</ property>

To specify an element without a namespace use the string nul | as the namespace name (case sensitive).

If there is no other element in the request with alocal name of Body then the SOAP namespace identifier can be
empty ({}).

7.3.5.3. Signature Confirmation

Signature confirmation is enabled by setting enableSignatureConfirmation to true. Note that signature
confirmation action spans over the request and the response. This implies that secureResponse and
val i dat eRequest Must be set to true (which is the default value) even if there are no corresponding security
actions.

<bean cl ass="org. springframewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dati onActi ons" val ue="Si gnature"/>
<property nanme="enabl eSi gnat ureConfirmati on" val ue="true"/>
<property nanme="val i dationSi gnat ureCrypto">
<bean cl ass="org. springframewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property name="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" value="file:/keystore.jks"/>
</ bean>
</ property>
</ bean>

2 Thefirst empty brackets are used for encryption parts only.

Spring-WS (1.5.9) 66

Securing your Web services with Spring-WS

7.3.6. Encryption and Decryption

This section describes the various encryption and descryption options available in the
Wss4j Securityl nterceptor.

7.3.6.1. Decryption

Decryption of incoming SOAP messages requires Encrypt action be added to the validationActions property.
Therest of the configuration depends on the key information that appears in the message 3.

To decrypt messages with an embedded encypted symmetric key (xenc: EncryptedKey €eement),
validationDecryptionCrypto needs to point to a keystore containing the decryption private key. Additionally,
validationCallbackHandler has to be injected with a
org. springframewor k. ws. soap. security. wss4j . cal | back. KeySt or eCal | backHandl er specifying the key's
password:

<bean cl ass="org. spri ngframework. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dati onActions" val ue="Encrypt"/>
<property name="val i dati onDecrypti onCrypto">
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.support.Crypt oFact oryBean">
<property name="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" val ue="cl asspat h:/ keystore.jks"/>
</ bean>
</ property>
<property nanme="val i dationCal | backHandl er" >
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j. cal | back. KeySt or eCal | backHandl er " >
<property name="privat eKeyPassword" val ue="nykeypass"/>
</ bean>
</ property>
</ bean>

To support decryption of messages with an embedded key name (ds: KeyName element), configure a
KeySt or eCal | backHandl er that points to the keystore with the symmetric secret key. The property
symmetricK eyPassword indicates the key's password, the key name being the one specified by ds: KeyNane
element:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dationActions" val ue="Encrypt"/>
<property nanme="val i dationCal | backHandl er" >
<bean cl ass="org. spri ngframework. ws. soap. security.wss4j.call back. KeySt oreCal | backHandl er ">
<property nanme="keyStore">
<bean cl ass="org. spri ngframework. ws. soap. security. support.KeySt oreFact or yBean" >
<property name="| ocati on" val ue="cl asspat h: keystore.jks"/>
<property nanme="type" val ue="JCEKS"/>
<property nanme="password" val ue="123456"/>
</ bean>
</ property>
<property name="symmetricKeyPassword" val ue="nykeypass"/>
</ bean>
</ property>
</ bean>

7.3.6.2. Encryption

Adding Encrypt to the securementActions enables encryption of outgoing messages. The certifacte's alias to
use for the encryption is set via the securementEncryptionUser property. The keystore where the certificate
reside is accessed using the securementEncryptionCrypto property. As encryption relies on public certificates,
no password needs to be passed.

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">

3 Thisis becaise WSS4J needs only a Crypto for encypted keys, whereas embedded key name validation is delegated to a callback handler.

Spring-WS (1.5.9) 67

Securing your Web services with Spring-WS

<property nanme="securenent Acti ons" val ue="Encrypt"/>
<property name="securenent Encrypti onUser" val ue="nycert"/>
<property name="securenent Encrypti onCrypto">
<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property name="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" value="file:/keystore.jks"/>
</ bean>
</ property>
</ bean>

Encryption can be customized in severad ways. The key identifier type to use is defined
bysecurementEncryptionK eyl dentifier. Possible values arel ssuer Seri al ,X509Keyl dentifier,
Di rect Ref erence,Thunbpri nt, SKI Keyl denti fi er OrEnbeddedKeyNane.

If the EnbeddedKeyNane type is chosen, you need to specify the secret key to use for the encryption. The alias of
the key is set via the securementEncryptionUser property just as for the other key identifier types. However,
WSSAJ requires a callback handler to fetch the secret key. Thus, securementCallbackHandler must be provided
with a KeySt or eCal | backHandl er pointing to the appropriate keystore. By default, the ds: KeyNane element in
the resulting WS-Security header takes the value of the securementEncryptionUser property. To indicate a
different name, set the securementEncryptionEmbeddedK eyName with the desired value. In the next example,
the outgoing message will be encrypted with a key aliased secretkey whereas nykey will appear in
ds: KeyNane €lement:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Actions" val ue="Encrypt"/>
<property name="securenent Encrypti onKeyl dentifier" val ue="EnbeddedKeyNane"/>
<property name="securenent Encrypti onUser" val ue="secr et Key"/>
<property name="securenent Encrypti onEnbeddedKeyNane" val ue="nyKey"/ >
<property nanme="securenent Cal | backHandl er" >
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.cal |l back. KeySt or eCal | backHandl er ">
<property name="symmetri cKeyPassword" val ue="keypass"/>
<property nanme="keyStore">
<bean cl ass="org. spri ngfranmewor k. ws. soap. security. support.KeySt oreFact or yBean" >
<property nanme="|ocation" value="file:/keystore.jks"/>
<property nanme="type" val ue="jceks"/>
<property nanme="password" val ue="123456"/>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

The securementEncryptionKeyTransportAlgorithm property defines which algorithm to use to encrypt the
generated symmetric key. Supported values are ht t p: / / www. w3. or g/ 2001/ 04/ xm enc#r sa- 1_5, which is the
default, and ht t p: / / ww. w3. or g/ 2001/ 04/ xml enc#r sa- oaep- ngf 1p.

The symmetric encryption algorithm to use can be set via the securementEncryptionSymAlgorithm property.
Supported values are htt p: // www. w3. or g/ 2001/ 04/ xnl enc#aes128- cbc (default value),
http://ww. w3. org/ 2001/ 04/ xm enc#tri pl edes-cbc, http://ww. w3. org/ 2001/ 04/ xm enc#aes256- cbc,
http://ww. w3. org/ 2001/ 04/ xm enc#aes192-cbc.

Finally, the securementEncryptionParts property defines which parts of the message will be encrypted. The
value of this property is alist of semi-colon separated element nhames that identify the elements to encrypt. An
encryption mode specifier and a namespace identification, each inside a pair of curly brackets, may precede
each element name. The encryption mode specifier iseither { Cont ent} or { El enent } 4 Thefollowi ng example
identifies the echoResponse from the echo sample:

<property nanme="securenent Encrypti onParts"
val ue="{Content}{http://ww:. springframework. org/ spri ng-ws/sanpl es/ echo} echoResponse"/ >

* Please refer to the W3C XML Encryption specification about the differences between Element and Content encryption.

Spring-WS (1.5.9) 68

Securing your Web services with Spring-WS

Be aware that the element name, the namespace identifier, and the encryption modifier are case sensitive. The
encryption modifier and the namespace identifier can be omitted. In this case the encryption mode defaults to
Cont ent and the namespace is set to the SOAP namespace.

To specify an element without a namespace use the value Nul | as the nhamespace name (case sensitive). If no
list is specified, the handler encrypts the SOAP Body in Cont ent mode by default.

Spring-WS (1.5.9) 69

Chapter 8. Marshalling XML using O/X Mappers

8.1. Introduction

In this chapter, we will describe Spring's Object/ XML Mapping support. Object/ XML Mapping, or O/X
mapping for short, isthe act of converting an XML document to and from an object. This conversion processis
also known as XML Marshalling, or XML Serialization. This chapter uses these terms interchangeably.

Within the field of O/X mapping, a marshaller is responsible for serializing an object (graph) to XML. In
similar fashion, an unmarshaller deserializes the XML to an object graph. This XML can take the form of a
DOM document, an input or output stream, or a SAX handler.

Some of the benefits of using Spring for your O/X mapping needs are:

Ease of configuration. Spring's bean factory makes it easy to configure marshallers, without needing to
construct JAXB context, JiBX binding factories, etc. The marshallers can be configured as any other bean in
your application context. Additionally, XML Schema-based configuration is available for a number of
marshallers, making the configuration even smpler.

Consistent Interfaces. Spring's O/X mapping operates through two global interfaces: the marshal | er and
Unmar shal | er interface. These abstractions allow you to switch O/X mapping frameworks with relative ease,
with little or no changes required on the classes that do the marshalling. This approach has the additional
benefit of making it possible to do XML marshalling with a mix-and-match approach (e.g. some marshalling
performed using JAXB, other using XMLBeans) in a non-intrusive fashion, leveraging the strength of each
technology.

Consistent Exception Hierarchy. Spring provides a conversion from exceptions from the underlying O/X
mapping tool to its own exception hierarchy with the Xm Mappi ngExcept i on as the root exception. As can be
expected, these runtime exceptions wrap the original exception so no information islost.

8.2. Marshaller and Unmarshaller

As stated in the introduction, a marshaller serializes an object to XML, and an unmarshaller deserializes XML
stream to an object. In this section, we will describe the two Spring interfaces used for this purpose.

8.2.1. Marshaller

Spring abstracts all marshalling operations behind the or g. spri ngf r amewor k. oxm Mar shal | er interface, the
main methods of which islisted below.

public interface Marshaller {

/**

* Marshal s the object graph with the given root into the provided Result.
*/
voi d marshal (Cbj ect graph, Result result)
t hrows Xm Mappi ngExcepti on, | OExcepti on;
}

The Marshaller interface has one main method, which marshals the given object to a given
javax. xnl .transform Result. Result is a tagging interface that basicaly represents an XML output
abstraction: concrete implementations wrap various XML representations, as indicated in the table below.

Spring-WS (1.5.9) 70

Marshalling XML using O/X Mappers

javax. xm . transform Resul t implementation Wraps XML representation

javax. xm . transf orm dom DOVResul t or g. w3c. dom Node

javax. xm . transform sax. SAXResul t org. xm . sax. Cont ent Handl er

javax. xm .transform stream StreanResul t java.io.File, java.io. Qut put Stream or

Note

java.io. Witer

Although the marshal method accepts a plain object as its first parameter, most marshal | er
implementations cannot handle arbitrary objects. Instead, an object class must be mapped in a
mapping file, registered with the marshaller, or have a common base class. Refer to the further
sectionsin this chapter to determine how your O/X technology of choice managesthis.

8.2.2. Unmarshaller

Similar to the Mar shal | er, thereisthe or g. spri ngf r anewor k. oxm Unnar shal | er interface.

public interface Unmarshaller {

/

* %

* Unmarshal s the given provided Source into an object graph.

*/

Obj ect unnar shal (Source source)

}

t hrows Xm Mappi ngExcepti on,

| OExcept i on;

This interface also has one method, which reads from the given j avax. xm . t r ansf or m Sour ce (an XML input
abstraction), and returns the object read. As with Result, Source is a tagging interface that has three concrete
implementations. Each wraps a different XML representation, as indicated in the table below.

j avax.
j avax.

j avax.

j avax.

xm

xm

xm

xm

. transform Sour ce implementation
.transf orm dom DOMSour ce

.transform sax. SAXSour ce

.transform stream St reanSource

Wraps XML representation
or g. w3c. dom Node

org. xm . sax. | nput Sour ce, and
org. xm . sax. XM_Reader

java.io.File, java.io. | nputStream or
j ava.i o. Reader

Even though there are two separate marshaling interfaces (Marshaller and Unmarshaller), al
implementations found in Spring-WS implement both in one class. This means that you can wire up one
marshaller class and refer to it both as a marshaller and an unmarshaller in your appl i cat i onCont ext . xm .

8.2.3. XmIMappingException

Spring converts exceptions from the underlying O/X mapping tool to its own exception hierarchy with the
Xm Mappi ngExcept i on as the root exception. As can be expected, these runtime exceptions wrap the original
exception so no information will be lost.

Spring-WS (1.5.9) 71

Marshalling XML using O/X Mappers

Additionally, the Mar shal | i ngFai | ur eExcept i on and Unnar shal | i ngFai | ur eExcepti on provide a distinction
between marshalling and unmarshalling operations, even though the underlying O/X mapping tool does not do

SO.

The O/X Mapping exception hierarchy is shown in the following figure:

XmlIMappingException

N

GenericMarshallingFailureException ValidationFailureException

N

MarshallingFailureException UnmarshallingFailureException

O/X Mapping exception hierarchy

8.3. Using Marshaller and Unmarshaller

Spring's OXM can be used for awide variety of situations. In the following example, we will use it to marshal
the settings of a Spring-managed application as an XML file. We will use a simple JavaBean to represent the

Settings:

public

class Settings {

private bool ean fooEnabl ed;

publ i ¢ bool ean i sFooEnabl ed() {

}

return fooEnabl ed;

public void set FooEnabl ed(bool ean fooEnabl ed) {

}

thi s. fooEnabl ed = fooEnabl ed;

The application class uses this bean to store its settings. Besides a main method, the class has two methods:
saveSet ti ngs saves the settings bean to a file named set tings. xnl , and | oadSet ti ngs loads these settings
again. A mai n method constructs a Spring application context, and calls these two methods.

i nport
i mport
i nport
i mport
i mport

i mport
i mport
i mport
i mport

public

java.io. FilelnputStream

java.io. FileQutput Stream

java.io. | OExcepti on;

javax. xm . transform stream StreanResul t;
javax. xm . transf orm stream StreanSour ce;

org. springframewor k. cont ext . Appl i cati onCont ext ;

or g. springframewor k. cont ext . support. d assPat hXm Appl i cati onCont ext ;
org. springframewor k. oxm Marshal | er;

or g. spri ngfranmewor k. oxm Unnar shal | er;

class Application {

private static final String FILE NAME = "settings.xm";
private Settings settings = new Settings();

private Marshall er marshaller;

private Unmarshal |l er unmarshaller;

Spring-WS (1.5.9) 72

Marshalling XML using O/X Mappers

public void setMarshaller(Marshaller marshaller) {
this. marshaller = marshall er;
}

public void setUnmarshal |l er(Unmarshal | er unmarshal ler) {
this.unmarshal |l er = unmarshall er;
}

public void saveSettings() throws | OException {
Fi | eCut put Stream os = nul |
try {
0os = new Fil eQut put St rean(FI LE_NAME) ;
this. marshal | er. marshal (settings, new StreanResul t(o0s));

} finally {
if (os !'=null) {
os. cl ose();
}
}

}

public void | oadSettings() throws | OException {
FilelnputStreamis = null;
try {
is = new Fil el nput Stream FI LE_NAME) ;
this.settings = (Settings) this.unmarshall er.unmarshal (new StreanSource(is));

} finally {
if (is!=null) {
is.close();
}

}

public static void main(String[] args) throws | OException {
Appl i cati onCont ext appContext =
new Cl assPat hXm Appl i cati onCont ext ("appl i cati onContext.xm ");
Appl i cation application = (Application) appContext.getBean("application");
application. saveSettings();
application.|oadSettings();

}

The Application requires both a marshaller and unmarshaller property to be set. We can do so using the
following appl i cat i onCont ext . xm :

<beans>
<bean id="application" class="Application">
<property nanme="narshal l er" ref="castorMarshaller" />
<property name="unmarshal l er" ref="castorMarshaller" />
</ bean>
<bean i d="castor Marshal | er" class="org. springfranework. oxm cast or. Cast or Marshal | er"/ >
</ beans>

This application context uses Castor, but we could have used any of the other marshaller instances described
later in this chapter. Note that Castor does not require any further configuration by default, so the bean
definition is rather simple. Also note that the CastorMarshaller implements both Marshaller and
Unnar shal | er, SO we can refer to the cast or Mar shal | er bean in both the marshaller and unmarshaller property
of the application.

This sample application produces the following set ti ngs. xni file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<settings foo-enabl ed="fal se"/>

8.4. XML Schema-based Configuration

Spring-WS (1.5.9) 73

Marshalling XML using O/X Mappers

Marshallers could be configured more concisely using tags from the OXM namespace. To make these tags
available, the appropriate schema has to be referenced first in the preamble of the XML configuration file. The
emboldened text in the below snippet references the OXM schema:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: oxn¥"ht t p: // www. spri ngf ramewor k. or g/ schena/ oxni'
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans http://ww. spri ngframewor k. or g/ schena/ beans/
http://ww. springframework. or g/ schema/ oxm http://ww. spri ngframewor k. or g/ schema/ oxm spri ng-oxm 1. 5. xsd">

Currently, the following tags are available:

* jaxbl-nmarshaller

* jaxb2-nmarshall er

¢ xnl beans-narshal | er
* jibx-narshaller

Each tag will be explained in its respective marshaller's section. As an example though, here is how the
configuration of a JAXB2 marshaller might look like:

<oxm j axb2- marshal | er id="marshal |l er" contextPath="org. springfranmework.ws. sanpl es.airline.schem"/>

8.5. JAXB

The JAXB binding compiler translates a W3C XML Schemainto one or more Java classes, aj axb. properti es
file, and possibly other files, depending on the specific implementation of JAXB. Alternatively, JAXB2 offersa
way to generate a schema from annotated Java classes.

Spring supports both the JAXB 1.0 and the JAXB 2.0 APl as XML marshalling strategies, following the
Mar shal | er and Unmar shal | er interfaces described in Section 8.2, “Marshaller and Unmarshaller”. The
corresponding integration classes reside in the org.springframework.oxm.jaxb package.

8.5.1. Jaxb1Marshaller

The JaxbiMar shal | er class implements both the Spring Mar shal | er and Unnar shal | er interface. It requires a
context path to operate, which you can set using the contextPath property. The context path is alist of colon (:)
separated Java package names that contain schema derived classes. The marshaller has an additional validating
property which defines whether to validate incoming XML.

The next sample bean configuration shows how to configure a JaxbMar shal | er using the classes generated to
org. springframewor k. ws. sanpl es. ai rline. schena.

<beans>
<bean id="jaxblMarshal l er" class="org. springfranmework. oxm jaxb.JaxblMarshaller">

<property name="contextPath" val ue="org. spri ngfranework.ws. sanpl es. airline.schem"/>
</ bean>

</ beans>

Spring-WS (1.5.9) 74

Marshalling XML using O/X Mappers

8.5.1.1. XML Schema-based Configuration

The jaxbl-nmarshal ler tag configures a org. springfranmewor k. oxm j axb. Jaxb1lMarshal l er. Here is an
example:

<oxm j axbl-marshal | er id="marshaller" contextPath="org.springframework.ws.sanples.airline.schem"/>

Available attributes are;

Attribute Description Required
id theid of the marshaller no

cont ext Pat h the JAXB Context path yes

val i dating indicates whether the incoming XML should be validated no

8.5.2. Jaxb2Marshaller

The Jaxb2narshal I er can be configured using the same contextPath property as the JaxbiMarshal ler.
However, it also offers a classesToBeBound property, which alows you to set an array of classes to be
supported by the marshaller. Schema validation is performed by specifying one or more schema resource to the
bean, like so:

<beans>

<bean id="jaxb2Marshal | er" cl ass="org. spri ngfranmewor k. oxm j axb. Jaxb2Mar shal | er" >
<property name="cl assesToBeBound" >
<list>
<val ue>or g. spri ngf ramewor k. oxm j axb. Fl i ght </ val ue>
<val ue>or g. spri ngf ramewor k. oxm j axb. Fl i ght s</ val ue>
</list>
</ property>
<property nanme="schem" val ue="cl asspat h: or g/ spri ngf r anewor k/ oxml schema. xsd"/ >
</ bean>

</ beans>

8.5.2.1. XML Schema-based Configuration

The jaxb2-marshal l er tag configures a org. spri ngf ranmewor k. oxm j axb. Jaxb2Mar shal | er. Here is an
example:

<oxm j axb2-marshal |l er id="marshal |l er" context Pat h="org. spri ngframework. ws. sanpl es. airline. schema"/>

Alternatively, the list of classesto bind can be provided to the marshaller viathecl ass-t o- be- bound child tag:

<oxm j axb2-marshal | er id="marshal |l er">
<oxm cl ass-t o- be- bound nane="org. spri ngframewor k. ws. sanpl es. airline.schema. Airport"/>
<oxm cl ass-t o- be- bound name="org. spri ngfranewor k. ws. sanpl es. airline. schema. Fl i ght"/>

</ oxm j axb2- mar shal | er >

Available attributes are:

Spring-WS (1.5.9) 75

Marshalling XML using O/X Mappers

Attribute Description Required
id the id of the marshaller no

cont ext Pat h the JAXB Context path no

8.6. Castor

Castor XML mapping is an open source XML binding framework. It allows you to transform the data contained
in a java object model into/from an XML document. By default, it does not require any further configuration,
though a mapping file can be used to have more control over the behavior of Castor.

For more information on Castor, refer to the Castor web site. The Spring integration classes reside in the
org.springframework.oxm.castor package.

8.6.1. CastorMarshaller

As with JAXB, the Cast or Mar shal | er implements both the var shal | er and Unnar shal | er interface. It can be
wired up asfollows:

<beans>

<bean i d="castorMarshal l er" class="org. springfranmework. oxm castor. CastorMarshal ler" />

</ beans>

8.6.2. Mapping

Although it is possible to rely on Castor's default marshalling behavior, it might be necessary to have more
control over it. This can be accomplished using a Castor mapping file. For more information, refer to Castor

XML Mapping.

The mapping can be set using the mappingLocation resource property, indicated below with a classpath
resource.

<beans>
<bean id="castorMarshal l er" class="org. springfranmewor k. oxm cast or. Cast or Marshal l er" >
<property nanme="nmappi ngLocation" val ue="cl asspat h: mappi ng. xm " />
</ bean>
</ beans>

8.7. XMLBeans

XMLBeansisan XML binding tool that has full XML Schema support, and offers full XML Infoset fidelity. It
takes a different approach to that of most other O/X mapping frameworks, in that al classes that are generated
from an XML Schemaare al derived from xm Qbj ect , and contain XML binding information in them.

For more information on XMLBeans, refer to the XMLBeans web site . The Spring-WS integration classes
reside in the org.springframework.oxm.xmlbeans package.

Spring-WS (1.5.9) 76

http://castor.org/xml-framework.html
http://castor.org/xml-mapping.html
http://castor.org/xml-mapping.html
http://xmlbeans.apache.org/

Marshalling XML using O/X Mappers

8.7.1. XmIBeansMarshaller

The xm BeansMar shal | er implements both the Mar shal | er and Unnar shal | er interfaces. It can be configured
asfollows:

<beans>

<bean id="xm BeansMarshal | er" cl ass="org. springfranmewor k. oxm xm beans. Xml BeansMar shal l er" />

</ beans>

Note

Note that the Xm BeansMar shal | er can only marsha objects of type Xm bj ect, and not every
j ava. l ang. Obj ect .

8.7.1.1. XML Schema-based Configuration

The xm beans- mar shal | er tag configures aor g. spri ngf r amewor k. oxm xm beans. Xm BeansMar shal | er . Here
isan example:

<oxm xm beans- marshal | er id="marshaller"/>

Available attributes are;

Attribute Description Required
id the id of the marshaller no
opti ons the bean name of the XmlOptions that is to be used for this| no

marshaller. Typically axm Opti onsFact or yBean definition

8.8. JIBX

The JBX framework offers a solution similar to that which JDO provides for ORM: a binding definition
defines the rules for how your Java objects are converted to or from XML. After preparing the binding and
compiling the classes, a JIBX binding compiler enhances the class files, and adds code to handle converting
instances of the classes from or to XML.

For more information on JiBX, refer to the JiBX web site. The Spring integration classes reside in the

org.springframework.oxm.jibx package.

8.8.1. JibxMarshaller

The Ji bxMarshal | er class implements both the marshal ler and Unmarshal | er interface. To operate, it
requires the name of the class to marshall in, which you can set using the targetClass property. Optionally, you
can set the binding name using the bindingName property. In the next sample, we bind the FI i ght s class:

<beans>

Spring-WS (1.5.9) 77

http://jibx.sourceforge.net/

Marshalling XML using O/X Mappers

<bean id="jibxFlightsMarshaller" class="org.springfranmework.oxm jibx.Ji bxMarshall er">
<property name="target C ass">org. spri ngfranmework. oxm ji bx. Fl i ghts</property>
</ bean>

A JibxMarshal I er is configured for a single class. If you want to marshal multiple classes, you have to
configure multiple Ji bxMar shal | er swith different targetClass property values.

8.8.1.1. XML Schema-based Configuration

The jibx-marshal ler tag configures a org. springframework. oxmjibx.Ji bxMarshal l er. Here is an
example:

<oxm j i bx-marshal l er id="marshaller" target-class="org.springframework.ws.sanples.airline.schema.Flight"/>

Available attributes are;

Attribute Description Required
id theid of the marshaller no
target-cl ass the target class for this marshaller yes
bi ndi ngNane the binding name used by this marshaller no

8.9. XStream

XStream is a simple library to serialize objects to XML and back again. It does not require any mapping, and
generates clean XML.

For more information on XStream, refer to the XStream web site. The Spring integration classes reside in the
org.springframework.oxm.xstream package.

8.9.1. XStreamMarshaller

The xst reamMar shal | er does not require any configuration, and can be configured in an application context
directly. To further customize the XML, you can set an alias map, which consists of string aliases mapped to
classes:

<beans>

<bean id="xstreanMarshal |l er" cl ass="org. springfranmewor k. oxm xstream XSt r eanVar shal | er" >
<property nanme="al i ases">
<pr ops>
<prop key="Flight">org. springfranmework. oxm xstream Fl i ght </ pr op>
</ props>
</ property>
</ bean>

</ beans>

Spring-WS (1.5.9) 78

http://xstream.codehaus.org/

Marshalling XML using O/X Mappers

Note

Note that XStream is an XML serialization library, not a data binding library. Therefore, it has
limited namespace support. As such, it is rather unsuitable for usage within Web services.

Spring-WS (1.5.9) 79

Part lll. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help you learn
how to use Spring Web Services. These additional, third-party resources are enumerated in this section.

Spring-WS (1.5.9) 80

Bibliography

[waldo-94] Jim Waldo, Ann Woallrath, and Sam Kendall. A Note on Distributed Computing. Springer Verlag.
1994.

[alpine] Steve Loughran and Edmund Smith. Rethinking the Java SOAP Stack. May 17, 2005. Copyright ©
2005 |EEE Telephone Laboratories, Inc..

[effective-enterprise-java] Ted Neward. Scott Meyers. Effective Enterprise Java. Addison-Wesley. 2004.

[effective-xml] Elliotte Rusty Harold. Scott Meyers. Effective XML. Addison-Wesley. 2004.

Spring-WS (1.5.9) 81

	Spring Web Services - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. What is Spring Web Services?
	1.1. Introduction
	1.2. Runtime environment

	Chapter 2. Why Contract First?
	2.1. Introduction
	2.2. Object/XML Impedance Mismatch
	2.2.1. XSD extensions
	2.2.2. Unportable types
	2.2.3. Cyclic graphs

	2.3. Contract-first versus Contract-last
	2.3.1. Fragility
	2.3.2. Performance
	2.3.3. Reusability
	2.3.4. Versioning

	Chapter 3. Writing Contract-First Web Services
	3.1. Introduction
	3.2. Messages
	3.2.1. Holiday
	3.2.2. Employee
	3.2.3. HolidayRequest

	3.3. Data Contract
	3.4. Service contract
	3.5. Creating the project
	3.6. Implementing the Endpoint
	3.6.1. Handling the XML Message
	3.6.2. Routing the Message to the Endpoint

	3.7. Publishing the WSDL

	Part II. Reference
	Chapter 4. Shared components
	4.1. Web service messages
	4.1.1. WebServiceMessage
	4.1.2. SoapMessage
	4.1.3. Message Factories
	4.1.3.1. SaajSoapMessageFactory
	4.1.3.2. AxiomSoapMessageFactory
	4.1.3.3. SOAP 1.1 or 1.2

	4.1.4. MessageContext

	4.2. TransportContext
	4.3. Handling XML With XPath
	4.3.1. XPathExpression
	4.3.2. XPathTemplate

	4.4. Message Logging and Tracing

	Chapter 5. Creating a Web service with Spring-WS
	5.1. Introduction
	5.2. The MessageDispatcher
	5.3. Transports
	5.3.1. MessageDispatcherServlet
	5.3.1.1. Automatic WSDL exposure

	5.3.2. Wiring up Spring-WS in a DispatcherServlet
	5.3.3. JMS transport
	5.3.4. Email transport
	5.3.5. Embedded HTTP Server transport

	5.4. Endpoints
	5.4.1. AbstractDomPayloadEndpoint and other DOM endpoints
	5.4.2. AbstractMarshallingPayloadEndpoint
	5.4.3. Using Spring Validator with Marshalling Endpoints
	5.4.3.1. AbstractValidatingMarshallingPayloadEndpoint
	5.4.3.2. AbstractFaultCreatingValidatingMarshallingPayloadEndpoint

	5.4.4. @Endpoint
	5.4.4.1. @XPathParam

	5.5. Endpoint mappings
	5.5.1. PayloadRootQNameEndpointMapping
	5.5.2. SoapActionEndpointMapping
	5.5.3. MethodEndpointMapping
	5.5.4. WS-Addressing
	5.5.4.1. SimpleActionEndpointMapping
	5.5.4.2. AnnotationActionEndpointMapping

	5.5.5. Intercepting requests - the EndpointInterceptor interface
	5.5.5.1. PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor
	5.5.5.2. PayloadValidatingInterceptor
	5.5.5.3. PayloadTransformingInterceptor

	5.6. Handling Exceptions
	5.6.1. SoapFaultMappingExceptionResolver
	5.6.2. SoapFaultAnnotationExceptionResolver

	Chapter 6. Using Spring Web Services on the Client
	6.1. Introduction
	6.2. Using the client-side API
	6.2.1. WebServiceTemplate
	6.2.1.1. URIs and Transports
	6.2.1.1.1. HTTP transports
	6.2.1.1.2. JMS transport
	6.2.1.1.3. Email transport

	6.2.1.2. Message factories

	6.2.2. Sending and receiving a WebServiceMessage
	6.2.3. Sending and receiving POJOs - marshalling and unmarshalling
	6.2.4. WebServiceMessageCallback
	6.2.4.1. WS-Addressing

	6.2.5. WebServiceMessageExtractor

	Chapter 7. Securing your Web services with Spring-WS
	7.1. Introduction
	7.2. XwsSecurityInterceptor
	7.2.1. Keystores
	7.2.1.1. KeyTool
	7.2.1.2. KeyStoreFactoryBean
	7.2.1.3. KeyStoreCallbackHandler

	7.2.2. Authentication
	7.2.2.1. Plain Text Username Authentication
	7.2.2.1.1. SimplePasswordValidationCallbackHandler
	7.2.2.1.2. SpringPlainTextPasswordValidationCallbackHandler
	7.2.2.1.3. JaasPlainTextPasswordValidationCallbackHandler

	7.2.2.2. Digest Username Authentication
	7.2.2.2.1. SimplePasswordValidationCallbackHandler
	7.2.2.2.2. SpringDigestPasswordValidationCallbackHandler

	7.2.2.3. Certificate Authentication
	7.2.2.3.1. KeyStoreCallbackHandler
	7.2.2.3.2. SpringCertificateValidationCallbackHandler
	7.2.2.3.3. JaasCertificateValidationCallbackHandler

	7.2.3. Digital Signatures
	7.2.3.1. Verifying Signatures
	7.2.3.1.1. KeyStoreCallbackHandler

	7.2.3.2. Signing Messages
	7.2.3.2.1. KeyStoreCallbackHandler

	7.2.4. Encryption and Decryption
	7.2.4.1. Decryption
	7.2.4.1.1. KeyStoreCallbackHandler

	7.2.4.2. Encryption
	7.2.4.2.1. KeyStoreCallbackHandler

	7.3. Wss4jSecurityInterceptor
	7.3.1. Configuring Wss4jSecurityInterceptor
	7.3.2. Handling Digital Certificates
	7.3.2.1. CryptoFactoryBean

	7.3.3. Authentication
	7.3.3.1. Validating Username Token
	7.3.3.1.1. SimplePasswordValidationCallbackHandler
	7.3.3.1.2. SpringPlainTextPasswordValidationCallbackHandler
	7.3.3.1.3. SpringDigestPasswordValidationCallbackHandler

	7.3.3.2. Adding Username Token
	7.3.3.3. Certificate Authentication

	7.3.4. Security Timestamps
	7.3.4.1. Validating Timestamps
	7.3.4.2. Adding Timestamps

	7.3.5. Digital Signatures
	7.3.5.1. Verifying Signatures
	7.3.5.2. Signing Messages
	7.3.5.3. Signature Confirmation

	7.3.6. Encryption and Decryption
	7.3.6.1. Decryption
	7.3.6.2. Encryption

	Chapter 8. Marshalling XML using O/X Mappers
	8.1. Introduction
	8.2. Marshaller and Unmarshaller
	8.2.1. Marshaller
	8.2.2. Unmarshaller
	8.2.3. XmlMappingException

	8.3. Using Marshaller and Unmarshaller
	8.4. XML Schema-based Configuration
	8.5. JAXB
	8.5.1. Jaxb1Marshaller
	8.5.1.1. XML Schema-based Configuration

	8.5.2. Jaxb2Marshaller
	8.5.2.1. XML Schema-based Configuration

	8.6. Castor
	8.6.1. CastorMarshaller
	8.6.2. Mapping

	8.7. XMLBeans
	8.7.1. XmlBeansMarshaller
	8.7.1.1. XML Schema-based Configuration

	8.8. JiBX
	8.8.1. JibxMarshaller
	8.8.1.1. XML Schema-based Configuration

	8.9. XStream
	8.9.1. XStreamMarshaller

	Part III. Other Resources
	Bibliography

